Approximate Recursive Multipliers Using Low Power Building Blocks
Approximate computing, frequently used in error tolerant applications, aims to achieve higher circuit performances by allowing the possibility of inaccurate results, rather than guaranteeing a correct outcome. Many contributions target the binary multiplier aiming to minimize the complexity of this...
Saved in:
Published in: | IEEE transactions on emerging topics in computing Vol. 10; no. 3; pp. 1315 - 1330 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-07-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Approximate computing, frequently used in error tolerant applications, aims to achieve higher circuit performances by allowing the possibility of inaccurate results, rather than guaranteeing a correct outcome. Many contributions target the binary multiplier aiming to minimize the complexity of this common yet power-hungry circuit. Approximate recursive multipliers are low-power designs that exploit approximate building blocks to scale up to their final size. In this paper, we present two novel 4×4 approximate multipliers obtained by carry manipulation. They are used to compose 8×8 designs with different error-performance trade-off. The final circuits exhibit a competitive behavior in terms of error while reducing the power dissipation when compared to state-of-the-art proposals. The proposed multipliers and state-of-the-art designs found in the literature, have been synthesized targeting a 14nm FinFET technology to determine the electrical characteristics. Compared with an exact 8×8 multiplier, the least dissipative design proposed in this paper reduces power consumption and silicon area by 46%, and minimum delay by 21%. It also consumes 14% less power than the least power-hungry recursive circuit found in the literature, while offering 81% higher accuracy. Ιmage processing applications and a convolutional neural network are shown to demonstrate the effectiveness of the proposed multipliers. |
---|---|
ISSN: | 2168-6750 2168-6750 |
DOI: | 10.1109/TETC.2022.3186240 |