Propagation of Bending Waves in a Beam the Material of Which Accumulates Damage During Its Operation
A self-consistent mathematical model is stated in linear and nonlinear formulations, which includes the equation of bending vibrations of a beam and the kinetic equation of damage accumulation in its material. The beam is assumed to be infinite. Such idealization is permissible if its boundaries are...
Saved in:
Published in: | Journal of applied mechanics and technical physics Vol. 62; no. 7; pp. 1097 - 1105 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Moscow
Pleiades Publishing
01-12-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A self-consistent mathematical model is stated in linear and nonlinear formulations, which includes the equation of bending vibrations of a beam and the kinetic equation of damage accumulation in its material. The beam is assumed to be infinite. Such idealization is permissible if its boundaries are attached to optimal damping devices, i.e., the parameters of the boundary fixation are such that incident perturbations will not be reflected. This makes it possible to consider the beam model without taking into account the boundary conditions and regard vibrations propagating along the beam as traveling bending waves. As a result of analytical studies and numerical modeling, it is shown that material damage introduces frequency-dependent attenuation and significantly changes the character of the dispersion of the phase velocity of a bending elastic wave. In a classical Bernoulli–Euler beam, bending waves have one dispersive branch at any frequency, while, for a beam made of a damage-accumulating material, there are two pairs of dispersive branches in the entire frequency range, with one pair describing the wave propagation and the other, the wave attenuation. Within a geometrically nonlinear model of a damaged beam, the formation of intense bending waves of a stationary profile is studied. It is shown that such essentially nonsinusoidal waves can be both periodic and solitary (localized in space). Dependences have been determined relating the parameters of the waves (amplitude, width, and wave number) with the material damage. It was found that, with an increase in the material damage parameter, the amplitudes of the periodic and solitary waves as well as wave number of the periodic waves increase, while the width of the solitary wave decrease. |
---|---|
AbstractList | A self-consistent mathematical model is stated in linear and nonlinear formulations, which includes the equation of bending vibrations of a beam and the kinetic equation of damage accumulation in its material. The beam is assumed to be infinite. Such idealization is permissible if its boundaries are attached to optimal damping devices, i.e., the parameters of the boundary fixation are such that incident perturbations will not be reflected. This makes it possible to consider the beam model without taking into account the boundary conditions and regard vibrations propagating along the beam as traveling bending waves. As a result of analytical studies and numerical modeling, it is shown that material damage introduces frequency-dependent attenuation and significantly changes the character of the dispersion of the phase velocity of a bending elastic wave. In a classical Bernoulli–Euler beam, bending waves have one dispersive branch at any frequency, while, for a beam made of a damage-accumulating material, there are two pairs of dispersive branches in the entire frequency range, with one pair describing the wave propagation and the other, the wave attenuation. Within a geometrically nonlinear model of a damaged beam, the formation of intense bending waves of a stationary profile is studied. It is shown that such essentially nonsinusoidal waves can be both periodic and solitary (localized in space). Dependences have been determined relating the parameters of the waves (amplitude, width, and wave number) with the material damage. It was found that, with an increase in the material damage parameter, the amplitudes of the periodic and solitary waves as well as wave number of the periodic waves increase, while the width of the solitary wave decrease. |
Author | Leonteva, A. V. Brikkel, D. M. Erofeev, V. I. |
Author_xml | – sequence: 1 givenname: D. M. surname: Brikkel fullname: Brikkel, D. M. email: Archive.94@mail.ru organization: Lobachevsky State University of Nizhny Novgorod – sequence: 2 givenname: V. I. surname: Erofeev fullname: Erofeev, V. I. organization: Lobachevsky State University of Nizhny Novgorod, Institute of Mechanical Engineering Problems, Russian Academy of Sciences – sequence: 3 givenname: A. V. surname: Leonteva fullname: Leonteva, A. V. organization: Lobachevsky State University of Nizhny Novgorod, Institute of Mechanical Engineering Problems, Russian Academy of Sciences |
BookMark | eNp1UM9LwzAUDjLBbfoHeAt4rualaZMc5-Z0MJmgMm8lS5OtY21q0gr-97ZO8CCeHny_3nvfCA0qVxmELoFcA8Ts5pkQCkIyRoFwQtjbCRpCwuNIpJQM0LCno54_Q6MQ9oQQKYAPUf7kXa22qilchZ3Ft6bKi2qL1-rDBFxUWHWQKnGzM_hRNcYX6tDr1rtC7_BE67ZsDx0e8EyVamvwrPW9f9EEvKqN_w4-R6dWHYK5-Jlj9Dq_e5k-RMvV_WI6WUaapqKJUg3dDymXOumvpkyKmKUqhhiMzqWUhFslWGItI1IrvmEySbShG8ithY2Jx-jqmFt7996a0GR71_qqW5nRlFEJnFPRqeCo0t6F4I3Nal-Uyn9mQLK-zOxPmZ2HHj2h7t8z_jf5f9MXOkJ2mQ |
Cites_doi | 10.1134/S106377101004024X 10.3103/S1052618816060054 10.7242/1999-6691/2019.12.3.25 10.3103/S1052618810060087 10.1016/j.proeng.2016.06.722 10.7242/1999-6691/2018.11.4.30 10.1017/CBO9781139172400 10.1007/978-1-4419-5695-8_15 10.1088/1757-899X/747/1/012048 10.1007/978-94-017-1957-5 10.1007/978-3-319-31721-2_19 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2021. ISSN 0021-8944, Journal of Applied Mechanics and Technical Physics, 2021, Vol. 62, No. 7, pp. 1097–1105. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Vychislitel’naya Mekhanika Sploshnykh Sred, 2020, Vol. 13, No. 1, pp. 108–116. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2021. ISSN 0021-8944, Journal of Applied Mechanics and Technical Physics, 2021, Vol. 62, No. 7, pp. 1097–1105. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Vychislitel’naya Mekhanika Sploshnykh Sred, 2020, Vol. 13, No. 1, pp. 108–116. |
DBID | AAYXX CITATION |
DOI | 10.1134/S002189442107004X |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1573-8620 |
EndPage | 1105 |
ExternalDocumentID | 10_1134_S002189442107004X |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 6TJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 XU3 YLTOR YQT Z5O Z7R Z7S Z7Y Z86 Z8M Z8N Z8S ZMTXR ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGRTI AIGIU AMMEW CITATION H13 |
ID | FETCH-LOGICAL-c268t-6c1218679c586202498346a3131ecd99907fa845ff409ca7b4955ce2b1dff1be3 |
IEDL.DBID | AEJHL |
ISSN | 0021-8944 |
IngestDate | Thu Oct 10 17:54:07 EDT 2024 Thu Nov 21 20:59:12 EST 2024 Sat Dec 16 12:07:42 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | beam attenuation geometrical nonlinearity mathematical modeling material damage bending wave dispersion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-6c1218679c586202498346a3131ecd99907fa845ff409ca7b4955ce2b1dff1be3 |
PQID | 2642917728 |
PQPubID | 2043534 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2642917728 crossref_primary_10_1134_S002189442107004X springer_journals_10_1134_S002189442107004X |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Journal of applied mechanics and technical physics |
PublicationTitleAbbrev | J Appl Mech Tech Phy |
PublicationYear | 2021 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | ErofeevV.I.LeontevaA.V.MalkhanovA.O.Influence of material damage on propagation of a longitudinal magnetoelastic wave in a rodVychisl. Mekh. Splosh. Sred20181139740810.7242/1999-6691/2018.11.4.30 AntonovA.M.ErofeevV.I.LeontevaA.V.Influence of material damage on Rayleigh wave propagation along half-space boundaryVychisl. Mekh. Splosh. Sred2019122933001459.7409210.7242/1999-6691/2019.12.3.25 Stulov, A. and Erofeev, V., Frequency-dependent attenuation and phase velocity dispersion of an acoustic wave propagating in the media with damages, in Generalized Continua as Models for Classical and Advanced Materials, Altenbach, H. and Forest, S., Eds., Berlin: Springer, 2016, pp. 413–423. https://doi.org/10.1007/978-3-319-31721-2_19 MauginG.A.The Thermomechanics of Plasticity and Fracture1992CambridgeCambridge Univ. Press0753.7300110.1017/CBO9781139172400 Erofeev, V.I., Nikitina, E.A., and Sharabanova, A.V., Wave propagation in damaged materials using a new generalized continuum, in Mechanics of Generalized Continua. One Hundred Years after the Cosserats, Maugin, G.A. and Metrikine, A.V., Eds., Berlin: Springer, 2010, pp. 143–148. https://doi.org/10.1007/978-1-4419-5695-8_15 Vibratsii v tekhnike: spravochnik. T. 1. Kolebaniya lineinykh sistem (Vibrations in the Technics, Handbook, Vol. 1: Oscillations of Linear Systems), Bolotin, V.V., Ed., Moscow: Mashinostroenie, 1978. Bondar', V.S., Neuprugost’. Varianty teorii (Inelasticity. Theory Options), Moscow: Fizmatlit, 2004. Moiseev, N.N., Asimptoticheskie metody nelineinoi mekhaniki (Asymptotic Methods of Nonlinear Mechanics), Moscow: Nauka, 1981. ErofeevV.I.NikitinaE.A.Localization of a strain wave propagating in damaged materialJ. Mach. Manuf. Reliab.20103955956110.3103/S1052618810060087 CollinsJ.A.Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention1993New YorkWiley Volkov, I.A. and Igumnov, L.A., Vvedenie v kontinual’nuyu mekhaniku povrezhdennoi sredy (Introduction to the Continuum Mechanics of a Damaged Medium), Moscow: Fizmatlit, 2017. Brikkel, D.M., Erofeev, V.I., and Nikitina, E.A., Influence of material damage on the parameters of a nonlinear longitudinal wave which spread in a rod, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 747, p. 012053. https://doi.org/10.1088/1757-899X/747/1/012048 KachanovL.M.Introduction to Continuum Damage Mechanics1986New YorkSpringer0596.7309110.1007/978-94-017-1957-5 RabotnovYu.N.Creep Problems in Structural Members1969AmsterdamNorth-Holland0184.51801 ErofeevV.I.NikitinaE.A.The self-consistent dynamic problem of estimating the damage of a material by an acoustic methodAcoust. Phys.2010565845872010APhy...56..584E10.1134/S106377101004024X Makhutov, N.A., Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost' (Deformation Criteria of Fracture and Calculation of Construction Elements for Strength), Moscow: Mashinostroenie, 1981. Dar’enkovA.B.PlekhovA.S.ErofeevV.I.Effect of material damage on parameters of a torsional wave propagated in a deformed rotorProc. Eng.2016150869010.1016/j.proeng.2016.06.722 Nerazrushayushchiy kontrol’. Spravochnik, T. 3. Ul’trazvukovoi kontrol’ (Nondestructive Testing, Handbook, Vol. 3: Ultrasound Testing), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2004. Erofeev, V.I., Nikitina, E.A., and Smirnov, S.I., Acoustoelasticity of damaged materials, Kontrol’. Diagn., 2012, no. 3, pp. 24–26. Volkov, I.A. and Korotkikh, Yu.G., Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami (Equations of State of Viscoelastic-Plastic Media with Damage), Moscow: Fizmatlit, 2008. Uglov, A.L., Erofeev, V.I., and Smirnov, A.N., Akusticheskii kontrol’ oborudovaniya pri izgotovlenii i ekspluatatsii (Acoustic Control of Equipment during its Manufacture and Operation), Moscow: Nauka, 2009. LokoshchenkoA.M., Polzuchest’ i dlitel’naya prochnost' metallov (Creep and Durability of Metals)2016MoscowFizmatlit Vesnitskii, A.I., Izbrannye trudy po mekhanike (Selected Works on Mechanics), Nizh. Novgorod: Nash Dom, 2010. ErofeevV.I.LisenkovaE.E.Excitation of waves by a load moving along a damaged one-dimensional guide lying on an elastic foundationJ. Mach. Manuf. Reliab.20164549549910.3103/S1052618816060054 1123_CR24 1123_CR23 J.A. Collins (1123_CR4) 1993 1123_CR11 1123_CR22 1123_CR10 1123_CR21 V.I. Erofeev (1123_CR18) 2016; 45 A.M. Antonov (1123_CR20) 2019; 12 A.B. Dar’enkov (1123_CR17) 2016; 150 V.I. Erofeev (1123_CR19) 2018; 11 G.A. Maugin (1123_CR3) 1992 1123_CR5 1123_CR6 Lokoshchenko (1123_CR9) 2016 1123_CR7 V.I. Erofeev (1123_CR12) 2010; 56 1123_CR8 Yu.N. Rabotnov (1123_CR2) 1969 1123_CR16 1123_CR15 1123_CR14 L.M. Kachanov (1123_CR1) 1986 V.I. Erofeev (1123_CR13) 2010; 39 |
References_xml | – volume: 56 start-page: 584 year: 2010 ident: 1123_CR12 publication-title: Acoust. Phys. doi: 10.1134/S106377101004024X contributor: fullname: V.I. Erofeev – volume: 45 start-page: 495 year: 2016 ident: 1123_CR18 publication-title: J. Mach. Manuf. Reliab. doi: 10.3103/S1052618816060054 contributor: fullname: V.I. Erofeev – volume: 12 start-page: 293 year: 2019 ident: 1123_CR20 publication-title: Vychisl. Mekh. Splosh. Sred doi: 10.7242/1999-6691/2019.12.3.25 contributor: fullname: A.M. Antonov – ident: 1123_CR10 – volume-title: Creep Problems in Structural Members year: 1969 ident: 1123_CR2 contributor: fullname: Yu.N. Rabotnov – volume-title: A.M., Polzuchest’ i dlitel’naya prochnost' metallov (Creep and Durability of Metals) year: 2016 ident: 1123_CR9 contributor: fullname: Lokoshchenko – ident: 1123_CR11 – volume: 39 start-page: 559 year: 2010 ident: 1123_CR13 publication-title: J. Mach. Manuf. Reliab. doi: 10.3103/S1052618810060087 contributor: fullname: V.I. Erofeev – volume-title: Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention year: 1993 ident: 1123_CR4 contributor: fullname: J.A. Collins – volume: 150 start-page: 86 year: 2016 ident: 1123_CR17 publication-title: Proc. Eng. doi: 10.1016/j.proeng.2016.06.722 contributor: fullname: A.B. Dar’enkov – ident: 1123_CR15 – volume: 11 start-page: 397 year: 2018 ident: 1123_CR19 publication-title: Vychisl. Mekh. Splosh. Sred doi: 10.7242/1999-6691/2018.11.4.30 contributor: fullname: V.I. Erofeev – volume-title: The Thermomechanics of Plasticity and Fracture year: 1992 ident: 1123_CR3 doi: 10.1017/CBO9781139172400 contributor: fullname: G.A. Maugin – ident: 1123_CR22 – ident: 1123_CR7 – ident: 1123_CR8 – ident: 1123_CR14 doi: 10.1007/978-1-4419-5695-8_15 – ident: 1123_CR23 – ident: 1123_CR21 doi: 10.1088/1757-899X/747/1/012048 – ident: 1123_CR24 – ident: 1123_CR5 – volume-title: Introduction to Continuum Damage Mechanics year: 1986 ident: 1123_CR1 doi: 10.1007/978-94-017-1957-5 contributor: fullname: L.M. Kachanov – ident: 1123_CR6 – ident: 1123_CR16 doi: 10.1007/978-3-319-31721-2_19 |
SSID | ssj0009817 |
Score | 2.2516143 |
Snippet | A self-consistent mathematical model is stated in linear and nonlinear formulations, which includes the equation of bending vibrations of a beam and the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1097 |
SubjectTerms | Amplitudes Applications of Mathematics Bending Boundary conditions Classical and Continuum Physics Classical Mechanics Damage accumulation Damping Elastic waves Fluid- and Aerodynamics Frequency ranges Kinetic equations Mathematical Modeling and Industrial Mathematics Mathematical models Mechanical Engineering Parameters Perturbation Phase velocity Physics Physics and Astronomy Solitary waves Wave attenuation Wave propagation Wavelengths |
Title | Propagation of Bending Waves in a Beam the Material of Which Accumulates Damage During Its Operation |
URI | https://link.springer.com/article/10.1134/S002189442107004X https://www.proquest.com/docview/2642917728 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oxEQPPlAjiqYHT5o1dJ_dIwoEja9EDdw23W4rxLAQFvz9Tsuu-DzodbdtNp1p5_t22m8AjsPY9f0wcCyb4mpC_K-sOFah5WvtEFXHiGdEfToPwW2PNVtaJsd-_3WRvpwVGUmzUc_Ljrj6Si9Go9B1kaNoSfbeMpQx9Hjo2-VG66pzvZDaZTQv1Eot3SHPZf44yOdotICYX7KiJti0N_7zmZuwnkNL0pj7whYsybQCax8EByuwYg58imwbkvsJ0uVnYxcyUuRcmustpMtfZUYGKeH4iA8J4kNyw6fGT3W7bn8g-qQhxGyoC39h2yYf4p5Emua-I7mcZuRuLOd-tQNP7dbjRcfKKy5YwvbZ1PIF1TWqglB4yHS0miBzXJ871KFSJIgl64HizPWUQlooeBAjvfKEtGOaKEVj6exCKR2lcg8I5R7ngirFA13lzGMI9QLKbcrR_IyFVTgpZj4az4U1IkNIHDf6NolVqBW2ifI1lkUI5Wwkm4HNqnBaGGPx-tfB9v_U-gBWbe1J5gRLDUrTyUwewnKWzI5yx3sDO7fMyw |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oxqgHH6gRRe3Bk2YTu8_uEQUCEdBEDHDadEsrHHiEBX-_07IbfB70ujvbbNpp5_synW8ArsLY9f0wcCyb4m5C_K-sOFah5WvtEHWLEc-I-tSeg1aXlStaJsfJamHMbfcsJWlO6mXfEVfX9GI4Cl0XSYrWZO-uw4YWO7dzsFHq9nrlldYuo2mnVmrpD9Jk5o-DfA5HK4z5JS1qok1171__uQ-7KbgkpaU3HMCaHOdh54PkYB42zZVPkRxC_2mGhPnVrAyZKHInTYEL6fA3mZDhmHB8xEcEESJp8rnxVG3XGQzFgJSEWIx06y-0LfMRnkqkbCoeSX2ekMepXHrWEbxUK-37mpX2XLCE7bO55Ququ1QFofCQ62g9Qea4PneoQ6XoI5q8DRRnrqcUEkPBgxgJliekHdO-UjSWzjHkxpOxPAFCuce5oErxQPc58xiCvYBym3J0AMbCAlxnUx9Nl9IakaEkjht9m8QCFLPFidJdlkQI5mykm4HNCnCTLcbq9a-Dnf7J-hK2au1mI2rUWw9nsG1rtzL3WYqQm88W8hzWk_7iIvXCd_Uo0P0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEQgO7Iiy-sAJFFFndU6o0FZlRwLU3iLHsWkPTSuS8v2M3URlPSBuUeJEUeY5857seQNwFMau74eBY9kUZxPyf2XFsQotX3uHqBpmPGPq034M7rqs0dQ2OWdlLYzZ7V4uSU5qGrRLU5qfjhJV9CBxdX0vpqbQdVGwaH_27izMuXiIQJ-rN6_aN1PfXUaLrq3U0jcUC5s_PuRzapryzS9LpCbztFb-_c6rsFyQTlKfoGQNZmS6DksfrAjXYd5sBRXZBiQPryikX0zEyFCRc2kKX0iHv8mM9FPC8RQfEGSO5JbnBsF6XKfXFz1SF2I80C3BcGyDD_BvRRqmEpJc5hm5H8kJ4jbhudV8umhbRS8GS9g-yy1fUN29KgiFhxpI-wwyx_W5Qx0qRYIssxYozlxPKRSMggcxCi9PSDumiVI0ls4WVNJhKreBUO5xLqhSPND9zzyGJDCg3KYcgcFYWIXjMgzRaGK5ERmp4rjRt49Yhb0yUFEx-7IISZ6NMjSwWRVOysBML__6sJ0_jT6EhYdGK7q5vLvehUVbI8xsc9mDSv46lvswmyXjgwKQ75ub2X4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagation+of+Bending+Waves+in+a+Beam+the+Material+of+Which+Accumulates+Damage+During+Its+Operation&rft.jtitle=Journal+of+applied+mechanics+and+technical+physics&rft.au=Brikkel%2C+D.+M.&rft.au=Erofeev%2C+V.+I.&rft.au=Leonteva%2C+A.+V.&rft.date=2021-12-01&rft.pub=Pleiades+Publishing&rft.issn=0021-8944&rft.eissn=1573-8620&rft.volume=62&rft.issue=7&rft.spage=1097&rft.epage=1105&rft_id=info:doi/10.1134%2FS002189442107004X&rft.externalDocID=10_1134_S002189442107004X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8944&client=summon |