A new strategy to quickly synthetize true nanoparticles of the spinel LiMn2O4 by using a microwave-assisted hydrothermal route

Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel LiMn2O4 (LMO) at a low temperature (140 °C) and short reaction time (5 min), using exclusively water-soluble reagents. The obtention of this mate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds Vol. 911; p. 164856
Main Authors: Silva, Daiane Piva B., Falqueto, Juliana Bruneli, Bocchi, Nerilso, Biaggio, Sonia R., Rocha-Filho, Romeu C.
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 05-08-2022
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel LiMn2O4 (LMO) at a low temperature (140 °C) and short reaction time (5 min), using exclusively water-soluble reagents. The obtention of this material was confirmed by using different techniques such as X-ray diffractometry, Rietveld crystal structure refinement, inductively coupled plasma-atomic emission spectroscopy and high-resolution transmission electron microscopy. Electrochemical evaluations were performed by using cyclic voltammetry and galvanostatic charge and discharge tests. Only electrodes prepared from spinel LMO nanoparticles with an average size of ~15 nm showed electrochemical activity. From charge and discharge tests at a constant rate of C/5, the electrodes prepared from this active material exhibited an initial specific capacity of 128 mA h g–1 with a capacity retention of 95% after the 27th cycle. The hallmark of the synthesis route here described is the saving of energy while preparing truly nanoparticulate LMO with excellent chemical, structural and promising electrochemical properties. [Display omitted] •Highly pure nanoparticles (≤15 nm) of LiMn2O4 (LMO) are prepared by a new route.•The LMO preparation is based on a microwave-assisted hydrothermal reaction (MWH).•Low temperature, short time and water-soluble reagents are used in the MWH reaction.•LMO nanoparticles show excellent chemical, structural and electrochemical properties.
AbstractList Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel LiMn2O4 (LMO) at a low temperature (140 °C) and short reaction time (5 min), using exclusively water-soluble reagents. The obtention of this material was confirmed by using different techniques such as X-ray diffractometry, Rietveld crystal structure refinement, inductively coupled plasma-atomic emission spectroscopy and high-resolution transmission electron microscopy. Electrochemical evaluations were performed by using cyclic voltammetry and galvanostatic charge and discharge tests. Only electrodes prepared from spinel LMO nanoparticles with an average size of ~15 nm showed electrochemical activity. From charge and discharge tests at a constant rate of C/5, the electrodes prepared from this active material exhibited an initial specific capacity of 128 mA h g–1 with a capacity retention of 95% after the 27th cycle. The hallmark of the synthesis route here described is the saving of energy while preparing truly nanoparticulate LMO with excellent chemical, structural and promising electrochemical properties.
Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel LiMn2O4 (LMO) at a low temperature (140 °C) and short reaction time (5 min), using exclusively water-soluble reagents. The obtention of this material was confirmed by using different techniques such as X-ray diffractometry, Rietveld crystal structure refinement, inductively coupled plasma-atomic emission spectroscopy and high-resolution transmission electron microscopy. Electrochemical evaluations were performed by using cyclic voltammetry and galvanostatic charge and discharge tests. Only electrodes prepared from spinel LMO nanoparticles with an average size of ~15 nm showed electrochemical activity. From charge and discharge tests at a constant rate of C/5, the electrodes prepared from this active material exhibited an initial specific capacity of 128 mA h g–1 with a capacity retention of 95% after the 27th cycle. The hallmark of the synthesis route here described is the saving of energy while preparing truly nanoparticulate LMO with excellent chemical, structural and promising electrochemical properties. [Display omitted] •Highly pure nanoparticles (≤15 nm) of LiMn2O4 (LMO) are prepared by a new route.•The LMO preparation is based on a microwave-assisted hydrothermal reaction (MWH).•Low temperature, short time and water-soluble reagents are used in the MWH reaction.•LMO nanoparticles show excellent chemical, structural and electrochemical properties.
ArticleNumber 164856
Author Falqueto, Juliana Bruneli
Bocchi, Nerilso
Rocha-Filho, Romeu C.
Biaggio, Sonia R.
Silva, Daiane Piva B.
Author_xml – sequence: 1
  givenname: Daiane Piva B.
  surname: Silva
  fullname: Silva, Daiane Piva B.
– sequence: 2
  givenname: Juliana Bruneli
  surname: Falqueto
  fullname: Falqueto, Juliana Bruneli
– sequence: 3
  givenname: Nerilso
  surname: Bocchi
  fullname: Bocchi, Nerilso
  email: bocchi@ufscar.br
– sequence: 4
  givenname: Sonia R.
  surname: Biaggio
  fullname: Biaggio, Sonia R.
– sequence: 5
  givenname: Romeu C.
  surname: Rocha-Filho
  fullname: Rocha-Filho, Romeu C.
