A new strategy to quickly synthetize true nanoparticles of the spinel LiMn2O4 by using a microwave-assisted hydrothermal route
Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel LiMn2O4 (LMO) at a low temperature (140 °C) and short reaction time (5 min), using exclusively water-soluble reagents. The obtention of this mate...
Saved in:
Published in: | Journal of alloys and compounds Vol. 911; p. 164856 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Lausanne
Elsevier B.V
05-08-2022
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel LiMn2O4 (LMO) at a low temperature (140 °C) and short reaction time (5 min), using exclusively water-soluble reagents. The obtention of this material was confirmed by using different techniques such as X-ray diffractometry, Rietveld crystal structure refinement, inductively coupled plasma-atomic emission spectroscopy and high-resolution transmission electron microscopy. Electrochemical evaluations were performed by using cyclic voltammetry and galvanostatic charge and discharge tests. Only electrodes prepared from spinel LMO nanoparticles with an average size of ~15 nm showed electrochemical activity. From charge and discharge tests at a constant rate of C/5, the electrodes prepared from this active material exhibited an initial specific capacity of 128 mA h g–1 with a capacity retention of 95% after the 27th cycle. The hallmark of the synthesis route here described is the saving of energy while preparing truly nanoparticulate LMO with excellent chemical, structural and promising electrochemical properties.
[Display omitted]
•Highly pure nanoparticles (≤15 nm) of LiMn2O4 (LMO) are prepared by a new route.•The LMO preparation is based on a microwave-assisted hydrothermal reaction (MWH).•Low temperature, short time and water-soluble reagents are used in the MWH reaction.•LMO nanoparticles show excellent chemical, structural and electrochemical properties. |
---|---|
AbstractList | Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel LiMn2O4 (LMO) at a low temperature (140 °C) and short reaction time (5 min), using exclusively water-soluble reagents. The obtention of this material was confirmed by using different techniques such as X-ray diffractometry, Rietveld crystal structure refinement, inductively coupled plasma-atomic emission spectroscopy and high-resolution transmission electron microscopy. Electrochemical evaluations were performed by using cyclic voltammetry and galvanostatic charge and discharge tests. Only electrodes prepared from spinel LMO nanoparticles with an average size of ~15 nm showed electrochemical activity. From charge and discharge tests at a constant rate of C/5, the electrodes prepared from this active material exhibited an initial specific capacity of 128 mA h g–1 with a capacity retention of 95% after the 27th cycle. The hallmark of the synthesis route here described is the saving of energy while preparing truly nanoparticulate LMO with excellent chemical, structural and promising electrochemical properties. Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel LiMn2O4 (LMO) at a low temperature (140 °C) and short reaction time (5 min), using exclusively water-soluble reagents. The obtention of this material was confirmed by using different techniques such as X-ray diffractometry, Rietveld crystal structure refinement, inductively coupled plasma-atomic emission spectroscopy and high-resolution transmission electron microscopy. Electrochemical evaluations were performed by using cyclic voltammetry and galvanostatic charge and discharge tests. Only electrodes prepared from spinel LMO nanoparticles with an average size of ~15 nm showed electrochemical activity. From charge and discharge tests at a constant rate of C/5, the electrodes prepared from this active material exhibited an initial specific capacity of 128 mA h g–1 with a capacity retention of 95% after the 27th cycle. The hallmark of the synthesis route here described is the saving of energy while preparing truly nanoparticulate LMO with excellent chemical, structural and promising electrochemical properties. [Display omitted] •Highly pure nanoparticles (≤15 nm) of LiMn2O4 (LMO) are prepared by a new route.•The LMO preparation is based on a microwave-assisted hydrothermal reaction (MWH).•Low temperature, short time and water-soluble reagents are used in the MWH reaction.•LMO nanoparticles show excellent chemical, structural and electrochemical properties. |
ArticleNumber | 164856 |
Author | Falqueto, Juliana Bruneli Bocchi, Nerilso Rocha-Filho, Romeu C. Biaggio, Sonia R. Silva, Daiane Piva B. |
