Prediction of Fluid–Brine Event Zones by Artificial Intelligence Methods Based on New Generation RTH Seismic Attributes and Drilling Data at the Kovykta Gas Condensate Field
A new method for predicting lithofacies, gas, fluid and brine zones, and zones with abnormally high reservoir pressure, as well as the petrophysical properties of rocks using artificial intelligence methods, based on a family of new seismic attributes of the RTH (reverse time holography) method and...
Saved in:
Published in: | Doklady earth sciences Vol. 514; no. 1; pp. 105 - 113 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Moscow
Pleiades Publishing
2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A new method for predicting lithofacies, gas, fluid and brine zones, and zones with abnormally high reservoir pressure, as well as the petrophysical properties of rocks using artificial intelligence methods, based on a family of new seismic attributes of the RTH (reverse time holography) method and well drilling data is proposed. The main difference between RTH attributes and conventional ones obtained by migration transformation is their voxel nature and hyperattribution. This turned out to be a key advantage of the new approach to solving problems of geological prediction by artificial intelligence methods. The results of applying a new method for processing and interpreting modern 3D seismic data, as well as geological prediction based on it for the area of intense brine occurrence at the Kovykta gas condensate field, are presented. |
---|---|
AbstractList | A new method for predicting lithofacies, gas, fluid and brine zones, and zones with abnormally high reservoir pressure, as well as the petrophysical properties of rocks using artificial intelligence methods, based on a family of new seismic attributes of the RTH (reverse time holography) method and well drilling data is proposed. The main difference between RTH attributes and conventional ones obtained by migration transformation is their voxel nature and hyperattribution. This turned out to be a key advantage of the new approach to solving problems of geological prediction by artificial intelligence methods. The results of applying a new method for processing and interpreting modern 3D seismic data, as well as geological prediction based on it for the area of intense brine occurrence at the Kovykta gas condensate field, are presented. |
Author | Erokhin, G. N. Smirnov, A. S. Ryabykh, S. A. Bugaev, A. S. |
Author_xml | – sequence: 1 givenname: A. S. surname: Bugaev fullname: Bugaev, A. S. organization: Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences – sequence: 2 givenname: G. N. surname: Erokhin fullname: Erokhin, G. N. email: Gerokhin@kantiana.ru organization: Kant Baltic Federal University – sequence: 3 givenname: S. A. surname: Ryabykh fullname: Ryabykh, S. A. organization: OOO GIRS-M – sequence: 4 givenname: A. S. surname: Smirnov fullname: Smirnov, A. S. organization: Gazprom VNIIGAZ LLC |