BookMark eNqFkE1P3DAQhq2KSl2gP6HSSD1nayex45wqhPolbcUFzpZjj8Fp1l5sBxQO_HayWu49zWHej5nnnJyFGJCQL4xuGWXi27gd9TSZuN_WtK63TLSSiw9kw2TXVK0Q_RnZ0L7mlWyk_ETOcx4ppaxv2Ia8XkHAZ8gl6YL3C5QIj7M3_6YF8hLKAxb_glDSjBB0iAedijcTZogO1i3kgw84wc7_DfVNC8MCc_bhHjTsvUnxWT9hpXP2uaCFh8WmuLrSXk-Q4lzwknx0esr4-X1ekLufP26vf1e7m19_rq92lalFVypnLWWutU3LWG90Izkf2kEYFJrLwWFvauRdi5wOruNSGneUWXTMsqHBrrkgX0-5hxQfZ8xFjXFOYa1Ua4FgjaB9v6r4SbVennNCpw7J73VaFKPqiFqN6h21OqJWJ9Sr7_vJh-sLTx6TysZjMGh9QlOUjf4_CW-TF48s
CitedBy_id crossref_primary_10_1016_j_matchemphys_2023_127699
crossref_primary_10_1016_j_ces_2023_118600
crossref_primary_10_1016_j_jallcom_2023_168704
crossref_primary_10_1016_j_jallcom_2022_166537
crossref_primary_10_1007_s11581_023_05132_6
crossref_primary_10_1016_j_jpowsour_2022_232307
crossref_primary_10_1002_smtd_202201152
crossref_primary_10_1149_1945_7111_acf8fd
crossref_primary_10_2139_ssrn_4198028
crossref_primary_10_1016_j_matlet_2023_134838
Cites_doi 10.1007/s10008-019-04467-3
10.1016/j.matchemphys.2010.08.014
10.1039/C1JM15583K
10.1016/j.ssi.2014.09.025
10.1002/aenm.201900161
10.1107/S0021889891010804
10.1016/j.jssc.2003.12.009
10.1016/j.jpowsour.2010.08.083
10.1021/nl101047f
10.1021/acsaem.9b00217
10.1007/s41918-018-0022-z
10.1039/C8TA02703J
10.1021/jp800915f
10.1039/C8TA01428K
10.4236/aces.2012.24057
10.1002/adfm.201001448
10.1039/c0ee00059k
10.1016/j.jpowsour.2009.12.002
10.1021/acs.chemrev.9b00326
10.1016/j.est.2019.101036
10.1016/j.mattod.2014.10.040
10.1021/nn9012065
10.1016/S0167-2738(00)00614-7
10.1021/nl8024328
10.1039/C4TA06264G
10.1016/j.materresbull.2016.11.003
10.1016/j.jpowsour.2014.03.089
10.1016/j.jallcom.2021.159387
10.1016/j.jpowsour.2017.04.079
10.1016/j.ceramint.2019.04.002
10.1016/j.solidstatesciences.2014.02.015
10.1021/nl303619s
10.1007/s10853-006-0460-6
10.1021/cm970371n
10.1038/s41467-019-12626-3
10.1070/RCR4497
10.1149/1.2048520
10.1016/j.jpowsour.2014.12.082
10.1007/s11581-015-1545-5
10.1021/nl803394v
10.1016/j.jallcom.2011.12.079
10.1038/s41565-019-0371-8
10.1002/aenm.201900551
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Aug 5, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 5, 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2022.164856
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2022_164856
S0925838822012476
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
T9H
WUQ
8BQ
8FD
JG9
ID FETCH-LOGICAL-c267t-fdd01f4d34119ca3855b4b6ce6a58bfe9c2e574e50bf7588cf19cadef1d1b3e73
ISSN 0925-8388
IngestDate Thu Oct 10 19:38:58 EDT 2024
Thu Sep 26 16:53:26 EDT 2024
Fri Feb 23 02:39:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy storage material
Li-ion battery
Genuinely nanostructured spinel LiMn2O4
Energy-saving microwave-assisted hydrothermal route
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-fdd01f4d34119ca3855b4b6ce6a58bfe9c2e574e50bf7588cf19cadef1d1b3e73
PQID 2676136099
PQPubID 2045454
ParticipantIDs proquest_journals_2676136099
crossref_primary_10_1016_j_jallcom_2022_164856
elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_164856
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Nitta, Wu, Lee, Yushin (bib2) 2015; 18
Ding, Cano, Yu, Lu, Chen (bib4) 2019; 2
Kanoh, Feng, Miyai, Ooi (bib30) 1995; 142
Cai, Ma, Huang, Yan, Yu, Zhang, Song, Xu, Wen, Yang (bib37) 2020; 27
Jiang, Tang, Wang, Zhang (bib32) 2017; 357
Ma, Vileno, Suib, Dutta (bib28) 1997; 9
Moura, Oliveira, Pereira, Rosa, Li, Longo, Varela (bib25) 2012; 2
Manthiram (bib1) 2009
Kim, Kim, Cho, Shin, Kanno, Choi (bib33) 2012; 12
Luo, Xiong, Xia (bib21) 2008; 112
Lee, Muralidharan, Ruffo, Mari, Cui, Kim (bib19) 2010; 10
Smecellato, Davoglio, Biaggio, Bocchi, Rocha-Filho (bib29) 2017; 86
Xu, Zheng, Lin, Lei, Wang, Song, Cheng, Qi, Peng, Lin, Yang, Huang (bib36) 2021; 870