Author_xml | – sequence: 1 givenname: Daiane Piva B. surname: Silva fullname: Silva, Daiane Piva B. – sequence: 2 givenname: Juliana Bruneli surname: Falqueto fullname: Falqueto, Juliana Bruneli – sequence: 3 givenname: Nerilso surname: Bocchi fullname: Bocchi, Nerilso email: bocchi@ufscar.br – sequence: 4 givenname: Sonia R. surname: Biaggio fullname: Biaggio, Sonia R. – sequence: 5 givenname: Romeu C. surname: Rocha-Filho fullname: Rocha-Filho, Romeu C. |
BookMark | eNqFkE1P3DAQhq2KSl2gP6HSSD1nayex45wqhPolbcUFzpZjj8Fp1l5sBxQO_HayWu49zWHej5nnnJyFGJCQL4xuGWXi27gd9TSZuN_WtK63TLSSiw9kw2TXVK0Q_RnZ0L7mlWyk_ETOcx4ppaxv2Ia8XkHAZ8gl6YL3C5QIj7M3_6YF8hLKAxb_glDSjBB0iAedijcTZogO1i3kgw84wc7_DfVNC8MCc_bhHjTsvUnxWT9hpXP2uaCFh8WmuLrSXk-Q4lzwknx0esr4-X1ekLufP26vf1e7m19_rq92lalFVypnLWWutU3LWG90Izkf2kEYFJrLwWFvauRdi5wOruNSGneUWXTMsqHBrrkgX0-5hxQfZ8xFjXFOYa1Ua4FgjaB9v6r4SbVennNCpw7J73VaFKPqiFqN6h21OqJWJ9Sr7_vJh-sLTx6TysZjMGh9QlOUjf4_CW-TF48s |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2023_127699 crossref_primary_10_1016_j_ces_2023_118600 crossref_primary_10_1016_j_jallcom_2023_168704 crossref_primary_10_1016_j_jallcom_2022_166537 crossref_primary_10_1007_s11581_023_05132_6 crossref_primary_10_1016_j_jpowsour_2022_232307 crossref_primary_10_1002_smtd_202201152 crossref_primary_10_1149_1945_7111_acf8fd crossref_primary_10_2139_ssrn_4198028 crossref_primary_10_1016_j_matlet_2023_134838 |
Cites_doi | 10.1007/s10008-019-04467-3 10.1016/j.matchemphys.2010.08.014 10.1039/C1JM15583K 10.1016/j.ssi.2014.09.025 10.1002/aenm.201900161 10.1107/S0021889891010804 10.1016/j.jssc.2003.12.009 10.1016/j.jpowsour.2010.08.083 10.1021/nl101047f 10.1021/acsaem.9b00217 10.1007/s41918-018-0022-z 10.1039/C8TA02703J 10.1021/jp800915f 10.1039/C8TA01428K 10.4236/aces.2012.24057 10.1002/adfm.201001448 10.1039/c0ee00059k 10.1016/j.jpowsour.2009.12.002 10.1021/acs.chemrev.9b00326 10.1016/j.est.2019.101036 10.1016/j.mattod.2014.10.040 10.1021/nn9012065 10.1016/S0167-2738(00)00614-7 10.1021/nl8024328 10.1039/C4TA06264G 10.1016/j.materresbull.2016.11.003 10.1016/j.jpowsour.2014.03.089 10.1016/j.jallcom.2021.159387 10.1016/j.jpowsour.2017.04.079 10.1016/j.ceramint.2019.04.002 10.1016/j.solidstatesciences.2014.02.015 10.1021/nl303619s 10.1007/s10853-006-0460-6 10.1021/cm970371n 10.1038/s41467-019-12626-3 10.1070/RCR4497 10.1149/1.2048520 10.1016/j.jpowsour.2014.12.082 10.1007/s11581-015-1545-5 10.1021/nl803394v 10.1016/j.jallcom.2011.12.079 10.1038/s41565-019-0371-8 10.1002/aenm.201900551 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Aug 5, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Aug 5, 2022 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2022.164856 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2022_164856 S0925838822012476 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS T9H WUQ 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c267t-fdd01f4d34119ca3855b4b6ce6a58bfe9c2e574e50bf7588cf19cadef1d1b3e73 |
ISSN | 0925-8388 |
IngestDate | Thu Oct 10 19:38:58 EDT 2024 Thu Sep 26 16:53:26 EDT 2024 Fri Feb 23 02:39:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy storage material Li-ion battery Genuinely nanostructured spinel LiMn2O4 Energy-saving microwave-assisted hydrothermal route |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-fdd01f4d34119ca3855b4b6ce6a58bfe9c2e574e50bf7588cf19cadef1d1b3e73 |
PQID | 2676136099 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2676136099 crossref_primary_10_1016_j_jallcom_2022_164856 elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_164856 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-05 |
PublicationDateYYYYMMDD | 2022-08-05 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Nitta, Wu, Lee, Yushin (bib2) 2015; 18 Ding, Cano, Yu, Lu, Chen (bib4) 2019; 2 Kanoh, Feng, Miyai, Ooi (bib30) 1995; 142 Cai, Ma, Huang, Yan, Yu, Zhang, Song, Xu, Wen, Yang (bib37) 2020; 27 Jiang, Tang, Wang, Zhang (bib32) 2017; 357 Ma, Vileno, Suib, Dutta (bib28) 1997; 9 Moura, Oliveira, Pereira, Rosa, Li, Longo, Varela (bib25) 2012; 2 Manthiram (bib1) 2009 Kim, Kim, Cho, Shin, Kanno, Choi (bib33) 2012; 12 Luo, Xiong, Xia (bib21) 2008; 112 Lee, Muralidharan, Ruffo, Mari, Cui, Kim (bib19) 2010; 10 Smecellato, Davoglio, Biaggio, Bocchi, Rocha-Filho (bib29) 2017; 86 Xu, Zheng, Lin, Lei, Wang, Song, Cheng, Qi, Peng, Lin, Yang, Huang (bib36) 2021; 870 Li, Zhang, Gong, Guo, Yu, Zhang (bib34) 2019; 45 Silva, Biaggio, Bocchi, Rocha-Filho (bib24) 2014; 268 Hosono, Kudo, Honma, Matsuda, Zhou (bib20) 2009; 9 Lee, Kim, Min (bib42) 2011; 196 Zeng, Li, El-Hady, Alshitari, Al-Bogami, Lu, Amine (bib5) 2019; 9 Cunha, Hendriks, Vasileiadis, Vos, Verhallen, Singh, Wagemaker, Huijben (bib46) 2019; 2 Cao, Li, Lu, Liu, Amine (bib3) 2019; 14 Ragupathy, Vasan, Munichandraiah (bib18) 2010; 124 Cai, Huang, Wang, Jia, Pang, Guo, Du, Tang (bib35) 2015; 278 Velasquez, Silva, Falqueto, Mejía-Lopez, Bocchi, del Rio, Mazo-Zuluaga, Rocha-Filho, Biaggio (bib31) 2018; 6 Jin, Lu, Wang, Yang, Duh (bib45) 2014; 262 Sharifi-Asl, Lu, Amine, Shahbazian-Yassar (bib8) 2019; 9 Yaroslavtsev, Kulova, Skundin (bib6) 2015; 84 Xu, Liu, Zhang, Cui, Chenab (bib10) 2015; 3 Yi, Hu, Dai, Gao (bib41) 2007; 42 Liu, Dai, Lu, Yuan, Xiao, Yu, Li, Gim, Ma, Liu, Zhan, Li, Zheng, Ren, Wu, Shahbazian-Yassar, Wen, Pan, Amine (bib7) 2019; 10 Kim, Muralidharan, Lee, Ruffo, Yang, Chan, Peng, Huggins, Cui (bib22) 2008; 8 Xiao, Xin, Li, Jie, Gu, Zheng, Pan (bib38) 2018; 6 Lv, Chen, Chen, Liu, Liu, Qiu (bib44) 2014; 31 Liu, Dai, Lu, Yuan, Xiao, Yu, Li, Gim, Ma, Liu, Zhan, Li, Zheng, Ren, Wu, Shahbazian-Yassar, Wen, Pan, Amine (bib39) 2019; 10 Amaral, Bocchi, Brocenschi, Biaggio, Rocha-Filho (bib12) 2010; 195 Cheary, Coelho (bib27) 1992; 25 Dou (bib13) 2015; 21 Liddle, Collins, Bartlett (bib16) 2010; 3 Hao, Gourdon, Liddle, Bartlett (bib17) 2012; 22 Ding, Xie, Cao, Zhu, Yu, Zhao (bib23) 2011; 21 Ferracin, Amaral, Bocchi (bib40) 2000; 130 Liu, Wang, Liu, Wu, Li, Zeng (bib26) 2004; 177 Wang, Qian, Lu, Li (bib43) 2012; 517 Pasquali, Passerini, Pistoia (bib11) 2009 Okubo, Mizuno, Yamada, Kim, Hosono, Zhou, Kudo, Honma (bib15) 2010; 4 Marincas, Goga, Dorneanu, Ilea (bib9) 2020; 24 Zhou, Xu, Hu, Mai, Cui (bib14) 2019; 119 Wang (10.1016/j.jallcom.2022.164856_bib43) 2012; 517 Liu (10.1016/j.jallcom.2022.164856_bib39) 2019; 10 Xu (10.1016/j.jallcom.2022.164856_bib10) 2015; 3 Cai (10.1016/j.jallcom.2022.164856_bib37) 2020; 27 Ferracin (10.1016/j.jallcom.2022.164856_bib40) 2000; 130 Amaral (10.1016/j.jallcom.2022.164856_bib12) 2010; 195 Cheary (10.1016/j.jallcom.2022.164856_bib27) 1992; 25 Ding (10.1016/j.jallcom.2022.164856_bib23) 2011; 21 Ragupathy (10.1016/j.jallcom.2022.164856_bib18) 2010; 124 Jin (10.1016/j.jallcom.2022.164856_bib45) 2014; 262 Silva (10.1016/j.jallcom.2022.164856_bib24) 2014; 268 Kim (10.1016/j.jallcom.2022.164856_bib22) 2008; 8 Cai (10.1016/j.jallcom.2022.164856_bib35) 2015; 278 Yaroslavtsev (10.1016/j.jallcom.2022.164856_bib6) 2015; 84 Zeng (10.1016/j.jallcom.2022.164856_bib5) 2019; 9 Ma (10.1016/j.jallcom.2022.164856_bib28) 1997; 9 Lv (10.1016/j.jallcom.2022.164856_bib44) 2014; 31 Nitta (10.1016/j.jallcom.2022.164856_bib2) 2015; 18 Cunha (10.1016/j.jallcom.2022.164856_bib46) 2019; 2 Cao (10.1016/j.jallcom.2022.164856_bib3) 2019; 14 Kanoh (10.1016/j.jallcom.2022.164856_bib30) 1995; 142 Li (10.1016/j.jallcom.2022.164856_bib34) 2019; 45 Marincas (10.1016/j.jallcom.2022.164856_bib9) 2020; 24 Liu (10.1016/j.jallcom.2022.164856_bib26) 2004; 177 Smecellato (10.1016/j.jallcom.2022.164856_bib29) 2017; 86 Velasquez (10.1016/j.jallcom.2022.164856_bib31) 2018; 6 Ding (10.1016/j.jallcom.2022.164856_bib4) 2019; 2 Zhou (10.1016/j.jallcom.2022.164856_bib14) 2019; 119 Hao (10.1016/j.jallcom.2022.164856_bib17) 2012; 22 Xiao (10.1016/j.jallcom.2022.164856_bib38) 2018; 6 Jiang (10.1016/j.jallcom.2022.164856_bib32) 2017; 357 Yi (10.1016/j.jallcom.2022.164856_bib41) 2007; 42 Kim (10.1016/j.jallcom.2022.164856_bib33) 2012; 12 Pasquali (10.1016/j.jallcom.2022.164856_bib11) 2009 Manthiram (10.1016/j.jallcom.2022.164856_bib1) 2009 Dou (10.1016/j.jallcom.2022.164856_bib13) 2015; 21 Okubo (10.1016/j.jallcom.2022.164856_bib15) 2010; 4 Xu (10.1016/j.jallcom.2022.164856_bib36) 2021; 870 Liddle (10.1016/j.jallcom.2022.164856_bib16) 2010; 3 Lee (10.1016/j.jallcom.2022.164856_bib19) 2010; 10 Liu (10.1016/j.jallcom.2022.164856_bib7) 2019; 10 Sharifi-Asl (10.1016/j.jallcom.2022.164856_bib8) 2019; 9 Hosono (10.1016/j.jallcom.2022.164856_bib20) 2009; 9 Lee (10.1016/j.jallcom.2022.164856_bib42) 2011; 196 Moura (10.1016/j.jallcom.2022.164856_bib25) 2012; 2 Luo (10.1016/j.jallcom.2022.164856_bib21) 2008; 112 |
References_xml | – volume: 2 start-page: 1 year: 2019 end-page: 28 ident: bib4 article-title: Automotive Li-ion batteries: current status and future perspectives publication-title: Electrochem. Energy Rev. contributor: fullname: Chen – start-page: 315 year: 2009 end-page: 354 ident: bib11 article-title: Trends in cathode materials for rechargeable batteries publication-title: Lithium Batteries Science and Technology contributor: fullname: Pistoia – volume: 18 start-page: 252 year: 2015 end-page: 264 ident: bib2 article-title: Li-ion battery materials: present and future publication-title: Mater. Today contributor: fullname: Yushin – volume: 130 start-page: 215 year: 2000 end-page: 220 ident: bib40 article-title: Characterization and electrochemical performance of the spinel LiMn publication-title: Solid State Ion. contributor: fullname: Bocchi – volume: 196 start-page: 1488 year: 2011 end-page: 1493 ident: bib42 article-title: Highly crystalline lithium–manganese spinel prepared by a hydrothermal process with co-solvent publication-title: J. Power Sources contributor: fullname: Min – volume: 42 start-page: 3825 year: 2007 end-page: 3830 ident: bib41 article-title: Effects of different particle sizes on electrochemical performance of spinel LiMn publication-title: J. Mater. Sci. contributor: fullname: Gao – volume: 517 start-page: 186 year: 2012 end-page: 191 ident: bib43 article-title: Synthesis and electrochemical properties of LiMn publication-title: J. Alloy. Compd. contributor: fullname: Li – volume: 2 start-page: 465 year: 2012 end-page: 473 ident: bib25 article-title: Photoluminescent properties of CoMoO publication-title: Adv. Chem. Eng. Sci. contributor: fullname: Varela – volume: 177 start-page: 1585 year: 2004 end-page: 1591 ident: bib26 article-title: Hydrothermal synthesis of nanostructured spinel lithium manganese oxide publication-title: J. Solid State Chem. contributor: fullname: Zeng – volume: 24 start-page: 473 year: 2020 end-page: 497 ident: bib9 article-title: Review on synthesis methods to obtain LiMn publication-title: J. Solid State Electrochem. contributor: fullname: Ilea – volume: 278 start-page: 574 year: 2015 end-page: 581 ident: bib35 article-title: Facile synthesis of LiMn publication-title: J. Power Sources contributor: fullname: Tang – volume: 45 start-page: 13198 year: 2019 end-page: 13202 ident: bib34 article-title: Spinel LiMn publication-title: Ceram. Int. contributor: fullname: Zhang – volume: 2 start-page: 3410 year: 2019 end-page: 3418 ident: bib46 article-title: Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery publication-title: ACS Appl. Energy Mater. contributor: fullname: Huijben – volume: 3 start-page: 1339 year: 2010 end-page: 1346 ident: bib16 article-title: A new one-pot hydrothermal synthesis and electrochemical characterization of Li publication-title: Energy Environ. Sci. contributor: fullname: Bartlett – volume: 9 start-page: 1045 year: 2009 end-page: 1051 ident: bib20 article-title: Synthesis of single crystalline spinel LiMn publication-title: Nano Lett. contributor: fullname: Zhou – volume: 10 start-page: 3852 year: 2010 end-page: 3856 ident: bib19 article-title: Ultrathin spinel LiMn publication-title: Nano Lett. contributor: fullname: Kim – volume: 14 start-page: 200 year: 2019 end-page: 207 ident: bib3 article-title: Bridging the academic and industrial metrics for next-generation practical batteries publication-title: Nat. Nanotechnol. contributor: fullname: Amine – volume: 25 start-page: 109 year: 1992 end-page: 121 ident: bib27 article-title: A fundamental parameters approach to X-ray line-profile fitting publication-title: J. Appl. Crystallogr. contributor: fullname: Coelho – volume: 6 start-page: 14967 year: 2018 end-page: 14974 ident: bib31 article-title: Understanding the loss of electrochemical activity of nanosized LiMn publication-title: J. Mater. Chem. A contributor: fullname: Biaggio – volume: 262 start-page: 483 year: 2014 end-page: 487 ident: bib45 article-title: Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery publication-title: J. Power Sources contributor: fullname: Duh – volume: 195 start-page: 3293 year: 2010 end-page: 3299 ident: bib12 article-title: Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2− or F−) for use as cathode material in lithium batteries publication-title: J. Power Sources contributor: fullname: Rocha-Filho – volume: 8 start-page: 3948 year: 2008 ident: bib22 article-title: Spinel LiMn publication-title: Nano Lett. contributor: fullname: Cui – volume: 357 start-page: 144 year: 2017 end-page: 148 ident: bib32 article-title: A truncated octahedral spinel LiMn publication-title: J. Power Sources contributor: fullname: Zhang – volume: 6 start-page: 9893 year: 2018 end-page: 9898 ident: bib38 article-title: Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide publication-title: J. Mater. Chem. A contributor: fullname: Pan – volume: 31 start-page: 16 year: 2014 end-page: 23 ident: bib44 article-title: One-step hydrothermal synthesis of LiMn publication-title: Solid State Sci. contributor: fullname: Qiu – volume: 9 