BookMark | eNp1kU1OIzEQhS0EEn9zgNmVxLoHu-103MsQSED8ashiNJuWu10OZhobbIdRdnMHDsKdOAmGjMQCsaoq1Xvfk6q2ybrzDgn5zugPxrjYv2a0lJyLXyWvaMllvUa22ICzQvKBWM99Xhdv-02yHeMtpUKIQb1Fnq8Catsl6x14A5N-YfXLv6eDYB3C0SO6BL9zUoR2CaOQrLGdVT2cuIR9b-foOoRzTDdeRzhQETVk0AX-hSk6DOqd-3N2DNdo453tYJRSsO0iZaJyGg6DzRg3h0OVFKgE6Qbh1D8u_-RxqiKMvdPookoIE4u93iUbRvURv_2vO2Q2OZqNj4uzy-nJeHRWdGUlU9ENBSqusBR62InKVJWqNW0rZkxV1oahpHLI6lpI0zIu6YALjsy0nHMp8iF3yN4Kex_8wwJjam79Iric2HAqOBvKuiqziq1UXfAxBjTNfbB3KiwbRpu3tzSf3pI95coTs9bNMXyQvza9AjLQkuQ |
Cites_doi | 10.3997/2214-4609.202210094 10.1190/segam2019-3201622.1 10.1190/geo2020-0521.1 10.1190/tle38120949 10.1190/1.1441754 10.1002/9781119879893 10.1190/1.1441434 10.34926/geo.2023.18.86.011 10.1190/1.3627841 10.1190/1.3238367 10.30713/0130-3872-2019-5-11-18 10.1190/1.1444899 10.1190/1.9781560803201 10.1190/1.3511352 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2024. ISSN 1028-334X, Doklady Earth Sciences, 2024, Vol. 514, Part 1, pp. 105–113. © Pleiades Publishing, Ltd., 2024. ISSN 1028-334X, Doklady Earth Sciences, 2024. © Pleiades Publishing, Ltd., 2024. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2024. ISSN 1028-334X, Doklady Earth Sciences, 2024, Vol. 514, Part 1, pp. 105–113. © Pleiades Publishing, Ltd., 2024. ISSN 1028-334X, Doklady Earth Sciences, 2024. © Pleiades Publishing, Ltd., 2024. |
DBID | AAYXX CITATION 7TG 7UA C1K F1W H96 KL. L.G |
DOI | 10.1134/S1028334X23602389 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1531-8354 |
EndPage | 113 |
ExternalDocumentID | 10_1134_S1028334X23602389 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 29G 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2XV 2~H 30V 3V. 4.4 408 40D 40E 5GY 5VS 67M 6NX 7XC 88I 8FE 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAFGU AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ I-F IAO IGS IJ- IKXTQ ITC ITM IWAJR I~X I~Z J-C JBSCW JZLTJ KOV L7B L8X LK5 LLZTM M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RNS ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC TUS UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XU3 YLTOR Z5O ZMTXR ~02 ~A9 AAYXX AAYZH CITATION H13 7TG 7UA C1K F1W H96 KL. L.G |
ID | FETCH-LOGICAL-c268t-c74ea3ae24d7c46f66a9d0b61ff629f1e808719948fb13805343e1fb33384283 |
IEDL.DBID | AEJHL |
ISSN | 1028-334X |
IngestDate | Mon Nov 18 01:55:20 EST 2024 Thu Nov 21 22:20:43 EST 2024 Mon Apr 22 04:38:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | prediction seismic exploration seismic attributes brine artificial intelligence RTH |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-c74ea3ae24d7c46f66a9d0b61ff629f1e808719948fb13805343e1fb33384283 |
PQID | 3043178962 |
PQPubID | 54876 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3043178962 crossref_primary_10_1134_S1028334X23602389 springer_journals_10_1134_S1028334X23602389 |
PublicationCentury | 2000 |
PublicationDate | 1-2024 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 1-2024 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Dordrecht |
PublicationTitle | Doklady earth sciences |
PublicationTitleAbbrev | Dokl. Earth Sc |
PublicationYear | 2024 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | VakhromeevA. G.SverkunovS. A.SmirnovA. S.GorlovI. V.Stroit. Neft. GazovSkvazhin Sushe More, No.20195111810.30713/0130-3872-2019-5-11-18 AminzadehF.TemizelC.HajizadehY.Artificial Intelligence and Data Analytics for Energy Exploration and Production202210.1002/9781119879893 A. S. Smirnov, A. G. Vakhromeev, G. N. Erokhin, and A. G. Dmitriev, Geofizika, No. 2, 93–101 (2023). https://doi.org/10.34926/geo.2023.18.86.011 LuanxiaoZ.CaifengZ.YuanyuanC.WenlongS.WangY.ChenH.GengJ.Geophysics202186M151M16510.1190/geo2020-0521.1 T. A. Dickens and G. A. Winbow, in SEG Techn. Progr. Expand. Abstr. (2011). https://doi.org/10.1190/1.3627841. PopoviciA.TanushevN.HardestyS.SEG Techn. Progr. Expand. Abstr.2016 VakhromeevA. G.KhokhlovG. A.Features of Hole Drilling and Finishing in Eastern Siberia and Yakutia1988Novosibirsk, IrkutskSiberian Res. Inst. Geol., Geophys., Miner. Raw Mater.[in Russian] AgafonovV. M.BugaevA. S.ErokhinG. N.RonzhinA. L.Geofizika.202267783 I. V. Buddo, A. S. Smirnov, N. V. Misiurkeeva, I. A. Shelohov, Y. A. Agafonov, M. A. Lushev, S. A. Korotkov, and E. Ju. Trjasin, in Proc. 8th Int. Conf. & Exhibition Innovations in Geosciences—Time for Breakthrough (St. Petersburg, Apr. 9–12, 2018). A. N. Kremlev, G. N. Erokhin, L. E. Starikov, and S. V. Rodin, in Proc. 73th EAGE Conf. & Exhibition (Vienna, 2011), Abstr. B024. HampsonD. P.SchuelkeJ. S.QuierinJ. A.Geophysics20016622023610.1190/1.1444899 S. Chopra and J. P. Castagna, AVO (Soc. Explor. Geophys., 2014). A. Tarantola, Geophysics 49 (8) (1984). VirieuxJ.OpertoS.Geophysics200974WCC1WCC2610.1190/1.3238367 KorenZ.RavveI.Geophysics201176S1S1310.1190/1.3511352 PriezzhevI. I.VeekenP. C. H.EgorovS. V.StreckeU.Leading Edge20193894995810.1190/tle38120949 BaysalE.KosloffD. D.SherwoodJ. W. C.Geophysics1983481514152410.1190/1.1441434 G. Erokhin, in SEG Techn. Progr. Expand. Abstr. (2019), pp. 4107–4111. https://doi.org/10.1190/segam2019-3201622.1. A. S. Smirnov, V. V. Kas’yanov, A. G. Vakhromeev, et al., RF Patent 2690089 IPC G01V 1/00 (2006.01), G01V 1/28 (2006.01), G01V 1/30 (2006.01), Byull. Izobret., No. 16 (2019). G. Erokhin, in Proc. 83rd EAGE Annu. Conf. & Exhibition (Madrid, June 2022), Vol. 2022, pp. 1‒5. https://doi.org/10.3997/2214-4609.202210094. 4299_CR8 J. Virieux (4299_CR15) 2009; 74 A. Popovici (4299_CR16) 2016 F. Aminzadeh (4299_CR18) 2022 4299_CR3 4299_CR4 4299_CR10 4299_CR7 Z. Koren (4299_CR11) 2011; 76 4299_CR14 4299_CR13 4299_CR12 A. G. Vakhromeev (4299_CR1) 1988 I. I. Priezzhev (4299_CR2) 2019; 38 A. G. Vakhromeev (4299_CR20) 2019; 5 V. M. Agafonov (4299_CR17) 2022; 6 Z. Luanxiao (4299_CR6) 2021; 86 D. P. Hampson (4299_CR5) 2001; 66 E. Baysal (4299_CR9) 1983; 48 4299_CR19 |
References_xml | – ident: 4299_CR12 – ident: 4299_CR8 doi: 10.3997/2214-4609.202210094 – ident: 4299_CR7 doi: 10.1190/segam2019-3201622.1 – volume: 6 start-page: 77 year: 2022 ident: 4299_CR17 publication-title: Geofizika. contributor: fullname: V. M. Agafonov – volume: 86 start-page: M151 year: 2021 ident: 4299_CR6 publication-title: Geophysics doi: 10.1190/geo2020-0521.1 contributor: fullname: Z. Luanxiao – volume: 38 start-page: 949 year: 2019 ident: 4299_CR2 publication-title: Leading Edge doi: 10.1190/tle38120949 contributor: fullname: I. I. Priezzhev – ident: 4299_CR14 doi: 10.1190/1.1441754 – volume-title: Features of Hole Drilling and Finishing in Eastern Siberia and Yakutia year: 1988 ident: 4299_CR1 contributor: fullname: A. G. Vakhromeev – volume-title: Artificial Intelligence and Data Analytics for Energy Exploration and Production year: 2022 ident: 4299_CR18 doi: 10.1002/9781119879893 contributor: fullname: F. Aminzadeh – volume: 48 start-page: 1514 year: 1983 ident: 4299_CR9 publication-title: Geophysics doi: 10.1190/1.1441434 contributor: fullname: E. Baysal – ident: 4299_CR3 doi: 10.34926/geo.2023.18.86.011 – volume-title: SEG Techn. Progr. Expand. Abstr. year: 2016 ident: 4299_CR16 contributor: fullname: A. Popovici – ident: 4299_CR10 doi: 10.1190/1.3627841 – volume: 74 start-page: WCC1 year: 2009 ident: 4299_CR15 publication-title: Geophysics doi: 10.1190/1.3238367 contributor: fullname: J. Virieux – volume: 5 start-page: 11 year: 2019 ident: 4299_CR20 publication-title: Skvazhin Sushe More, No. doi: 10.30713/0130-3872-2019-5-11-18 contributor: fullname: A. G. Vakhromeev – ident: 4299_CR19 – volume: 66 start-page: 220 year: 2001 ident: 4299_CR5 publication-title: Geophysics doi: 10.1190/1.1444899 contributor: fullname: D. P. Hampson – ident: 4299_CR13 doi: 10.1190/1.9781560803201 – volume: 76 start-page: S1 year: 2011 ident: 4299_CR11 publication-title: Geophysics doi: 10.1190/1.3511352 contributor: fullname: Z. Koren – ident: 4299_CR4 |
SSID | ssj0044459 |
Score | 2.3463638 |
Snippet | A new method for predicting lithofacies, gas, fluid and brine zones, and zones with abnormally high reservoir pressure, as well as the petrophysical properties... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 105 |
SubjectTerms | Artificial intelligence Brines Condensates Drilling Earth and Environmental Science Earth Sciences Geology Geophysics Holography Lithofacies Predictions Rock properties Seismic data Seismological data Well drilling |
Title | Prediction of Fluid–Brine Event Zones by Artificial Intelligence Methods Based on New Generation RTH Seismic Attributes and Drilling Data at the Kovykta Gas Condensate Field |
URI | https://link.springer.com/article/10.1134/S1028334X23602389 https://www.proquest.com/docview/3043178962 |
Volume | 514 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuMwFLV4CInNMLzEa9BdsAIFmtg4zrLQlvIUol0gNpET21IF06ImReqOf-BD-Kf5krl2EpjhsYBlZOco0b32vfa1zyFki9cUTYLIeNiuPRyJqScSir6sAq0xovg1Yyu67U54cS0aTUuTE7xsXfRvd6uKpJuoC9kRttdxkZCy64ByG2eiSTKNoWcffXu63jxpn1XzL2PMSaTZ_p59oaxlfgjyfzR6TTHfVEVdsGnNfeczf5IfZWoJ9cIX5smE7i-QmSMn3TteJM-XQ1uUsYaAgYHW3ain_jw-Hdjrf9C0xx7hxhL3QzJ2GAW1BBz_w9kJ505vOoMDjH0KEAjnSCiYqx3uVbcNHd3LfvdSqOeFmBYiyr6CxrDn6L-hIXMJMgfMPOF08DC-xccjmcHhwIrxZpj7Qsseq1si3Vaze9j2SrkGLw24yL00ZFpSqQOmwpRxw7mMVC3hvjEcvcHXooarsyhiwiQ-FTj6GdW-SSiuki3t2zKZ6uNvrhAQqTZhQjmTKbMM-EKy1CSSq31bipbBKtmurBbfF6QcsVvMUBa_M8Aq2ajsGpfjM4up5RQKRcQRa6cy5Gvzp2BrX-q9TmYDzIGKHZsNMpUPR_oXmczUaLN02r_kQOaZ |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbtswECWaBEWzSZp-kDROO4usUgi1RJailo5t2UY-CGItgm4ESiQBo4ldWHIB73KHHCR3ykkypCTk1y7apUDyQcIMOUMN-R4h-7ytaBZExsN27eFMzD2RUfRlFWiNEcVvG1vRHY7D0wvR61uaHNrchXGn3ZuSpFupK90R9m3sQiFlFwHlNtBEK2SNRZyhK691RskgbhZgxpjTSLP9PTugLmb-EeRpOHrIMZ-VRV20iTf_6z3fko06uYRO5Q1b5JWeviOvB068d_me3J7NbVnGmgJmBuLLxUTdXd8c2guA0LcHH-GHpe6HbOkwKnIJGD1i7YQTpzhdwCFGPwUIhKskVNzVDvc8GcJYT4qrSQ6dspLTQkQ5VdCbTxwBOPRkKUGWgLknHM1-L3_i40AW0J1ZOd4Cs1-I7cG6DySJ-0l36NWCDV4ecFF6eci0pFIHTIU544ZzGal2xn1jOPqDr0Ub92dRxITJfCpw_jOqfZNR3Cdb4rePZHWKn7lNQOTahBnlTObMcuALyXKTSa6-22K0DHbIQWO29FdFy5G67Qxl6QsD7JBWY9i0nqFFSi2rUCgijlhfG0M-NP8V7NM_9f5C3gyTk-P0eHR6tEvWA8yIqv83LbJazhd6j6wUavG59uB7xXzqiQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWyoEUuabohW9s59NRCiCUyFHUKnNiK06RBUPsQ9CJQIgkYTezAkgP4ln_Ih_Sf-iWdoSSk66HoUaD0IGGGnBkN-R5jb2XH8DxKXIDjNsCZWAQq5-jLJrIWI0rYcdTRHQzj80vV6xNNzkF7Fsbvdm9bkvWZBmJpmlR7N8Y1GiRib-jDIheXEZcUdJJltiqwkEFHX-32PwzO2sVYCOH10uj-gB5oGpt_BPk5ND3km7-0SH3kSZ_89ztvsPUm6YRu7SVP2ZKdPGOPjr2o7-I5-3oxo3YNmQimDtKr-dh8u7s_pIOB0KcNkfCZKP0hX3iMmnQCTn5g84SPXom6hEOMigYQCFdPqDmtPe6n0QCGdlxejwvoVrXMFiLqiYHebOyJwaGnKw26AsxJ4XR6u_iCl8e6hKMpyfSWmBVDShvuXrBR2h8dDYJGyCEoIqmqoIiF1VzbSJi4ENJJqRPTyWXonEQ_Ca3qYN2WJEK5POQK1wXBbehyjvUzEcK9ZCsT_MxNBqqwLs65FLoQxI2vtChcrqXZpya1jrbYu9aE2U1N15H5MoeL7DcDbLHd1shZM3PLjBPbUKwSiVjvW6M-DP8VbPuf7n7DHl_00uzs5Px0h61FmCjVv3V22Uo1m9tXbLk089eNM38H40nzTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Fluid%E2%80%93Brine+Event+Zones+by+Artificial+Intelligence+Methods+Based+on+New+Generation+RTH+Seismic+Attributes+and+Drilling+Data+at+the+Kovykta+Gas+Condensate+Field&rft.jtitle=Doklady+earth+sciences&rft.au=Bugaev%2C+A.+S.&rft.au=Erokhin%2C+G.+N.&rft.au=Ryabykh%2C+S.+A.&rft.au=Smirnov%2C+A.+S.&rft.date=2024-01-01&rft.pub=Pleiades+Publishing&rft.issn=1028-334X&rft.eissn=1531-8354&rft.volume=514&rft.issue=1&rft.spage=105&rft.epage=113&rft_id=info:doi/10.1134%2FS1028334X23602389&rft.externalDocID=10_1134_S1028334X23602389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1028-334X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1028-334X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1028-334X&client=summon |