Li, Zhang, Gong, Guo, Yu, Zhang (bib34) 2019; 45
Silva, Biaggio, Bocchi, Rocha-Filho (bib24) 2014; 268
Hosono, Kudo, Honma, Matsuda, Zhou (bib20) 2009; 9
Lee, Kim, Min (bib42) 2011; 196
Zeng, Li, El-Hady, Alshitari, Al-Bogami, Lu, Amine (bib5) 2019; 9
Cunha, Hendriks, Vasileiadis, Vos, Verhallen, Singh, Wagemaker, Huijben (bib46) 2019; 2
Cao, Li, Lu, Liu, Amine (bib3) 2019; 14
Ragupathy, Vasan, Munichandraiah (bib18) 2010; 124
Cai, Huang, Wang, Jia, Pang, Guo, Du, Tang (bib35) 2015; 278
Velasquez, Silva, Falqueto, Mejía-Lopez, Bocchi, del Rio, Mazo-Zuluaga, Rocha-Filho, Biaggio (bib31) 2018; 6
Jin, Lu, Wang, Yang, Duh (bib45) 2014; 262
Sharifi-Asl, Lu, Amine, Shahbazian-Yassar (bib8) 2019; 9
Yaroslavtsev, Kulova, Skundin (bib6) 2015; 84
Xu, Liu, Zhang, Cui, Chenab (bib10) 2015; 3
Yi, Hu, Dai, Gao (bib41) 2007; 42
Liu, Dai, Lu, Yuan, Xiao, Yu, Li, Gim, Ma, Liu, Zhan, Li, Zheng, Ren, Wu, Shahbazian-Yassar, Wen, Pan, Amine (bib7) 2019; 10
Kim, Muralidharan, Lee, Ruffo, Yang, Chan, Peng, Huggins, Cui (bib22) 2008; 8
Xiao, Xin, Li, Jie, Gu, Zheng, Pan (bib38) 2018; 6
Lv, Chen, Chen, Liu, Liu, Qiu (bib44) 2014; 31
Liu, Dai, Lu, Yuan, Xiao, Yu, Li, Gim, Ma, Liu, Zhan, Li, Zheng, Ren, Wu, Shahbazian-Yassar, Wen, Pan, Amine (bib39) 2019; 10
Amaral, Bocchi, Brocenschi, Biaggio, Rocha-Filho (bib12) 2010; 195
Cheary, Coelho (bib27) 1992; 25
Dou (bib13) 2015; 21
Liddle, Collins, Bartlett (bib16) 2010; 3
Hao, Gourdon, Liddle, Bartlett (bib17) 2012; 22
Ding, Xie, Cao, Zhu, Yu, Zhao (bib23) 2011; 21
Ferracin, Amaral, Bocchi (bib40) 2000; 130
Liu, Wang, Liu, Wu, Li, Zeng (bib26) 2004; 177
Wang, Qian, Lu, Li (bib43) 2012; 517
Pasquali, Passerini, Pistoia (bib11) 2009
Okubo, Mizuno, Yamada, Kim, Hosono, Zhou, Kudo, Honma (bib15) 2010; 4
Marincas, Goga, Dorneanu, Ilea (bib9) 2020; 24
Zhou, Xu, Hu, Mai, Cui (bib14) 2019; 119
Wang (10.1016/j.jallcom.2022.164856_bib43) 2012; 517
Liu (10.1016/j.jallcom.2022.164856_bib39) 2019; 10
Xu (10.1016/j.jallcom.2022.164856_bib10) 2015; 3
Cai (10.1016/j.jallcom.2022.164856_bib37) 2020; 27
Ferracin (10.1016/j.jallcom.2022.164856_bib40) 2000; 130
Amaral (10.1016/j.jallcom.2022.164856_bib12) 2010; 195
Cheary (10.1016/j.jallcom.2022.164856_bib27) 1992; 25
Ding (10.1016/j.jallcom.2022.164856_bib23) 2011; 21
Ragupathy (10.1016/j.jallcom.2022.164856_bib18) 2010; 124
Jin (10.1016/j.jallcom.2022.164856_bib45) 2014; 262
Silva (10.1016/j.jallcom.2022.164856_bib24) 2014; 268
Kim (10.1016/j.jallcom.2022.164856_bib22) 2008; 8
Cai (10.1016/j.jallcom.2022.164856_bib35) 2015; 278
Yaroslavtsev (10.1016/j.jallcom.2022.164856_bib6) 2015; 84
Zeng (10.1016/j.jallcom.2022.164856_bib5) 2019; 9
Ma (10.1016/j.jallcom.2022.164856_bib28) 1997; 9
Lv (10.1016/j.jallcom.2022.164856_bib44) 2014; 31
Nitta (10.1016/j.jallcom.2022.164856_bib2) 2015; 18
Cunha (10.1016/j.jallcom.2022.164856_bib46) 2019; 2
Cao (10.1016/j.jallcom.2022.164856_bib3) 2019; 14
Kanoh (10.1016/j.jallcom.2022.164856_bib30) 1995; 142
Li (10.1016/j.jallcom.2022.164856_bib34) 2019; 45
Marincas (10.1016/j.jallcom.2022.164856_bib9) 2020; 24
Liu (10.1016/j.jallcom.2022.164856_bib26) 2004; 177
Smecellato (10.1016/j.jallcom.2022.164856_bib29) 2017; 86
Velasquez (10.1016/j.jallcom.2022.164856_bib31) 2018; 6
Ding (10.1016/j.jallcom.2022.164856_bib4) 2019; 2
Zhou (10.1016/j.jallcom.2022.164856_bib14) 2019; 119
Hao (10.1016/j.jallcom.2022.164856_bib17) 2012; 22
Xiao (10.1016/j.jallcom.2022.164856_bib38) 2018; 6
Jiang (10.1016/j.jallcom.2022.164856_bib32) 2017; 357
Yi (10.1016/j.jallcom.2022.164856_bib41) 2007; 42
Kim (10.1016/j.jallcom.2022.164856_bib33) 2012; 12
Pasquali (10.1016/j.jallcom.2022.164856_bib11) 2009
Manthiram (10.1016/j.jallcom.2022.164856_bib1) 2009
Dou (10.1016/j.jallcom.2022.164856_bib13) 2015; 21
Okubo (10.1016/j.jallcom.2022.164856_bib15) 2010; 4