start-page: 1900161 year: 2019 ident: bib5 article-title: Commercialization of lithium battery technologies for electric vehicles publication-title: Adv. Energy Mater. contributor: fullname: Amine – volume: 142 start-page: 702 year: 1995 end-page: 707 ident: bib30 article-title: Kinetic properties of a Pt / lambda ‐ MnO publication-title: J. Electrochem. Soc. contributor: fullname: Ooi – volume: 86 start-page: 209 year: 2017 end-page: 2014 ident: bib29 article-title: Alternative route for LiFePO4 synthesis: carbothermal reduction combined with microwave-assisted solid-state reaction publication-title: Mater. Res. Bull. contributor: fullname: Rocha-Filho – volume: 4 start-page: 741 year: 2010 end-page: 752 ident: bib15 article-title: Fast Li-ion insertion into nanosized LiMn publication-title: ACS Nano contributor: fullname: Honma – volume: 84 start-page: 826 year: 2015 end-page: 852 ident: bib6 article-title: Electrode nanomaterials for lithium-ion batteries publication-title: Russ. Chem. Rev. contributor: fullname: Skundin – volume: 119 start-page: 11042 year: 2019 end-page: 11109 ident: bib14 article-title: Nanowires for electrochemical energy storage publication-title: Chem. Rev. contributor: fullname: Cui – volume: 124 start-page: 870 year: 2010 end-page: 875 ident: bib18 article-title: Microwave driven hydrothermal synthesis of LiMn publication-title: Mater. Chem. Phys. contributor: fullname: Munichandraiah – volume: 27 year: 2020 ident: bib37 article-title: High electrochemical stability Al-doped spinel LiMn publication-title: J. Energy Storage contributor: fullname: Yang – start-page: 1 year: 2009 end-page: 41 ident: bib1 article-title: Materials aspects: an overview publication-title: Litthium Batteries Science and Technology contributor: fullname: Manthiram – volume: 9 start-page: 1900551 year: 2019 ident: bib8 article-title: Oxygen release degradation in Li-Ion battery cathode materials: mechanisms and mitigating approaches publication-title: Adv. Energy Mater. contributor: fullname: Shahbazian-Yassar – volume: 9 start-page: 3023 year: 1997 end-page: 3031 ident: bib28 article-title: Synthesis of tetragonal BaTiO publication-title: Chem. Mater. contributor: fullname: Dutta – volume: 12 start-page: 6358 year: 2012 end-page: 6365 ident: bib33 article-title: A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries publication-title: Nano Lett. contributor: fullname: Choi – volume: 112 start-page: 12051 year: 2008 end-page: 12057 ident: bib21 article-title: LiMn publication-title: J. Phys. Chem. C contributor: fullname: Xia – volume: 21 start-page: 348 year: 2011 end-page: 355 ident: bib23 article-title: Single‐crystalline LiMn publication-title: Adv. Funct. Mater. contributor: fullname: Zhao – volume: 3 start-page: 4092 year: 2015 end-page: 4123 ident: bib10 article-title: Strategies for improving the cyclability and thermo-stability of LiMn publication-title: J. Mater. Chem. A contributor: fullname: Chenab – volume: 10 start-page: 4721 year: 2019 ident: bib39 article-title: Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery publication-title: Nat. Commun. contributor: fullname: Amine – volume: 21 start-page: 3001 year: 2015 end-page: 3030 ident: bib13 article-title: Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries publication-title: Ionics contributor: fullname: Dou – volume: 870 year: 2021 ident: bib36 article-title: Atomic insights into surface orientations and oxygen vacancies in the LiMn publication-title: J. Alloy. Compd. contributor: fullname: Huang – volume: 10 start-page: 1 year: 2019 end-page: 11 ident: bib7 article-title: Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery publication-title: Nat. Commun. contributor: fullname: Amine – volume: 22 start-page: 1578 year: 2012 end-page: 1591 ident: bib17 article-title: Improved electrode kinetics in lithium manganospinel nanoparticles synthesized by hydrothermal methods: identifying and eliminating oxygen vacancies publication-title: J. Mater. Chem. contributor: fullname: Bartlett – volume: 268 start-page: 42 year: 2014 end-page: 47 ident: bib24 article-title: Practical microwave-assisted solid-state synthesis of the spinel LiMn publication-title: Solid State Ion. contributor: fullname: Rocha-Filho – volume: 24 start-page: 473 year: 2020 ident: 10.1016/j.jallcom.2022.164856_bib9 article-title: Review on synthesis methods to obtain LiMn2O4-based cathode materials for Li-ion batteries publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-019-04467-3 contributor: fullname: Marincas – volume: 124 start-page: 870 year: 2010 ident: 10.1016/j.jallcom.2022.164856_bib18 article-title: Microwave driven hydrothermal synthesis of LiMn2O4 nanoparticles as cathode material for Li-ion batteries publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.08.014 contributor: fullname: Ragupathy – volume: 22 start-page: 1578 year: 2012 ident: 10.1016/j.jallcom.2022.164856_bib17 article-title: Improved electrode kinetics in lithium manganospinel nanoparticles synthesized by hydrothermal methods: identifying and eliminating oxygen vacancies publication-title: J. Mater. Chem. doi: 10.1039/C1JM15583K contributor: fullname: Hao – volume: 268 start-page: 42 year: 2014 ident: 10.1016/j.jallcom.2022.164856_bib24 article-title: Practical microwave-assisted solid-state synthesis of the spinel LiMn2O4 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2014.09.025 contributor: fullname: Silva – volume: 9 start-page: 1900161 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib5 article-title: Commercialization of lithium battery technologies for electric vehicles publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900161 contributor: fullname: Zeng – volume: 25 start-page: 109 year: 1992 ident: 10.1016/j.jallcom.2022.164856_bib27 article-title: A fundamental parameters approach to X-ray line-profile fitting publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889891010804 contributor: fullname: Cheary – volume: 177 start-page: 1585 year: 2004 ident: 10.1016/j.jallcom.2022.164856_bib26 article-title: Hydrothermal synthesis of nanostructured spinel lithium manganese oxide publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2003.12.009 contributor: fullname: Liu – volume: 196 start-page: 1488 year: 2011 ident: 10.1016/j.jallcom.2022.164856_bib42 article-title: Highly crystalline lithium–manganese spinel prepared by a hydrothermal process with co-solvent publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.08.083 contributor: fullname: Lee – volume: 10 start-page: 3852 year: 2010 ident: 10.1016/j.jallcom.2022.164856_bib19 article-title: Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries publication-title: Nano Lett. doi: 10.1021/nl101047f contributor: fullname: Lee – volume: 2 start-page: 3410 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib46 article-title: Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00217 contributor: fullname: Cunha – volume: 2 start-page: 1 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib4 article-title: Automotive Li-ion batteries: current status and future perspectives publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0022-z contributor: fullname: Ding – volume: 6 start-page: 14967 year: 2018 ident: 10.1016/j.jallcom.2022.164856_bib31 article-title: Understanding the loss of electrochemical activity of nanosized LiMn2O4 particles: a combined experimental and ab initio DFT study publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02703J contributor: fullname: Velasquez – volume: 112 start-page: 12051 year: 2008 ident: 10.1016/j.jallcom.2022.164856_bib21 article-title: LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium-ion battery publication-title: J. Phys. Chem. C doi: 10.1021/jp800915f contributor: fullname: Luo – volume: 6 start-page: 9893 year: 2018 ident: 10.1016/j.jallcom.2022.164856_bib38 article-title: Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01428K contributor: fullname: Xiao – volume: 2 start-page: 465 year: 2012 ident: 10.1016/j.jallcom.2022.164856_bib25 article-title: Photoluminescent properties of CoMoO4 nanorods quickly synthesized and annealed in a domestic microwave oven publication-title: Adv. Chem. Eng. Sci. doi: 10.4236/aces.2012.24057 contributor: fullname: Moura – volume: 21 start-page: 348 year: 2011 ident: 10.1016/j.jallcom.2022.164856_bib23 article-title: Single‐crystalline LiMn2O4 nanotubes synthesized via template‐engaged reaction as cathodes for high‐power lithium ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201001448 contributor: fullname: Ding – volume: 3 start-page: 1339 year: 2010 ident: 10.1016/j.jallcom.2022.164856_bib16 article-title: A new one-pot hydrothermal synthesis and electrochemical characterization of Li1+xMn2yO4 spinel structured compounds publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00059k contributor: fullname: Liddle – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib7 article-title: Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery publication-title: Nat. Commun. contributor: fullname: Liu – volume: 195 start-page: 3293 year: 2010 ident: 10.1016/j.jallcom.2022.164856_bib12 