Propagation of Bending Waves in a Beam the Material of Which Accumulates Damage During Its Operation

A self-consistent mathematical model is stated in linear and nonlinear formulations, which includes the equation of bending vibrations of a beam and the kinetic equation of damage accumulation in its material. The beam is assumed to be infinite. Such idealization is permissible if its boundaries are...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mechanics and technical physics Vol. 62; no. 7; pp. 1097 - 1105
Main Authors: Brikkel, D. M., Erofeev, V. I., Leonteva, A. V.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-12-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A self-consistent mathematical model is stated in linear and nonlinear formulations, which includes the equation of bending vibrations of a beam and the kinetic equation of damage accumulation in its material. The beam is assumed to be infinite. Such idealization is permissible if its boundaries are attached to optimal damping devices, i.e., the parameters of the boundary fixation are such that incident perturbations will not be reflected. This makes it possible to consider the beam model without taking into account the boundary conditions and regard vibrations propagating along the beam as traveling bending waves. As a result of analytical studies and numerical modeling, it is shown that material damage introduces frequency-dependent attenuation and significantly changes the character of the dispersion of the phase velocity of a bending elastic wave. In a classical Bernoulli–Euler beam, bending waves have one dispersive branch at any frequency, while, for a beam made of a damage-accumulating material, there are two pairs of dispersive branches in the entire frequency range, with one pair describing the wave propagation and the other, the wave attenuation. Within a geometrically nonlinear model of a damaged beam, the formation of intense bending waves of a stationary profile is studied. It is shown that such essentially nonsinusoidal waves can be both periodic and solitary (localized in space). Dependences have been determined relating the parameters of the waves (amplitude, width, and wave number) with the material damage. It was found that, with an increase in the material damage parameter, the amplitudes of the periodic and solitary waves as well as wave number of the periodic waves increase, while the width of the solitary wave decrease.
AbstractList A self-consistent mathematical model is stated in linear and nonlinear formulations, which includes the equation of bending vibrations of a beam and the kinetic equation of damage accumulation in its material. The beam is assumed to be infinite. Such idealization is permissible if its boundaries are attached to optimal damping devices, i.e., the parameters of the boundary fixation are such that incident perturbations will not be reflected. This makes it possible to consider the beam model without taking into account the boundary conditions and regard vibrations propagating along the beam as traveling bending waves. As a result of analytical studies and numerical modeling, it is shown that material damage introduces frequency-dependent attenuation and significantly changes the character of the dispersion of the phase velocity of a bending elastic wave. In a classical Bernoulli–Euler beam, bending waves have one dispersive branch at any frequency, while, for a beam made of a damage-accumulating material, there are two pairs of dispersive branches in the entire frequency range, with one pair describing the wave propagation and the other, the wave attenuation. Within a geometrically nonlinear model of a damaged beam, the formation of intense bending waves of a stationary profile is studied. It is shown that such essentially nonsinusoidal waves can be both periodic and solitary (localized in space). Dependences have been determined relating the parameters of the waves (amplitude, width, and wave number) with the material damage. It was found that, with an increase in the material damage parameter, the amplitudes of the periodic and solitary waves as well as wave number of the periodic waves increase, while the width of the solitary wave decrease.
Author Leonteva, A. V.
Brikkel, D. M.
Erofeev, V. I.
Author_xml – sequence: 1
  givenname: D. M.
  surname: Brikkel
  fullname: Brikkel, D. M.
  email: Archive.94@mail.ru
  organization: Lobachevsky State University of Nizhny Novgorod
– sequence: 2
  givenname: V. I.
  surname: Erofeev
  fullname: Erofeev, V. I.
  organization: Lobachevsky State University of Nizhny Novgorod, Institute of Mechanical Engineering Problems, Russian Academy of Sciences
– sequence: 3
  givenname: A. V.
  surname: Leonteva
  fullname: Leonteva, A. V.
  organization: Lobachevsky State University of Nizhny Novgorod, Institute of Mechanical Engineering Problems, Russian Academy of Sciences
BookMark eNp1UM9LwzAUDjLBbfoHeAt4rualaZMc5-Z0MJmgMm8lS5OtY21q0gr-97ZO8CCeHny_3nvfCA0qVxmELoFcA8Ts5pkQCkIyRoFwQtjbCRpCwuNIpJQM0LCno54_Q6MQ9oQQKYAPUf7kXa22qilchZ3Ft6bKi2qL1-rDBFxUWHWQKnGzM_hRNcYX6tDr1rtC7_BE67ZsDx0e8EyVamvwrPW9f9EEvKqN_w4-R6dWHYK5-Jlj9Dq_e5k-RMvV_WI6WUaapqKJUg3dDymXOumvpkyKmKUqhhiMzqWUhFslWGItI1IrvmEySbShG8ithY2Jx-jqmFt7996a0GR71_qqW5nRlFEJnFPRqeCo0t6F4I3Nal-Uyn9mQLK-zOxPmZ2HHj2h7t8z_jf5f9MXOkJ2mQ
Cites_doi 10.1134/S106377101004024X
10.3103/S1052618816060054
10.7242/1999-6691/2019.12.3.25
10.3103/S1052618810060087
10.1016/j.proeng.2016.06.722
10.7242/1999-6691/2018.11.4.30
10.1017/CBO9781139172400
10.1007/978-1-4419-5695-8_15
10.1088/1757-899X/747/1/012048
10.1007/978-94-017-1957-5
10.1007/978-3-319-31721-2_19
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2021. ISSN 0021-8944, Journal of Applied Mechanics and Technical Physics, 2021, Vol. 62, No. 7, pp. 1097–1105. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Vychislitel’naya Mekhanika Sploshnykh Sred, 2020, Vol. 13, No. 1, pp. 108–116.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2021. ISSN 0021-8944, Journal of Applied Mechanics and Technical Physics, 2021, Vol. 62, No. 7, pp. 1097–1105. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Vychislitel’naya Mekhanika Sploshnykh Sred, 2020, Vol. 13, No. 1, pp. 108–116.
DBID AAYXX
CITATION
DOI 10.1134/S002189442107004X
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-8620
EndPage 1105
ExternalDocumentID 10_1134_S002189442107004X
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
6TJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
XU3
YLTOR
YQT
Z5O
Z7R
Z7S
Z7Y
Z86
Z8M
Z8N
Z8S
ZMTXR
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
AMMEW
CITATION
H13
ID FETCH-LOGICAL-c268t-6c1218679c586202498346a3131ecd99907fa845ff409ca7b4955ce2b1dff1be3
IEDL.DBID AEJHL
ISSN 0021-8944
IngestDate Thu Oct 10 17:54:07 EDT 2024
Thu Nov 21 20:59:12 EST 2024
Sat Dec 16 12:07:42 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords beam
attenuation
geometrical nonlinearity
mathematical modeling
material damage
bending wave
dispersion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-6c1218679c586202498346a3131ecd99907fa845ff409ca7b4955ce2b1dff1be3
PQID 2642917728
PQPubID 2043534
PageCount 9
ParticipantIDs proquest_journals_2642917728
crossref_primary_10_1134_S002189442107004X
springer_journals_10_1134_S002189442107004X
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Journal of applied mechanics and technical physics
PublicationTitleAbbrev J Appl Mech Tech Phy
PublicationYear 2021
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References ErofeevV.I.LeontevaA.V.MalkhanovA.O.Influence of material damage on propagation of a longitudinal magnetoelastic wave in a rodVychisl. Mekh. Splosh. Sred20181139740810.7242/1999-6691/2018.11.4.30
AntonovA.M.ErofeevV.I.LeontevaA.V.Influence of material damage on Rayleigh wave propagation along half-space boundaryVychisl. Mekh. Splosh. Sred2019122933001459.7409210.7242/1999-6691/2019.12.3.25
Stulov, A. and Erofeev, V., Frequency-dependent attenuation and phase velocity dispersion of an acoustic wave propagating in the media with damages, in Generalized Continua as Models for Classical and Advanced Materials, Altenbach, H. and Forest, S., Eds., Berlin: Springer, 2016, pp. 413–423. https://doi.org/10.1007/978-3-319-31721-2_19
MauginG.A.The Thermomechanics of Plasticity and Fracture1992CambridgeCambridge Univ. Press0753.7300110.1017/CBO9781139172400
Erofeev, V.I., Nikitina, E.A., and Sharabanova, A.V., Wave propagation in damaged materials using a new generalized continuum, in Mechanics of Generalized Continua. One Hundred Years after the Cosserats, Maugin, G.A. and Metrikine, A.V., Eds., Berlin: Springer, 2010, pp. 143–148. https://doi.org/10.1007/978-1-4419-5695-8_15
Vibratsii v tekhnike: spravochnik. T. 1. Kolebaniya lineinykh sistem (Vibrations in the Technics, Handbook, Vol. 1: Oscillations of Linear Systems), Bolotin, V.V., Ed., Moscow: Mashinostroenie, 1978.
Bondar', V.S., Neuprugost’. Varianty teorii (Inelasticity. Theory Options), Moscow: Fizmatlit, 2004.
Moiseev, N.N., Asimptoticheskie metody nelineinoi mekhaniki (Asymptotic Methods of Nonlinear Mechanics), Moscow: Nauka, 1981.
ErofeevV.I.NikitinaE.A.Localization of a strain wave propagating in damaged materialJ. Mach. Manuf. Reliab.20103955956110.3103/S1052618810060087
CollinsJ.A.Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention1993New YorkWiley
Volkov, I.A. and Igumnov, L.A., Vvedenie v kontinual’nuyu mekhaniku povrezhdennoi sredy (Introduction to the Continuum Mechanics of a Damaged Medium), Moscow: Fizmatlit, 2017.
Brikkel, D.M., Erofeev, V.I., and Nikitina, E.A., Influence of material damage on the parameters of a nonlinear longitudinal wave which spread in a rod, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 747, p. 012053. https://doi.org/10.1088/1757-899X/747/1/012048
KachanovL.M.Introduction to Continuum Damage Mechanics1986New YorkSpringer0596.7309110.1007/978-94-017-1957-5
RabotnovYu.N.Creep Problems in Structural Members1969AmsterdamNorth-Holland0184.51801
ErofeevV.I.NikitinaE.A.The self-consistent dynamic problem of estimating the damage of a material by an acoustic methodAcoust. Phys.2010565845872010APhy...56..584E10.1134/S106377101004024X
Makhutov, N.A., Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost' (Deformation Criteria of Fracture and Calculation of Construction Elements for Strength), Moscow: Mashinostroenie, 1981.
Dar’enkovA.B.PlekhovA.S.ErofeevV.I.Effect of material damage on parameters of a torsional wave propagated in a deformed rotorProc. Eng.2016150869010.1016/j.proeng.2016.06.722
Nerazrushayushchiy kontrol’. Spravochnik, T. 3. Ul’trazvukovoi kontrol’ (Nondestructive Testing, Handbook, Vol. 3: Ultrasound Testing), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2004.
Erofeev, V.I., Nikitina, E.A., and Smirnov, S.I., Acoustoelasticity of damaged materials, Kontrol’. Diagn., 2012, no. 3, pp. 24–26.
Volkov, I.A. and Korotkikh, Yu.G., Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami (Equations of State of Viscoelastic-Plastic Media with Damage), Moscow: Fizmatlit, 2008.
Uglov, A.L., Erofeev, V.I., and Smirnov, A.N., Akusticheskii kontrol’ oborudovaniya pri izgotovlenii i ekspluatatsii (Acoustic Control of Equipment during its Manufacture and Operation), Moscow: Nauka, 2009.
LokoshchenkoA.M., Polzuchest’ i dlitel’naya prochnost' metallov (Creep and Durability of Metals)2016MoscowFizmatlit
Vesnitskii, A.I., Izbrannye trudy po mekhanike (Selected Works on Mechanics), Nizh. Novgorod: Nash Dom, 2010.
ErofeevV.I.LisenkovaE.E.Excitation of waves by a load moving along a damaged one-dimensional guide lying on an elastic foundationJ. Mach. Manuf. Reliab.20164549549910.3103/S1052618816060054
1123_CR24
1123_CR23
J.A. Collins (1123_CR4) 1993
1123_CR11
1123_CR22
1123_CR10
1123_CR21
V.I. Erofeev (1123_CR18) 2016; 45
A.M. Antonov (1123_CR20) 2019; 12
A.B. Dar’enkov (1123_CR17) 2016; 150
V.I. Erofeev (1123_CR19) 2018; 11
G.A. Maugin (1123_CR3) 1992
1123_CR5
1123_CR6
Lokoshchenko (1123_CR9) 2016
1123_CR7
V.I. Erofeev (1123_CR12) 2010; 56
1123_CR8
Yu.N. Rabotnov (1123_CR2) 1969
1123_CR16
1123_CR15
1123_CR14
L.M. Kachanov (1123_CR1) 1986
V.I. Erofeev (1123_CR13) 2010; 39
References_xml – volume: 56
  start-page: 584
  year: 2010
  ident: 1123_CR12
  publication-title: Acoust. Phys.
  doi: 10.1134/S106377101004024X
  contributor:
    fullname: V.I. Erofeev
– volume: 45
  start-page: 495
  year: 2016
  ident: 1123_CR18
  publication-title: J. Mach. Manuf. Reliab.
  doi: 10.3103/S1052618816060054
  contributor:
    fullname: V.I. Erofeev
– volume: 12
  start-page: 293
  year: 2019
  ident: 1123_CR20
  publication-title: Vychisl. Mekh. Splosh. Sred
  doi: 10.7242/1999-6691/2019.12.3.25
  contributor:
    fullname: A.M. Antonov
– ident: 1123_CR10
– volume-title: Creep Problems in Structural Members
  year: 1969
  ident: 1123_CR2
  contributor:
    fullname: Yu.N. Rabotnov
– volume-title: A.M., Polzuchest’ i dlitel’naya prochnost' metallov (Creep and Durability of Metals)
  year: 2016
  ident: 1123_CR9
  contributor:
    fullname: Lokoshchenko
– ident: 1123_CR11
– volume: 39
  start-page: 559
  year: 2010
  ident: 1123_CR13
  publication-title: J. Mach. Manuf. Reliab.
  doi: 10.3103/S1052618810060087
  contributor:
    fullname: V.I. Erofeev
– volume-title: Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention
  year: 1993
  ident: 1123_CR4
  contributor:
    fullname: J.A. Collins
– volume: 150
  start-page: 86
  year: 2016
  ident: 1123_CR17
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2016.06.722
  contributor:
    fullname: A.B. Dar’enkov
– ident: 1123_CR15
– volume: 11
  start-page: 397
  year: 2018
  ident: 1123_CR19
  publication-title: Vychisl. Mekh. Splosh. Sred
  doi: 10.7242/1999-6691/2018.11.4.30
  contributor:
    fullname: V.I. Erofeev
– volume-title: The Thermomechanics of Plasticity and Fracture
  year: 1992
  ident: 1123_CR3
  doi: 10.1017/CBO9781139172400
  contributor:
    fullname: G.A. Maugin
– ident: 1123_CR22
– ident: 1123_CR7
– ident: 1123_CR8
– ident: 1123_CR14
  doi: 10.1007/978-1-4419-5695-8_15
– ident: 1123_CR23
– ident: 1123_CR21
  doi: 10.1088/1757-899X/747/1/012048
– ident: 1123_CR24
– ident: 1123_CR5
– volume-title: Introduction to Continuum Damage Mechanics
  year: 1986
  ident: 1123_CR1
  doi: 10.1007/978-94-017-1957-5
  contributor:
    fullname: L.M. Kachanov
– ident: 1123_CR6
– ident: 1123_CR16
  doi: 10.1007/978-3-319-31721-2_19
SSID ssj0009817
Score 2.2516143
Snippet A self-consistent mathematical model is stated in linear and nonlinear formulations, which includes the equation of bending vibrations of a beam and the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1097
SubjectTerms Amplitudes
Applications of Mathematics
Bending
Boundary conditions
Classical and Continuum Physics
Classical Mechanics
Damage accumulation
Damping
Elastic waves
Fluid- and Aerodynamics
Frequency ranges
Kinetic equations
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mechanical Engineering
Parameters
Perturbation
Phase velocity
Physics
Physics and Astronomy
Solitary waves
Wave attenuation
Wave propagation
Wavelengths
Title Propagation of Bending Waves in a Beam the Material of Which Accumulates Damage During Its Operation
URI https://link.springer.com/article/10.1134/S002189442107004X
https://www.proquest.com/docview/2642917728
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oxEQPPlAjiqYHT5o1dJ_dIwoEja9EDdw23W4rxLAQFvz9Tsuu-DzodbdtNp1p5_t22m8AjsPY9f0wcCyb4mpC_K-sOFah5WvtEFXHiGdEfToPwW2PNVtaJsd-_3WRvpwVGUmzUc_Ljrj6Si9Go9B1kaNoSfbeMpQx9Hjo2-VG66pzvZDaZTQv1Eot3SHPZf44yOdotICYX7KiJti0N_7zmZuwnkNL0pj7whYsybQCax8EByuwYg58imwbkvsJ0uVnYxcyUuRcmustpMtfZUYGKeH4iA8J4kNyw6fGT3W7bn8g-qQhxGyoC39h2yYf4p5Emua-I7mcZuRuLOd-tQNP7dbjRcfKKy5YwvbZ1PIF1TWqglB4yHS0miBzXJ871KFSJIgl64HizPWUQlooeBAjvfKEtGOaKEVj6exCKR2lcg8I5R7ngirFA13lzGMI9QLKbcrR_IyFVTgpZj4az4U1IkNIHDf6NolVqBW2ifI1lkUI5Wwkm4HNqnBaGGPx-tfB9v_U-gBWbe1J5gRLDUrTyUwewnKWzI5yx3sDO7fMyw
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oxqgHH6gRRe3Bk2YTu8_uEQUCEdBEDHDadEsrHHiEBX-_07IbfB70ujvbbNpp5_synW8ArsLY9f0wcCyb4m5C_K-sOFah5WvtEHWLEc-I-tSeg1aXlStaJsfJamHMbfcsJWlO6mXfEVfX9GI4Cl0XSYrWZO-uw4YWO7dzsFHq9nrlldYuo2mnVmrpD9Jk5o-DfA5HK4z5JS1qok1171__uQ-7KbgkpaU3HMCaHOdh54PkYB42zZVPkRxC_2mGhPnVrAyZKHInTYEL6fA3mZDhmHB8xEcEESJp8rnxVG3XGQzFgJSEWIx06y-0LfMRnkqkbCoeSX2ekMepXHrWEbxUK-37mpX2XLCE7bO55Ququ1QFofCQ62g9Qea4PneoQ6XoI5q8DRRnrqcUEkPBgxgJliekHdO-UjSWzjHkxpOxPAFCuce5oErxQPc58xiCvYBym3J0AMbCAlxnUx9Nl9IakaEkjht9m8QCFLPFidJdlkQI5mykm4HNCnCTLcbq9a-Dnf7J-hK2au1mI2rUWw9nsG1rtzL3WYqQm88W8hzWk_7iIvXCd_Uo0P0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEQgO7Iiy-sAJFFFndU6o0FZlRwLU3iLHsWkPTSuS8v2M3URlPSBuUeJEUeY5857seQNwFMau74eBY9kUZxPyf2XFsQotX3uHqBpmPGPq034M7rqs0dQ2OWdlLYzZ7V4uSU5qGrRLU5qfjhJV9CBxdX0vpqbQdVGwaH_27izMuXiIQJ-rN6_aN1PfXUaLrq3U0jcUC5s_PuRzapryzS9LpCbztFb-_c6rsFyQTlKfoGQNZmS6DksfrAjXYd5sBRXZBiQPryikX0zEyFCRc2kKX0iHv8mM9FPC8RQfEGSO5JbnBsF6XKfXFz1SF2I80C3BcGyDD_BvRRqmEpJc5hm5H8kJ4jbhudV8umhbRS8GS9g-yy1fUN29KgiFhxpI-wwyx_W5Qx0qRYIssxYozlxPKRSMggcxCi9PSDumiVI0ls4WVNJhKreBUO5xLqhSPND9zzyGJDCg3KYcgcFYWIXjMgzRaGK5ERmp4rjRt49Yhb0yUFEx-7IISZ6NMjSwWRVOysBML__6sJ0_jT6EhYdGK7q5vLvehUVbI8xsc9mDSv46lvswmyXjgwKQ75ub2X4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagation+of+Bending+Waves+in+a+Beam+the+Material+of+Which+Accumulates+Damage+During+Its+Operation&rft.jtitle=Journal+of+applied+mechanics+and+technical+physics&rft.au=Brikkel%2C+D.+M.&rft.au=Erofeev%2C+V.+I.&rft.au=Leonteva%2C+A.+V.&rft.date=2021-12-01&rft.pub=Pleiades+Publishing&rft.issn=0021-8944&rft.eissn=1573-8620&rft.volume=62&rft.issue=7&rft.spage=1097&rft.epage=1105&rft_id=info:doi/10.1134%2FS002189442107004X&rft.externalDocID=10_1134_S002189442107004X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8944&client=summon