Xu (10.1016/j.jallcom.2022.164856_bib36) 2021; 870
Liddle (10.1016/j.jallcom.2022.164856_bib16) 2010; 3
Lee (10.1016/j.jallcom.2022.164856_bib19) 2010; 10
Liu (10.1016/j.jallcom.2022.164856_bib7) 2019; 10
Sharifi-Asl (10.1016/j.jallcom.2022.164856_bib8) 2019; 9
Hosono (10.1016/j.jallcom.2022.164856_bib20) 2009; 9
Lee (10.1016/j.jallcom.2022.164856_bib42) 2011; 196
Moura (10.1016/j.jallcom.2022.164856_bib25) 2012; 2
Luo (10.1016/j.jallcom.2022.164856_bib21) 2008; 112
References_xml – volume: 2
  start-page: 1
  year: 2019
  end-page: 28
  ident: bib4
  article-title: Automotive Li-ion batteries: current status and future perspectives
  publication-title: Electrochem. Energy Rev.
  contributor:
    fullname: Chen
– start-page: 315
  year: 2009
  end-page: 354
  ident: bib11
  article-title: Trends in cathode materials for rechargeable batteries
  publication-title: Lithium Batteries Science and Technology
  contributor:
    fullname: Pistoia
– volume: 18
  start-page: 252
  year: 2015
  end-page: 264
  ident: bib2
  article-title: Li-ion battery materials: present and future
  publication-title: Mater. Today
  contributor:
    fullname: Yushin
– volume: 130
  start-page: 215
  year: 2000
  end-page: 220
  ident: bib40
  article-title: Characterization and electrochemical performance of the spinel LiMn
  publication-title: Solid State Ion.
  contributor:
    fullname: Bocchi
– volume: 196
  start-page: 1488
  year: 2011
  end-page: 1493
  ident: bib42
  article-title: Highly crystalline lithium–manganese spinel prepared by a hydrothermal process with co-solvent
  publication-title: J. Power Sources
  contributor:
    fullname: Min
– volume: 42
  start-page: 3825
  year: 2007
  end-page: 3830
  ident: bib41
  article-title: Effects of different particle sizes on electrochemical performance of spinel LiMn
  publication-title: J. Mater. Sci.
  contributor:
    fullname: Gao
– volume: 517
  start-page: 186
  year: 2012
  end-page: 191
  ident: bib43
  article-title: Synthesis and electrochemical properties of LiMn
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Li
– volume: 2
  start-page: 465
  year: 2012
  end-page: 473
  ident: bib25
  article-title: Photoluminescent properties of CoMoO
  publication-title: Adv. Chem. Eng. Sci.
  contributor:
    fullname: Varela
– volume: 177
  start-page: 1585
  year: 2004
  end-page: 1591
  ident: bib26
  article-title: Hydrothermal synthesis of nanostructured spinel lithium manganese oxide
  publication-title: J. Solid State Chem.
  contributor:
    fullname: Zeng
– volume: 24
  start-page: 473
  year: 2020
  end-page: 497
  ident: bib9
  article-title: Review on synthesis methods to obtain LiMn
  publication-title: J. Solid State Electrochem.
  contributor:
    fullname: Ilea
– volume: 278
  start-page: 574
  year: 2015
  end-page: 581
  ident: bib35
  article-title: Facile synthesis of LiMn
  publication-title: J. Power Sources
  contributor:
    fullname: Tang
– volume: 45
  start-page: 13198
  year: 2019
  end-page: 13202
  ident: bib34
  article-title: Spinel LiMn
  publication-title: Ceram. Int.
  contributor:
    fullname: Zhang
– volume: 2
  start-page: 3410
  year: 2019
  end-page: 3418
  ident: bib46
  article-title: Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery
  publication-title: ACS Appl. Energy Mater.
  contributor:
    fullname: Huijben
– volume: 3
  start-page: 1339
  year: 2010
  end-page: 1346
  ident: bib16
  article-title: A new one-pot hydrothermal synthesis and electrochemical characterization of Li
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Bartlett
– volume: 9
  start-page: 1045
  year: 2009
  end-page: 1051
  ident: bib20
  article-title: Synthesis of single crystalline spinel LiMn
  publication-title: Nano Lett.