article-title: Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2− or F−) for use as cathode material in lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.12.002 contributor: fullname: Amaral – volume: 119 start-page: 11042 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib14 article-title: Nanowires for electrochemical energy storage publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00326 contributor: fullname: Zhou – start-page: 1 year: 2009 ident: 10.1016/j.jallcom.2022.164856_bib1 article-title: Materials aspects: an overview contributor: fullname: Manthiram – volume: 27 year: 2020 ident: 10.1016/j.jallcom.2022.164856_bib37 article-title: High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2019.101036 contributor: fullname: Cai – volume: 18 start-page: 252 year: 2015 ident: 10.1016/j.jallcom.2022.164856_bib2 article-title: Li-ion battery materials: present and future publication-title: Mater. Today doi: 10.1016/j.mattod.2014.10.040 contributor: fullname: Nitta – volume: 4 start-page: 741 year: 2010 ident: 10.1016/j.jallcom.2022.164856_bib15 article-title: Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries publication-title: ACS Nano doi: 10.1021/nn9012065 contributor: fullname: Okubo – volume: 130 start-page: 215 year: 2000 ident: 10.1016/j.jallcom.2022.164856_bib40 article-title: Characterization and electrochemical performance of the spinel LiMn2O4 prepared from ε-MnO2 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(00)00614-7 contributor: fullname: Ferracin – volume: 8 start-page: 3948 year: 2008 ident: 10.1016/j.jallcom.2022.164856_bib22 article-title: Spinel LiMn2O4 nanorods as lithium-ion battery cathodes publication-title: Nano Lett. doi: 10.1021/nl8024328 contributor: fullname: Kim – volume: 3 start-page: 4092 year: 2015 ident: 10.1016/j.jallcom.2022.164856_bib10 article-title: Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06264G contributor: fullname: Xu – volume: 86 start-page: 209 year: 2017 ident: 10.1016/j.jallcom.2022.164856_bib29 article-title: Alternative route for LiFePO4 synthesis: carbothermal reduction combined with microwave-assisted solid-state reaction publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.11.003 contributor: fullname: Smecellato – volume: 262 start-page: 483 year: 2014 ident: 10.1016/j.jallcom.2022.164856_bib45 article-title: Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.089 contributor: fullname: Jin – volume: 870 year: 2021 ident: 10.1016/j.jallcom.2022.164856_bib36 article-title: Atomic insights into surface orientations and oxygen vacancies in the LiMn2O4 cathode for lithium storage publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.159387 contributor: fullname: Xu – volume: 357 start-page: 144 year: 2017 ident: 10.1016/j.jallcom.2022.164856_bib32 article-title: A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.079 contributor: fullname: Jiang – volume: 45 start-page: 13198 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib34 article-title: Spinel LiMn2O4 cathode materials for lithium storage: the regulation of exposed facets and surface coating publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.04.002 contributor: fullname: Li – start-page: 315 year: 2009 ident: 10.1016/j.jallcom.2022.164856_bib11 article-title: Trends in cathode materials for rechargeable batteries contributor: fullname: Pasquali – volume: 31 start-page: 16 year: 2014 ident: 10.1016/j.jallcom.2022.164856_bib44 article-title: One-step hydrothermal synthesis of LiMn2O4 cathode materials for rechargeable lithium batteries publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2014.02.015 contributor: fullname: Lv – volume: 12 start-page: 6358 year: 2012 ident: 10.1016/j.jallcom.2022.164856_bib33 article-title: A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/nl303619s contributor: fullname: Kim – volume: 42 start-page: 3825 year: 2007 ident: 10.1016/j.jallcom.2022.164856_bib41 article-title: Effects of different particle sizes on electrochemical performance of spinel LiMn2O4 cathode materials publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0460-6 contributor: fullname: Yi – volume: 9 start-page: 3023 year: 1997 ident: 10.1016/j.jallcom.2022.164856_bib28 article-title: Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating publication-title: Chem. Mater. doi: 10.1021/cm970371n contributor: fullname: Ma – volume: 10 start-page: 4721 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib39 article-title: Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery publication-title: Nat. Commun. doi: 10.1038/s41467-019-12626-3 contributor: fullname: Liu – volume: 84 start-page: 826 year: 2015 ident: 10.1016/j.jallcom.2022.164856_bib6 article-title: Electrode nanomaterials for lithium-ion batteries publication-title: Russ. Chem. Rev. doi: 10.1070/RCR4497 contributor: fullname: Yaroslavtsev – volume: 142 start-page: 702 year: 1995 ident: 10.1016/j.jallcom.2022.164856_bib30 article-title: Kinetic properties of a Pt / lambda ‐ MnO2 electrode for the electroinsertion of lithium ions in an aqueous phase publication-title: J. Electrochem. Soc. doi: 10.1149/1.2048520 contributor: fullname: Kanoh – volume: 278 start-page: 574 year: 2015 ident: 10.1016/j.jallcom.2022.164856_bib35 article-title: Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.082 contributor: fullname: Cai – volume: 21 start-page: 3001 year: 2015 ident: 10.1016/j.jallcom.2022.164856_bib13 article-title: Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries publication-title: Ionics doi: 10.1007/s11581-015-1545-5 contributor: fullname: Dou – volume: 9 start-page: 1045 year: 2009 ident: 10.1016/j.jallcom.2022.164856_bib20 article-title: Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium-ion battery with high power density publication-title: Nano Lett. doi: 10.1021/nl803394v contributor: fullname: Hosono – volume: 517 start-page: 186 year: 2012 ident: 10.1016/j.jallcom.2022.164856_bib43 article-title: Synthesis and electrochemical properties of LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2011.12.079 contributor: fullname: Wang – volume: 14 start-page: 200 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib3 article-title: Bridging the academic and industrial metrics for next-generation practical batteries publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0371-8 contributor: fullname: Cao – volume: 9 start-page: 1900551 year: 2019 ident: 10.1016/j.jallcom.2022.164856_bib8 article-title: Oxygen release degradation in Li-Ion battery cathode materials: mechanisms and mitigating approaches publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900551 contributor: fullname: Sharifi-Asl |
SSID | ssj0001931 |
Score | 2.472009 |
Snippet | Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel... Based on a microwave-assisted hydrothermal reaction, a new route is proposed to prepare highly pure true nanoparticles (≤15 nm) of the single-phase spinel... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 164856 |
SubjectTerms | Crystal structure Discharge Electrochemical analysis Electrodes Emission analysis Energy storage material Energy-saving microwave-assisted hydrothermal route Genuinely nanostructured spinel LiMn2O4 High resolution electron microscopy Hydrothermal reactions Inductively coupled plasma Li-ion battery Lithium manganese oxides Low temperature Nanoparticles Reaction time Reagents Spinel |
Title | A new strategy to quickly synthetize true nanoparticles of the spinel LiMn2O4 by using a microwave-assisted hydrothermal route |
URI | https://dx.doi.org/10.1016/j.jallcom.2022.164856 https://www.proquest.com/docview/2676136099 |
Volume | 911 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lrRBwQBBAFAraAzfLJvFzcwwlCJB4iBSpN2vXXrcOqR1iOygc-O3M7HrjtAHxkLhYkWN7HX9fdr8Zz4OQp4MoHXmDFMuGisj2mRA2l15kJzwa8UEgAiFV64Rp9O6UvZj4k17P9MTr9v1XpGEfYI2Zs3-B9uaisAM-A-awBdRh-0e4j7FJuFXporNKWn5p8uTzfI3FCUDt1fk3adXLRloFL8BibgPjTKxAtQDZOQdT_W3hvvdRnDbKm8CtCwzd-8pX0ga9jeRIrfN1ulQZXBfYHqBs6stxRZ3Wxbf768rk0C2wldNGy0_z-Uq_dOJAVWl9yFfceu5siMXnsHTVpUnm5gVHQsJN5htXQpkkqjcxTNlLLD_Zef752VmuTp2WmH720dn2coCBjFEZQed620m_0T5MN7CZp_sCOlLP4CzybD_U_V_MFD_SE_rOcqE9FzNnBo8Bg4dwZAcMSBZcKc-tFvwpjofDuaCaXD8K98iBC_MbTK8H49eT0zcbCQCqWLVqNPfXpY49--lgvxJFV-SB0jwnt8mtFkA61hy5Q3qy6JPrx6ZHYJ_c3Cpn2SfXVDhxUt0l38cUWEgNC2ld0paFtGMhRRbSSyykZUbhW6pZSFsWUrGmioWU010W0m0WUsXCe-TTy8nJ8Su77fRhJ24Y1XaWpoNh5qcgqYajhHssCIQvwkSGPGAik6PElUHky2AgMjBwWZLhYanMhulQeDLy7pP9oizkA0Il2NRuIjM4iqGzgnkcNLcIPXeYYqL1IXHMo44XuqBLbCIdZ3GLTYzYxBqbQ8IMIHGrSrXajIFFvzv1yAAYt1NEFcMPBgkdgmX28N-v_Ijc6P4lR2QfAXtM9qq0edJy8QfYrMFo |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+strategy+to+quickly+synthetize+true+nanoparticles+of+the+spinel+LiMn2O4+by+using+a+microwave-assisted+hydrothermal+route&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Silva%2C+Daiane+Piva+B.&rft.au=Falqueto%2C+Juliana+Bruneli&rft.au=Bocchi%2C+Nerilso&rft.au=Biaggio%2C+Sonia+R.&rft.date=2022-08-05&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=911&rft_id=info:doi/10.1016%2Fj.jallcom.2022.164856&rft.externalDocID=S0925838822012476 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |