Prediction of Fluid–Brine Event Zones by Artificial Intelligence Methods Based on New Generation RTH Seismic Attributes and Drilling Data at the Kovykta Gas Condensate Field

A new method for predicting lithofacies, gas, fluid and brine zones, and zones with abnormally high reservoir pressure, as well as the petrophysical properties of rocks using artificial intelligence methods, based on a family of new seismic attributes of the RTH (reverse time holography) method and...

Full description

Saved in:
Bibliographic Details
Published in:Doklady earth sciences Vol. 514; no. 1; pp. 105 - 113
Main Authors: Bugaev, A. S., Erokhin, G. N., Ryabykh, S. A., Smirnov, A. S.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new method for predicting lithofacies, gas, fluid and brine zones, and zones with abnormally high reservoir pressure, as well as the petrophysical properties of rocks using artificial intelligence methods, based on a family of new seismic attributes of the RTH (reverse time holography) method and well drilling data is proposed. The main difference between RTH attributes and conventional ones obtained by migration transformation is their voxel nature and hyperattribution. This turned out to be a key advantage of the new approach to solving problems of geological prediction by artificial intelligence methods. The results of applying a new method for processing and interpreting modern 3D seismic data, as well as geological prediction based on it for the area of intense brine occurrence at the Kovykta gas condensate field, are presented.
AbstractList A new method for predicting lithofacies, gas, fluid and brine zones, and zones with abnormally high reservoir pressure, as well as the petrophysical properties of rocks using artificial intelligence methods, based on a family of new seismic attributes of the RTH (reverse time holography) method and well drilling data is proposed. The main difference between RTH attributes and conventional ones obtained by migration transformation is their voxel nature and hyperattribution. This turned out to be a key advantage of the new approach to solving problems of geological prediction by artificial intelligence methods. The results of applying a new method for processing and interpreting modern 3D seismic data, as well as geological prediction based on it for the area of intense brine occurrence at the Kovykta gas condensate field, are presented.
Author Erokhin, G. N.
Smirnov, A. S.
Ryabykh, S. A.
Bugaev, A. S.
Author_xml – sequence: 1
  givenname: A. S.
  surname: Bugaev
  fullname: Bugaev, A. S.
  organization: Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
– sequence: 2
  givenname: G. N.
  surname: Erokhin
  fullname: Erokhin, G. N.
  email: Gerokhin@kantiana.ru
  organization: Kant Baltic Federal University
– sequence: 3
  givenname: S. A.
  surname: Ryabykh
  fullname: Ryabykh, S. A.
  organization: OOO GIRS-M
– sequence: 4
  givenname: A. S.
  surname: Smirnov
  fullname: Smirnov, A. S.
  organization: Gazprom VNIIGAZ LLC
BookMark eNp1kU1OIzEQhS0EEn9zgNmVxLoHu-103MsQSED8ashiNJuWu10OZhobbIdRdnMHDsKdOAmGjMQCsaoq1Xvfk6q2ybrzDgn5zugPxrjYv2a0lJyLXyWvaMllvUa22ICzQvKBWM99Xhdv-02yHeMtpUKIQb1Fnq8Catsl6x14A5N-YfXLv6eDYB3C0SO6BL9zUoR2CaOQrLGdVT2cuIR9b-foOoRzTDdeRzhQETVk0AX-hSk6DOqd-3N2DNdo453tYJRSsO0iZaJyGg6DzRg3h0OVFKgE6Qbh1D8u_-RxqiKMvdPookoIE4u93iUbRvURv_2vO2Q2OZqNj4uzy-nJeHRWdGUlU9ENBSqusBR62InKVJWqNW0rZkxV1oahpHLI6lpI0zIu6YALjsy0nHMp8iF3yN4Kex_8wwJjam79Iric2HAqOBvKuiqziq1UXfAxBjTNfbB3KiwbRpu3tzSf3pI95coTs9bNMXyQvza9AjLQkuQ
Cites_doi 10.3997/2214-4609.202210094
10.1190/segam2019-3201622.1
10.1190/geo2020-0521.1
10.1190/tle38120949
10.1190/1.1441754
10.1002/9781119879893
10.1190/1.1441434
10.34926/geo.2023.18.86.011
10.1190/1.3627841
10.1190/1.3238367
10.30713/0130-3872-2019-5-11-18
10.1190/1.1444899
10.1190/1.9781560803201
10.1190/1.3511352
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2024. ISSN 1028-334X, Doklady Earth Sciences, 2024, Vol. 514, Part 1, pp. 105–113. © Pleiades Publishing, Ltd., 2024. ISSN 1028-334X, Doklady Earth Sciences, 2024. © Pleiades Publishing, Ltd., 2024.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2024. ISSN 1028-334X, Doklady Earth Sciences, 2024, Vol. 514, Part 1, pp. 105–113. © Pleiades Publishing, Ltd., 2024. ISSN 1028-334X, Doklady Earth Sciences, 2024. © Pleiades Publishing, Ltd., 2024.
DBID AAYXX
CITATION
7TG
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1134/S1028334X23602389
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1531-8354
EndPage 113
ExternalDocumentID 10_1134_S1028334X23602389
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2XV
2~H
30V
3V.
4.4
408
40D
40E
5GY
5VS
67M
6NX
7XC
88I
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAFGU
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IJ-
IKXTQ
ITC
ITM
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L7B
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
Z5O
ZMTXR
~02
~A9
AAYXX
AAYZH
CITATION
H13
7TG
7UA
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c268t-c74ea3ae24d7c46f66a9d0b61ff629f1e808719948fb13805343e1fb33384283
IEDL.DBID AEJHL
ISSN 1028-334X
IngestDate Mon Nov 18 01:55:20 EST 2024
Thu Nov 21 22:20:43 EST 2024
Mon Apr 22 04:38:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords prediction
seismic exploration
seismic attributes
brine
artificial intelligence
RTH
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-c74ea3ae24d7c46f66a9d0b61ff629f1e808719948fb13805343e1fb33384283
PQID 3043178962
PQPubID 54876
PageCount 9
ParticipantIDs proquest_journals_3043178962
crossref_primary_10_1134_S1028334X23602389
springer_journals_10_1134_S1028334X23602389
PublicationCentury 2000
PublicationDate 1-2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 1-2024
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Dordrecht
PublicationTitle Doklady earth sciences
PublicationTitleAbbrev Dokl. Earth Sc
PublicationYear 2024
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References VakhromeevA. G.SverkunovS. A.SmirnovA. S.GorlovI. V.Stroit. Neft. GazovSkvazhin Sushe More, No.20195111810.30713/0130-3872-2019-5-11-18
AminzadehF.TemizelC.HajizadehY.Artificial Intelligence and Data Analytics for Energy Exploration and Production202210.1002/9781119879893
A. S. Smirnov, A. G. Vakhromeev, G. N. Erokhin, and A. G. Dmitriev, Geofizika, No. 2, 93–101 (2023). https://doi.org/10.34926/geo.2023.18.86.011
LuanxiaoZ.CaifengZ.YuanyuanC.WenlongS.WangY.ChenH.GengJ.Geophysics202186M151M16510.1190/geo2020-0521.1
T. A. Dickens and G. A. Winbow, in SEG Techn. Progr. Expand. Abstr. (2011). https://doi.org/10.1190/1.3627841.
PopoviciA.TanushevN.HardestyS.SEG Techn. Progr. Expand. Abstr.2016
VakhromeevA. G.KhokhlovG. A.Features of Hole Drilling and Finishing in Eastern Siberia and Yakutia1988Novosibirsk, IrkutskSiberian Res. Inst. Geol., Geophys., Miner. Raw Mater.[in Russian]
AgafonovV. M.BugaevA. S.ErokhinG. N.RonzhinA. L.Geofizika.202267783
I. V. Buddo, A. S. Smirnov, N. V. Misiurkeeva, I.  A.  Shelohov, Y. A. Agafonov, M. A. Lushev, S.  A.  Korotkov, and E. Ju. Trjasin, in Proc. 8th Int. Conf. & Exhibition Innovations in Geosciences—Time for Breakthrough (St. Petersburg, Apr. 9–12, 2018).
A. N. Kremlev, G. N. Erokhin, L. E. Starikov, and S. V. Rodin, in Proc. 73th EAGE Conf. & Exhibition (Vienna, 2011), Abstr. B024.
HampsonD. P.SchuelkeJ. S.QuierinJ. A.Geophysics20016622023610.1190/1.1444899
S. Chopra and J. P. Castagna, AVO (Soc. Explor. Geophys., 2014).
A. Tarantola, Geophysics 49 (8) (1984).
VirieuxJ.OpertoS.Geophysics200974WCC1WCC2610.1190/1.3238367
KorenZ.RavveI.Geophysics201176S1S1310.1190/1.3511352
PriezzhevI. I.VeekenP. C. H.EgorovS. V.StreckeU.Leading Edge20193894995810.1190/tle38120949
BaysalE.KosloffD. D.SherwoodJ. W. C.Geophysics1983481514152410.1190/1.1441434
G. Erokhin, in SEG Techn. Progr. Expand. Abstr. (2019), pp. 4107–4111. https://doi.org/10.1190/segam2019-3201622.1.
A. S. Smirnov, V. V. Kas’yanov, A. G. Vakhromeev, et al., RF Patent 2690089 IPC G01V 1/00 (2006.01), G01V 1/28 (2006.01), G01V 1/30 (2006.01), Byull. Izobret., No. 16 (2019).
G. Erokhin, in Proc. 83rd EAGE Annu. Conf. & Exhibition (Madrid, June 2022), Vol. 2022, pp. 1‒5. https://doi.org/10.3997/2214-4609.202210094.
4299_CR8
J. Virieux (4299_CR15) 2009; 74
A. Popovici (4299_CR16) 2016
F. Aminzadeh (4299_CR18) 2022
4299_CR3
4299_CR4
4299_CR10
4299_CR7
Z. Koren (4299_CR11) 2011; 76
4299_CR14
4299_CR13
4299_CR12
A. G. Vakhromeev (4299_CR1) 1988
I. I. Priezzhev (4299_CR2) 2019; 38
A. G. Vakhromeev (4299_CR20) 2019; 5
V. M. Agafonov (4299_CR17) 2022; 6
Z. Luanxiao (4299_CR6) 2021; 86
D. P. Hampson (4299_CR5) 2001; 66
E. Baysal (4299_CR9) 1983; 48
4299_CR19
References_xml – ident: 4299_CR12
– ident: 4299_CR8
  doi: 10.3997/2214-4609.202210094
– ident: 4299_CR7
  doi: 10.1190/segam2019-3201622.1
– volume: 6
  start-page: 77
  year: 2022
  ident: 4299_CR17
  publication-title: Geofizika.
  contributor:
    fullname: V. M. Agafonov
– volume: 86
  start-page: M151
  year: 2021
  ident: 4299_CR6
  publication-title: Geophysics
  doi: 10.1190/geo2020-0521.1
  contributor:
    fullname: Z. Luanxiao
– volume: 38
  start-page: 949
  year: 2019
  ident: 4299_CR2
  publication-title: Leading Edge
  doi: 10.1190/tle38120949
  contributor:
    fullname: I. I. Priezzhev
– ident: 4299_CR14
  doi: 10.1190/1.1441754
– volume-title: Features of Hole Drilling and Finishing in Eastern Siberia and Yakutia
  year: 1988
  ident: 4299_CR1
  contributor:
    fullname: A. G. Vakhromeev
– volume-title: Artificial Intelligence and Data Analytics for Energy Exploration and Production
  year: 2022
  ident: 4299_CR18
  doi: 10.1002/9781119879893
  contributor:
    fullname: F. Aminzadeh
– volume: 48
  start-page: 1514
  year: 1983
  ident: 4299_CR9
  publication-title: Geophysics
  doi: 10.1190/1.1441434
  contributor:
    fullname: E. Baysal
– ident: 4299_CR3
  doi: 10.34926/geo.2023.18.86.011
– volume-title: SEG Techn. Progr. Expand. Abstr.
  year: 2016
  ident: 4299_CR16
  contributor:
    fullname: A. Popovici
– ident: 4299_CR10
  doi: 10.1190/1.3627841
– volume: 74
  start-page: WCC1
  year: 2009
  ident: 4299_CR15
  publication-title: Geophysics
  doi: 10.1190/1.3238367
  contributor:
    fullname: J. Virieux
– volume: 5
  start-page: 11
  year: 2019
  ident: 4299_CR20
  publication-title: Skvazhin Sushe More, No.
  doi: 10.30713/0130-3872-2019-5-11-18
  contributor:
    fullname: A. G. Vakhromeev
– ident: 4299_CR19
– volume: 66
  start-page: 220
  year: 2001
  ident: 4299_CR5
  publication-title: Geophysics
  doi: 10.1190/1.1444899
  contributor:
    fullname: D. P. Hampson
– ident: 4299_CR13
  doi: 10.1190/1.9781560803201
– volume: 76
  start-page: S1
  year: 2011
  ident: 4299_CR11
  publication-title: Geophysics
  doi: 10.1190/1.3511352
  contributor:
    fullname: Z. Koren
– ident: 4299_CR4
SSID ssj0044459
Score 2.3463638
Snippet A new method for predicting lithofacies, gas, fluid and brine zones, and zones with abnormally high reservoir pressure, as well as the petrophysical properties...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 105
SubjectTerms Artificial intelligence
Brines
Condensates
Drilling
Earth and Environmental Science
Earth Sciences
Geology
Geophysics
Holography
Lithofacies
Predictions
Rock properties
Seismic data
Seismological data
Well drilling
Title Prediction of Fluid–Brine Event Zones by Artificial Intelligence Methods Based on New Generation RTH Seismic Attributes and Drilling Data at the Kovykta Gas Condensate Field
URI https://link.springer.com/article/10.1134/S1028334X23602389
https://www.proquest.com/docview/3043178962
Volume 514
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuMwFLV4CInNMLzEa9BdsAIFmtg4zrLQlvIUol0gNpET21IF06ImReqOf-BD-Kf5krl2EpjhsYBlZOco0b32vfa1zyFki9cUTYLIeNiuPRyJqScSir6sAq0xovg1Yyu67U54cS0aTUuTE7xsXfRvd6uKpJuoC9kRttdxkZCy64ByG2eiSTKNoWcffXu63jxpn1XzL2PMSaTZ_p59oaxlfgjyfzR6TTHfVEVdsGnNfeczf5IfZWoJ9cIX5smE7i-QmSMn3TteJM-XQ1uUsYaAgYHW3ain_jw-Hdjrf9C0xx7hxhL3QzJ2GAW1BBz_w9kJ505vOoMDjH0KEAjnSCiYqx3uVbcNHd3LfvdSqOeFmBYiyr6CxrDn6L-hIXMJMgfMPOF08DC-xccjmcHhwIrxZpj7Qsseq1si3Vaze9j2SrkGLw24yL00ZFpSqQOmwpRxw7mMVC3hvjEcvcHXooarsyhiwiQ-FTj6GdW-SSiuki3t2zKZ6uNvrhAQqTZhQjmTKbMM-EKy1CSSq31bipbBKtmurBbfF6QcsVvMUBa_M8Aq2ajsGpfjM4up5RQKRcQRa6cy5Gvzp2BrX-q9TmYDzIGKHZsNMpUPR_oXmczUaLN02r_kQOaZ
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbtswECWaBEWzSZp-kDROO4usUgi1RJailo5t2UY-CGItgm4ESiQBo4ldWHIB73KHHCR3ykkypCTk1y7apUDyQcIMOUMN-R4h-7ytaBZExsN27eFMzD2RUfRlFWiNEcVvG1vRHY7D0wvR61uaHNrchXGn3ZuSpFupK90R9m3sQiFlFwHlNtBEK2SNRZyhK691RskgbhZgxpjTSLP9PTugLmb-EeRpOHrIMZ-VRV20iTf_6z3fko06uYRO5Q1b5JWeviOvB068d_me3J7NbVnGmgJmBuLLxUTdXd8c2guA0LcHH-GHpe6HbOkwKnIJGD1i7YQTpzhdwCFGPwUIhKskVNzVDvc8GcJYT4qrSQ6dspLTQkQ5VdCbTxwBOPRkKUGWgLknHM1-L3_i40AW0J1ZOd4Cs1-I7cG6DySJ-0l36NWCDV4ecFF6eci0pFIHTIU544ZzGal2xn1jOPqDr0Ub92dRxITJfCpw_jOqfZNR3Cdb4rePZHWKn7lNQOTahBnlTObMcuALyXKTSa6-22K0DHbIQWO29FdFy5G67Qxl6QsD7JBWY9i0nqFFSi2rUCgijlhfG0M-NP8V7NM_9f5C3gyTk-P0eHR6tEvWA8yIqv83LbJazhd6j6wUavG59uB7xXzqiQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWyoEUuabohW9s59NRCiCUyFHUKnNiK06RBUPsQ9CJQIgkYTezAkgP4ln_Ih_Sf-iWdoSSk66HoUaD0IGGGnBkN-R5jb2XH8DxKXIDjNsCZWAQq5-jLJrIWI0rYcdTRHQzj80vV6xNNzkF7Fsbvdm9bkvWZBmJpmlR7N8Y1GiRib-jDIheXEZcUdJJltiqwkEFHX-32PwzO2sVYCOH10uj-gB5oGpt_BPk5ND3km7-0SH3kSZ_89ztvsPUm6YRu7SVP2ZKdPGOPjr2o7-I5-3oxo3YNmQimDtKr-dh8u7s_pIOB0KcNkfCZKP0hX3iMmnQCTn5g84SPXom6hEOMigYQCFdPqDmtPe6n0QCGdlxejwvoVrXMFiLqiYHebOyJwaGnKw26AsxJ4XR6u_iCl8e6hKMpyfSWmBVDShvuXrBR2h8dDYJGyCEoIqmqoIiF1VzbSJi4ENJJqRPTyWXonEQ_Ca3qYN2WJEK5POQK1wXBbehyjvUzEcK9ZCsT_MxNBqqwLs65FLoQxI2vtChcrqXZpya1jrbYu9aE2U1N15H5MoeL7DcDbLHd1shZM3PLjBPbUKwSiVjvW6M-DP8VbPuf7n7DHl_00uzs5Px0h61FmCjVv3V22Uo1m9tXbLk089eNM38H40nzTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Fluid%E2%80%93Brine+Event+Zones+by+Artificial+Intelligence+Methods+Based+on+New+Generation+RTH+Seismic+Attributes+and+Drilling+Data+at+the+Kovykta+Gas+Condensate+Field&rft.jtitle=Doklady+earth+sciences&rft.au=Bugaev%2C+A.+S.&rft.au=Erokhin%2C+G.+N.&rft.au=Ryabykh%2C+S.+A.&rft.au=Smirnov%2C+A.+S.&rft.date=2024-01-01&rft.pub=Pleiades+Publishing&rft.issn=1028-334X&rft.eissn=1531-8354&rft.volume=514&rft.issue=1&rft.spage=105&rft.epage=113&rft_id=info:doi/10.1134%2FS1028334X23602389&rft.externalDocID=10_1134_S1028334X23602389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1028-334X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1028-334X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1028-334X&client=summon