  contributor:
    fullname: Zhou
– volume: 10
  start-page: 3852
  year: 2010
  end-page: 3856
  ident: bib19
  article-title: Ultrathin spinel LiMn
  publication-title: Nano Lett.
  contributor:
    fullname: Kim
– volume: 14
  start-page: 200
  year: 2019
  end-page: 207
  ident: bib3
  article-title: Bridging the academic and industrial metrics for next-generation practical batteries
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Amine
– volume: 25
  start-page: 109
  year: 1992
  end-page: 121
  ident: bib27
  article-title: A fundamental parameters approach to X-ray line-profile fitting
  publication-title: J. Appl. Crystallogr.
  contributor:
    fullname: Coelho
– volume: 6
  start-page: 14967
  year: 2018
  end-page: 14974
  ident: bib31
  article-title: Understanding the loss of electrochemical activity of nanosized LiMn
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Biaggio
– volume: 262
  start-page: 483
  year: 2014
  end-page: 487
  ident: bib45
  article-title: Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery
  publication-title: J. Power Sources
  contributor:
    fullname: Duh
– volume: 195
  start-page: 3293
  year: 2010
  end-page: 3299
  ident: bib12
  article-title: Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2− or F−) for use as cathode material in lithium batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Rocha-Filho
– volume: 8
  start-page: 3948
  year: 2008
  ident: bib22
  article-title: Spinel LiMn
  publication-title: Nano Lett.
  contributor:
    fullname: Cui
– volume: 357
  start-page: 144
  year: 2017
  end-page: 148
  ident: bib32
  article-title: A truncated octahedral spinel LiMn
  publication-title: J. Power Sources
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 9893
  year: 2018
  end-page: 9898
  ident: bib38
  article-title: Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Pan
– volume: 31
  start-page: 16
  year: 2014
  end-page: 23
  ident: bib44
  article-title: One-step hydrothermal synthesis of LiMn
  publication-title: Solid State Sci.
  contributor:
    fullname: Qiu
– volume: 9
  start-page: 1900161
  year: 2019
  ident: bib5
  article-title: Commercialization of lithium battery technologies for electric vehicles
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Amine
– volume: 142
  start-page: 702
  year: 1995
  end-page: 707
  ident: bib30
  article-title: Kinetic properties of a Pt / lambda ‐ MnO
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Ooi
– volume: 86
  start-page: 209
  year: 2017
  end-page: 2014
  ident: bib29
  article-title: Alternative route for LiFePO4 synthesis: carbothermal reduction combined with microwave-assisted solid-state reaction
  publication-title: Mater. Res. Bull.
  contributor:
    fullname: Rocha-Filho
– volume: 4
  start-page: 741
  year: 2010
  end-page: 752
  ident: bib15
  article-title: Fast Li-ion insertion into nanosized LiMn
  publication-title: ACS Nano
  contributor:
    fullname: Honma
– volume: 84
  start-page: 826
  year: 2015
  end-page: 852
  ident: bib6
  article-title: Electrode nanomaterials for lithium-ion batteries
  publication-title: Russ. Chem. Rev.
  contributor:
    fullname: Skundin
– volume: 119
  start-page: 11042
  year: 2019
  end-page: 11109
  ident: bib14
  article-title: Nanowires for electrochemical energy storage
  publication-title: Chem. Rev.
  contributor:
    fullname: Cui
– volume: 124
  start-page: 870
  year: 2010
  end-page: 875
  ident: bib18
  article-title: Microwave driven hydrothermal synthesis of LiMn
  publication-title: Mater. Chem. Phys.
  contributor:
    fullname: Munichandraiah
– volume: 27
  year: 2020
  ident: bib37
  article-title: High electrochemical stability Al-doped spinel LiMn
  publication-title: J. Energy Storage
  contributor:
    fullname: Yang
– start-page: 1
  year: 2009
  end-page: 41
  ident: bib1
  article-title: Materials aspects: an overview
  publication-title: Litthium Batteries Science and Technology
  contributor:
    fullname: Manthiram
– volume: 9
  start-page: 1900551
  year: 2019
  ident: bib8
  article-title: Oxygen release degradation in Li-Ion battery cathode materials: mechanisms and mitigating approaches
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Shahbazian-Yassar
– volume: 9
  start-page: 3023
  year: 1997
  end-page: 3031
  ident: bib28
  article-title: Synthesis of tetragonal BaTiO
  publication-title: Chem. Mater.
  contributor:
    fullname: Dutta
– volume: 12
  start-page: 6358
  year: 2012
  end-page: 6365
  ident: bib33
  article-title: A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries
  publication-title: Nano Lett.
  contributor:
    fullname: Choi
– volume: 112
  start-page: 12051
  year: 2008
  end-page: 12057
  ident: bib21
  article-title: LiMn
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Xia
– volume: 21
  start-page: 348
  year: 2011
  end-page: 355
  ident: bib23
  article-title: Single‐crystalline LiMn
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Zhao
– volume: 3
  start-page: 4092
  year: 2015
  end-page: 4123
  ident: bib10
  article-title: Strategies for improving the cyclability and thermo-stability of LiMn
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Chenab
– volume: 10
  start-page: 4721
  year: 2019
  ident: bib39
  article-title: Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery
  publication-title: Nat. Commun.
  contributor:
    fullname: Amine
– volume: 21
  start-page: 3001
  year: 2015
  end-page: 3030
  ident: bib13
  article-title: Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries
  publication-title: Ionics
  contributor:
    fullname: Dou
– volume: 870
  year: 2021
  ident: bib36
  article-title: Atomic insights into surface orientations and oxygen vacancies in the LiMn
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Huang
– volume: 10
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib7
  article-title: Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery
  publication-title: Nat. Commun.
  contributor:
    fullname: Amine
– volume: 22
  start-page: 1578
  year: 2012
  end-page: 1591
  ident: bib17
  article-title: Improved electrode kinetics in lithium manganospinel nanoparticles synthesized by hydrothermal methods: identifying and eliminating oxygen vacancies
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Bartlett
– volume: 268
  start-page: 42
  year: 2014
  end-page: 47
  ident: bib24
  article-title: Practical microwave-assisted solid-state synthesis of the spinel LiMn
  publication-title: Solid State Ion.
  contributor:
    fullname: Rocha-Filho
– volume: 24
  start-page: 473
  year: 2020
  ident: 10.1016/j.jallcom.2022.164856_bib9
  article-title: Review on synthesis methods to obtain LiMn2O4-based cathode materials for Li-ion batteries
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-019-04467-3
  contributor:
    fullname: Marincas
– volume: 124
  start-page: 870
  year: 2010
  ident: 10.1016/j.jallcom.2022.164856_bib18
  article-title: Microwave driven hydrothermal synthesis of LiMn2O4 nanoparticles as cathode material for Li-ion batteries
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.08.014
  contributor:
    fullname: Ragupathy
– volume: 22
  start-page: 1578
  year: 2012
  ident: 10.1016/j.jallcom.2022.164856_bib17
  article-title: Improved electrode kinetics in lithium manganospinel nanoparticles synthesized by hydrothermal methods: identifying and eliminating oxygen vacancies
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM15583K
  contributor:
    fullname: Hao
– volume: 268
  start-page: 42
  year: 2014
  ident: 10.1016/j.jallcom.2022.164856_bib24
  article-title: Practical microwave-assisted solid-state synthesis of the spinel LiMn2O4
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2014.09.025
  contributor:
    fullname: Silva
– volume: 9
  start-page: 1900161
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib5
  article-title: Commercialization of lithium battery technologies for electric vehicles
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900161
  contributor:
    fullname: Zeng
– volume: 25
  start-page: 109
  year: 1992
  ident: 10.1016/j.jallcom.2022.164856_bib27
  article-title: A fundamental parameters approach to X-ray line-profile fitting
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889891010804
  contributor:
    fullname: Cheary
– volume: 177
  start-page: 1585
  year: 2004
  ident: 10.1016/j.jallcom.2022.164856_bib26
  article-title: Hydrothermal synthesis of nanostructured spinel lithium manganese oxide
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2003.12.009
  contributor:
    fullname: Liu
– volume: 196
  start-page: 1488
  year: 2011
  ident: 10.1016/j.jallcom.2022.164856_bib42
  article-title: Highly crystalline lithium–manganese spinel prepared by a hydrothermal process with co-solvent
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.083
  contributor:
    fullname: Lee
– volume: 10
  start-page: 3852
  year: 2010
  ident: 10.1016/j.jallcom.2022.164856_bib19
  article-title: Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl101047f
  contributor:
    fullname: Lee
– volume: 2
  start-page: 3410
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib46
  article-title: Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00217
  contributor:
    fullname: Cunha
– volume: 2
  start-page: 1
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib4
  article-title: Automotive Li-ion batteries: current status and future perspectives
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0022-z
  contributor:
    fullname: Ding
– volume: 6
  start-page: 14967
  year: 2018
  ident: 10.1016/j.jallcom.2022.164856_bib31
  article-title: Understanding the loss of electrochemical activity of nanosized LiMn2O4 particles: a combined experimental and ab initio DFT study
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02703J
  contributor:
    fullname: Velasquez
– volume: 112
  start-page: 12051
  year: 2008
  ident: 10.1016/j.jallcom.2022.164856_bib21
  article-title: LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium-ion battery
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp800915f
  contributor:
    fullname: Luo
– volume: 6
  start-page: 9893
  year: 2018
  ident: 10.1016/j.jallcom.2022.164856_bib38
  article-title: Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01428K
  contributor:
    fullname: Xiao
– volume: 2
  start-page: 465
  year: 2012
  ident: 10.1016/j.jallcom.2022.164856_bib25
  article-title: Photoluminescent properties of CoMoO4 nanorods quickly synthesized and annealed in a domestic microwave oven
  publication-title: Adv. Chem. Eng. Sci.
  doi: 10.4236/aces.2012.24057
  contributor:
    fullname: Moura
– volume: 21
  start-page: 348
  year: 2011
  ident: 10.1016/j.jallcom.2022.164856_bib23
  article-title: Single‐crystalline LiMn2O4 nanotubes synthesized via template‐engaged reaction as cathodes for high‐power lithium ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201001448
  contributor:
    fullname: Ding
– volume: 3
  start-page: 1339
  year: 2010
  ident: 10.1016/j.jallcom.2022.164856_bib16
  article-title: A new one-pot hydrothermal synthesis and electrochemical characterization of Li1+xMn2yO4 spinel structured compounds
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00059k
  contributor:
    fullname: Liddle
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib7
  article-title: Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery
  publication-title: Nat. Commun.
  contributor:
    fullname: Liu
– volume: 195
  start-page: 3293
  year: 2010
  ident: 10.1016/j.jallcom.2022.164856_bib12
  article-title: Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2− or F−) for use as cathode material in lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.12.002
  contributor:
    fullname: Amaral
– volume: 119
  start-page: 11042
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib14
  article-title: Nanowires for electrochemical energy storage
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00326
  contributor:
    fullname: Zhou
– start-page: 1
  year: 2009
  ident: 10.1016/j.jallcom.2022.164856_bib1
  article-title: Materials aspects: an overview
  contributor:
    fullname: Manthiram
– volume: 27
  year: 2020
  ident: 10.1016/j.jallcom.2022.164856_bib37
  article-title: High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.101036
  contributor:
    fullname: Cai
– volume: 18
  start-page: 252
  year: 2015
  ident: 10.1016/j.jallcom.2022.164856_bib2
  article-title: Li-ion battery materials: present and future
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.10.040
  contributor:
    fullname: Nitta
– volume: 4
  start-page: 741
  year: 2010
  ident: 10.1016/j.jallcom.2022.164856_bib15
  article-title: Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries
  publication-title: ACS Nano
  doi: 10.1021/nn9012065
  contributor:
    fullname: Okubo
– volume: 130
  start-page: 215
  year: 2000
  ident: 10.1016/j.jallcom.2022.164856_bib40
  article-title: Characterization and electrochemical performance of the spinel LiMn2O4 prepared from ε-MnO2
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(00)00614-7
  contributor:
    fullname: Ferracin
– volume: 8
  start-page: 3948
  year: 2008
  ident: 10.1016/j.jallcom.2022.164856_bib22
  article-title: Spinel LiMn2O4 nanorods as lithium-ion battery cathodes
  publication-title: Nano Lett.
  doi: 10.1021/nl8024328
  contributor:
    fullname: Kim
– volume: 3
  start-page: 4092
  year: 2015
  ident: 10.1016/j.jallcom.2022.164856_bib10
  article-title: Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06264G
  contributor:
    fullname: Xu
– volume: 86
  start-page: 209
  year: 2017
  ident: 10.1016/j.jallcom.2022.164856_bib29
  article-title: Alternative route for LiFePO4 synthesis: carbothermal reduction combined with microwave-assisted solid-state reaction
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2016.11.003
  contributor:
    fullname: Smecellato
– volume: 262
  start-page: 483
  year: 2014
  ident: 10.1016/j.jallcom.2022.164856_bib45
  article-title: Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.089
  contributor:
    fullname: Jin
– volume: 870
  year: 2021
  ident: 10.1016/j.jallcom.2022.164856_bib36
  article-title: Atomic insights into surface orientations and oxygen vacancies in the LiMn2O4 cathode for lithium storage
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.159387
  contributor:
    fullname: Xu
– volume: 357
  start-page: 144
  year: 2017
  ident: 10.1016/j.jallcom.2022.164856_bib32
  article-title: A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.079
  contributor:
    fullname: Jiang
– volume: 45
  start-page: 13198
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib34
  article-title: Spinel LiMn2O4 cathode materials for lithium storage: the regulation of exposed facets and surface coating
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.04.002
  contributor:
    fullname: Li
– start-page: 315
  year: 2009
  ident: 10.1016/j.jallcom.2022.164856_bib11
  article-title: Trends in cathode materials for rechargeable batteries
  contributor:
    fullname: Pasquali
– volume: 31
  start-page: 16
  year: 2014
  ident: 10.1016/j.jallcom.2022.164856_bib44
  article-title: One-step hydrothermal synthesis of LiMn2O4 cathode materials for rechargeable lithium batteries
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2014.02.015
  contributor:
    fullname: Lv
– volume: 12
  start-page: 6358
  year: 2012
  ident: 10.1016/j.jallcom.2022.164856_bib33
  article-title: A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl303619s
  contributor:
    fullname: Kim
– volume: 42
  start-page: 3825
  year: 2007
  ident: 10.1016/j.jallcom.2022.164856_bib41
  article-title: Effects of different particle sizes on electrochemical performance of spinel LiMn2O4 cathode materials
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0460-6
  contributor:
    fullname: Yi
– volume: 9
  start-page: 3023
  year: 1997
  ident: 10.1016/j.jallcom.2022.164856_bib28
  article-title: Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating
  publication-title: Chem. Mater.
  doi: 10.1021/cm970371n
  contributor:
    fullname: Ma
– volume: 10
  start-page: 4721
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib39
  article-title: Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12626-3
  contributor:
    fullname: Liu
– volume: 84
  start-page: 826
  year: 2015
  ident: 10.1016/j.jallcom.2022.164856_bib6
  article-title: Electrode nanomaterials for lithium-ion batteries
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RCR4497
  contributor:
    fullname: Yaroslavtsev
– volume: 142
  start-page: 702
  year: 1995
  ident: 10.1016/j.jallcom.2022.164856_bib30
  article-title: Kinetic properties of a Pt / lambda ‐ MnO2 electrode for the electroinsertion of lithium ions in an aqueous phase
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2048520
  contributor:
    fullname: Kanoh
– volume: 278
  start-page: 574
  year: 2015
  ident: 10.1016/j.jallcom.2022.164856_bib35
  article-title: Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.082
  contributor:
    fullname: Cai
– volume: 21
  start-page: 3001
  year: 2015
  ident: 10.1016/j.jallcom.2022.164856_bib13
  article-title: Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries
  publication-title: Ionics
  doi: 10.1007/s11581-015-1545-5
  contributor:
    fullname: Dou
– volume: 9
  start-page: 1045
  year: 2009
  ident: 10.1016/j.jallcom.2022.164856_bib20
  article-title: Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium-ion battery with high power density
  publication-title: Nano Lett.
  doi: 10.1021/nl803394v
  contributor:
    fullname: Hosono
– volume: 517
  start-page: 186
  year: 2012
  ident: 10.1016/j.jallcom.2022.164856_bib43
  article-title: Synthesis and electrochemical properties of LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2011.12.079
  contributor:
    fullname: Wang
– volume: 14
  start-page: 200
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib3
  article-title: Bridging the academic and industrial metrics for next-generation practical batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0371-8
  contributor:
    fullname: Cao
– volume: 9
  start-page: 1900551
  year: 2019
  ident: 10.1016/j.jallcom.2022.164856_bib8
  article-title: Oxygen release degradation in Li-Ion battery cathode materials: mechanisms and mitigating approaches
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900551
  contributor:
    fullname: Sharifi-Asl
SSID ssj0001931
Score 2.472009
Snippet Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel...
Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 164856
SubjectTerms Crystal structure
Discharge
Electrochemical analysis
Electrodes
Emission analysis
Energy storage material
Energy-saving microwave-assisted hydrothermal route
Genuinely nanostructured spinel LiMn2O4
High resolution electron microscopy
Hydrothermal reactions
Inductively coupled plasma
Li-ion battery
Lithium manganese oxides
Low temperature
Nanoparticles
Reaction time
Reagents
Spinel
Title A new strategy to quickly synthetize true nanoparticles of the spinel LiMn2O4 by using a microwave-assisted hydrothermal route
URI https://dx.doi.org/10.1016/j.jallcom.2022.164856
https://www.proquest.com/docview/2676136099
Volume 911
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lrRBwQBBAFAraAzfLJvFzcwwlCJB4iBSpN2vXXrcOqR1iOygc-O3M7HrjtAHxkLhYkWN7HX9fdr8Zz4OQp4MoHXmDFMuGisj2mRA2l15kJzwa8UEgAiFV64Rp9O6UvZj4k17P9MTr9v1XpGEfYI2Zs3-B9uaisAM-A-awBdRh-0e4j7FJuFXporNKWn5p8uTzfI3FCUDt1fk3adXLRloFL8BibgPjTKxAtQDZOQdT_W3hvvdRnDbKm8CtCwzd-8pX0ga9jeRIrfN1ulQZXBfYHqBs6stxRZ3Wxbf768rk0C2wldNGy0_z-Uq_dOJAVWl9yFfceu5siMXnsHTVpUnm5gVHQsJN5htXQpkkqjcxTNlLLD_Zef752VmuTp2WmH720dn2coCBjFEZQed620m_0T5MN7CZp_sCOlLP4CzybD_U_V_MFD_SE_rOcqE9FzNnBo8Bg4dwZAcMSBZcKc-tFvwpjofDuaCaXD8K98iBC_MbTK8H49eT0zcbCQCqWLVqNPfXpY49--lgvxJFV-SB0jwnt8mtFkA61hy5Q3qy6JPrx6ZHYJ_c3Cpn2SfXVDhxUt0l38cUWEgNC2ld0paFtGMhRRbSSyykZUbhW6pZSFsWUrGmioWU010W0m0WUsXCe-TTy8nJ8Su77fRhJ24Y1XaWpoNh5qcgqYajhHssCIQvwkSGPGAik6PElUHky2AgMjBwWZLhYanMhulQeDLy7pP9oizkA0Il2NRuIjM4iqGzgnkcNLcIPXeYYqL1IXHMo44XuqBLbCIdZ3GLTYzYxBqbQ8IMIHGrSrXajIFFvzv1yAAYt1NEFcMPBgkdgmX28N-v_Ijc6P4lR2QfAXtM9qq0edJy8QfYrMFo
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+strategy+to+quickly+synthetize+true+nanoparticles+of+the+spinel+LiMn2O4+by+using+a+microwave-assisted+hydrothermal+route&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Silva%2C+Daiane+Piva+B.&rft.au=Falqueto%2C+Juliana+Bruneli&rft.au=Bocchi%2C+Nerilso&rft.au=Biaggio%2C+Sonia+R.&rft.date=2022-08-05&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=911&rft_id=info:doi/10.1016%2Fj.jallcom.2022.164856&rft.externalDocID=S0925838822012476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon