Nonasymptotic Concentration Rates in Cooperative Learning-Part II: Inference on Compact Hypothesis Sets
In this article, we study the problem of cooperative inference, where a group of agents interacts over a network and seeks to estimate a joint parameter that best explains a set of network-wide observations using local information only. Agents do not know the network topology or the observations of...
Saved in:
Published in: | IEEE transactions on control of network systems Vol. 9; no. 3; pp. 1141 - 1153 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-09-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this article, we study the problem of cooperative inference, where a group of agents interacts over a network and seeks to estimate a joint parameter that best explains a set of network-wide observations using local information only. Agents do not know the network topology or the observations of other agents. We explore a variational interpretation of the Bayesian posterior and its relation to the stochastic mirror descent algorithm to prove that, under appropriate assumptions, the beliefs generated by the proposed algorithm concentrate around the true parameter exponentially fast. Part I of this two-part article series focuses on providing a variation approach to distributed Bayesian filtering. Moreover, we develop explicit and computationally efficient algorithms for observation models in the exponential families. In addition, we provide a novel nonasymptotic belief concentration analysis for distributed non-Bayesian learning on finite hypothesis sets. This new analysis method is the basis for the results presented in Part II. Part II provides the first nonasymptotic belief concentration rate analysis for distributed non-Bayesian learning over networks on compact hypothesis sets. In addition, we provide extensive numerical analysis for various distributed inference tasks on networks for observational models in the exponential family of distributions. |
---|---|
AbstractList | In this article, we study the problem of cooperative inference, where a group of agents interacts over a network and seeks to estimate a joint parameter that best explains a set of network-wide observations using local information only. Agents do not know the network topology or the observations of other agents. We explore a variational interpretation of the Bayesian posterior and its relation to the stochastic mirror descent algorithm to prove that, under appropriate assumptions, the beliefs generated by the proposed algorithm concentrate around the true parameter exponentially fast. Part I of this two-part article series focuses on providing a variation approach to distributed Bayesian filtering. Moreover, we develop explicit and computationally efficient algorithms for observation models in the exponential families. In addition, we provide a novel nonasymptotic belief concentration analysis for distributed non-Bayesian learning on finite hypothesis sets. This new analysis method is the basis for the results presented in Part II. Part II provides the first nonasymptotic belief concentration rate analysis for distributed non-Bayesian learning over networks on compact hypothesis sets. In addition, we provide extensive numerical analysis for various distributed inference tasks on networks for observational models in the exponential family of distributions. |
Author | Nedic, Angelia Olshevsky, Alexander Uribe, Cesar A. |
Author_xml | – sequence: 1 givenname: Cesar A. orcidid: 0000-0002-7080-9724 surname: Uribe fullname: Uribe, Cesar A. email: cauribe@rice.edu organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA – sequence: 2 givenname: Alexander orcidid: 0000-0002-5852-9789 surname: Olshevsky fullname: Olshevsky, Alexander email: alexols@bu.edu organization: Department of Electrical and Computer Engineering and the Division of Systems Engineering, Boston University, Boston, MA, USA – sequence: 3 givenname: Angelia orcidid: 0000-0001-9365-6321 surname: Nedic fullname: Nedic, Angelia email: angelia.nedich@asu.edu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA |
BookMark | eNpNkE9LAzEQxYNUsNZ-APES8Lw1f7bJxpsUtQuliq3nJRtn6xabrEkq9NubpUU8zczj92aYd4kG1llA6JqSCaVE3a1ny9WEEcYmnOZEqOIMDRln02xaSDL411-gcQhbQghl0zTzIdosndXhsOuii63BM2cN2Oh1bJ3FbzpCwK1NsuugF38AL0B729pN9qp9xGV5j0vbgIdkxK5Hd502Ec8PnYufENqAVxDDFTpv9FeA8amO0PvT43o2zxYvz-XsYZEZJkTMFFemBskoAVrQnHMhFBSmUOmt2mjR1ECMUVrUQuoPApIblRApqVaEa-AjdHvc23n3vYcQq63be5tOVkxSwXMlcpYoeqSMdyF4aKrOtzvtDxUlVR9p1Uda9ZFWp0iT5-boaQHgj1dCEiEK_guAcHRH |
CODEN | ITCNAY |
CitedBy_id | crossref_primary_10_1109_TIT_2023_3281647 crossref_primary_10_1109_TSP_2023_3347918 crossref_primary_10_1109_TCNS_2022_3140683 crossref_primary_10_1109_OJSP_2023_3261132 crossref_primary_10_1109_TSP_2024_3401418 |
Cites_doi | 10.1007/978-1-4419-8744-0 10.1016/j.tcs.2008.10.020 10.1002/rsa.20227 10.1109/TCNS.2022.3140683 10.1109/ChiCC.2015.7260745 10.1016/j.automatica.2004.01.014 10.1109/ACC.2016.7525057 10.1090/mbk/107 10.1016/j.jspi.2014.07.009 10.1109/CDC.2008.4739167 10.1109/CDC40024.2019.9029838 10.1016/j.geb.2012.06.001 10.2139/ssrn.2266979 10.1214/009053606000001172 10.1137/16m1076629 10.1109/TAC.2015.2506903 10.1214/ss/1177013825 10.1109/TAC.2014.2364096 10.1109/5.554208 10.23919/ACC.2019.8815195 10.1109/CDC.2010.5717946 10.1214/aos/1176349032 10.1007/s00440-013-0479-y 10.1016/B978-0-12-396500-4.00007-7 10.1109/TAC.2017.2690401 10.1239/aap/1427814580 10.1137/16M1073376 10.1016/S0899-8256(03)00144-1 10.1109/TIT.2018.2837050 10.1017/cbo9780511802256 10.1016/j.tcs.2007.02.065 10.1109/ACC.2015.7172262 10.1109/TAC.1984.1103385 10.1109/ACC.2015.7171178 10.1007/978-94-009-0619-8_4 10.1016/0047-259X(74)90005-0 10.1109/CDC.2016.7799315 10.1109/TAC.2003.812781 10.1109/TAC.1982.1102982 10.2307/2285509 10.1214/11-AOP647 10.1109/18.243470 10.1109/CDC.2015.7403087 10.1016/0362-546X(91)90072-9 10.1214/aos/1193342380 10.1109/ALLERTON.2016.7852262 10.1093/restud/rdr004 10.3982/ECTA14613 10.1109/CAMSAP.2015.7383850 10.1214/12-BA710 10.1109/EWSN.2005.1461994 10.1007/s11590-016-1071-z 10.23919/ACC.2004.1384706 10.1007/11533382_11 10.1007/s00373-012-1175-x 10.1109/TSP.2005.845429 10.1214/07-AOP358 10.1007/978-3-319-49259-9_28 10.1017/S0963548306007504 10.1007/BF00535479 10.1109/CDC.2013.6760868 10.1002/rsa.20539 10.1257/mic.2.1.112 10.1214/aos/1016218228 10.1007/BF01270385 10.1017/cbo9780511546594 10.1214/aos/1176343654 10.1109/TSP.2020.3006755 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCNS.2022.3140698 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2325-5870 2372-2533 |
EndPage | 1153 |
ExternalDocumentID | 10_1109_TCNS_2022_3140698 9670668 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: CPS 15-44953 funderid: 10.13039/501100008982 – fundername: Office of Naval Research grantid: N00014-17-1-2195 funderid: 10.13039/100000006 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AASAJ ABQJQ ABVLG AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE RIG AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c266t-939cbe7210e181433669e8c89406bca6fbe0cc9a6b67ad0e73c9669771a903ae3 |
IEDL.DBID | RIE |
ISSN | 2325-5870 |
IngestDate | Thu Oct 10 20:15:45 EDT 2024 Fri Aug 23 03:10:04 EDT 2024 Wed Jun 26 19:28:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c266t-939cbe7210e181433669e8c89406bca6fbe0cc9a6b67ad0e73c9669771a903ae3 |
ORCID | 0000-0002-7080-9724 0000-0002-5852-9789 0000-0001-9365-6321 |
OpenAccessLink | https://doi.org/10.1109/tcns.2022.3140698 |
PQID | 2716349642 |
PQPubID | 2040410 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2716349642 crossref_primary_10_1109_TCNS_2022_3140698 ieee_primary_9670668 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on control of network systems |
PublicationTitleAbbrev | TCNS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 S (ref44) 1997 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 Boyd (ref64) 2005 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 Qipeng (ref28) 2011 ref67 ref26 ref25 ref69 ref20 ref63 ref22 ref66 ref21 ref65 Aldous (ref59) 2002 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref54 doi: 10.1007/978-1-4419-8744-0 – ident: ref56 doi: 10.1016/j.tcs.2008.10.020 – ident: ref62 doi: 10.1002/rsa.20227 – ident: ref49 doi: 10.1109/TCNS.2022.3140683 – start-page: 240 volume-title: Proc. 7th Workshop Algorithm Eng. Exp./2nd Workshop Analytic Algorithmics Combinatorics year: 2005 ident: ref64 article-title: Mixing times for random walks on geometric random graphs contributor: fullname: Boyd – ident: ref29 doi: 10.1109/ChiCC.2015.7260745 – ident: ref15 doi: 10.1016/j.automatica.2004.01.014 – ident: ref35 doi: 10.1109/ACC.2016.7525057 – ident: ref55 doi: 10.1090/mbk/107 – ident: ref43 doi: 10.1016/j.jspi.2014.07.009 – ident: ref22 doi: 10.1109/CDC.2008.4739167 – ident: ref39 doi: 10.1109/CDC40024.2019.9029838 – ident: ref1 doi: 10.1016/j.geb.2012.06.001 – ident: ref19 doi: 10.2139/ssrn.2266979 – ident: ref47 doi: 10.1214/009053606000001172 – ident: ref25 doi: 10.1137/16m1076629 – ident: ref30 doi: 10.1109/TAC.2015.2506903 – ident: ref8 doi: 10.1214/ss/1177013825 – ident: ref24 doi: 10.1109/TAC.2014.2364096 – ident: ref14 doi: 10.1109/5.554208 – start-page: 4768 volume-title: Proc. 30th Chinese Control Conf. year: 2011 ident: ref28 article-title: Non-Bayesian learning in social networks with time-varying weights contributor: fullname: Qipeng – ident: ref38 doi: 10.23919/ACC.2019.8815195 – ident: ref2 doi: 10.1109/CDC.2010.5717946 – ident: ref11 doi: 10.1214/aos/1176349032 – ident: ref26 doi: 10.1007/s00440-013-0479-y – ident: ref41 doi: 10.1016/B978-0-12-396500-4.00007-7 – ident: ref33 doi: 10.1109/TAC.2017.2690401 – ident: ref69 doi: 10.1239/aap/1427814580 – ident: ref63 doi: 10.1137/16M1073376 – ident: ref16 doi: 10.1016/S0899-8256(03)00144-1 – ident: ref27 doi: 10.1109/TIT.2018.2837050 – ident: ref53 doi: 10.1017/cbo9780511802256 – ident: ref65 doi: 10.1016/j.tcs.2007.02.065 – ident: ref34 doi: 10.1109/ACC.2015.7172262 – ident: ref7 doi: 10.1109/TAC.1984.1103385 – ident: ref31 doi: 10.1109/ACC.2015.7171178 – ident: ref9 doi: 10.1007/978-94-009-0619-8_4 – ident: ref72 doi: 10.1016/0047-259X(74)90005-0 – ident: ref42 doi: 10.1109/CDC.2016.7799315 – volume-title: Proc. Varanashi Symp. Bayesian Inference year: 1997 ident: ref44 article-title: A review of consistency and convergence of posterior distribution contributor: fullname: S – ident: ref23 doi: 10.1109/TAC.2003.812781 – year: 2002 ident: ref59 article-title: Reversible Markov chains and random walks on graphs contributor: fullname: Aldous – ident: ref6 doi: 10.1109/TAC.1982.1102982 – ident: ref10 doi: 10.2307/2285509 – ident: ref67 doi: 10.1214/11-AOP647 – ident: ref12 doi: 10.1109/18.243470 – ident: ref32 doi: 10.1109/CDC.2015.7403087 – ident: ref73 doi: 10.1016/0362-546X(91)90072-9 – ident: ref52 doi: 10.1214/aos/1193342380 – ident: ref17 doi: 10.1109/ALLERTON.2016.7852262 – ident: ref18 doi: 10.1093/restud/rdr004 – ident: ref37 doi: 10.3982/ECTA14613 – ident: ref50 doi: 10.1109/CAMSAP.2015.7383850 – ident: ref48 doi: 10.1214/12-BA710 – ident: ref60 doi: 10.1109/EWSN.2005.1461994 – ident: ref51 doi: 10.1007/s11590-016-1071-z – ident: ref3 doi: 10.23919/ACC.2004.1384706 – ident: ref4 doi: 10.1007/11533382_11 – ident: ref57 doi: 10.1007/s00373-012-1175-x – ident: ref13 doi: 10.1109/TSP.2005.845429 – ident: ref68 doi: 10.1214/07-AOP358 – ident: ref71 doi: 10.1137/16m1076629 – ident: ref36 doi: 10.1007/978-3-319-49259-9_28 – ident: ref58 doi: 10.1017/S0963548306007504 – ident: ref45 doi: 10.1007/BF00535479 – ident: ref20 doi: 10.1109/CDC.2013.6760868 – ident: ref66 doi: 10.1002/rsa.20539 – ident: ref21 doi: 10.1257/mic.2.1.112 – ident: ref46 doi: 10.1214/aos/1016218228 – ident: ref61 doi: 10.1007/BF01270385 – ident: ref70 doi: 10.1017/cbo9780511546594 – ident: ref5 doi: 10.1214/aos/1176343654 – ident: ref40 doi: 10.1109/TSP.2020.3006755 |
SSID | ssj0001255873 |
Score | 2.3047533 |
Snippet | In this article, we study the problem of cooperative inference, where a group of agents interacts over a network and seeks to estimate a joint parameter that... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1141 |
SubjectTerms | Algorithms Bayes methods Bayesian analysis Computational modeling Cooperative learning Distributed inference estimation over networks Hypotheses Inference Machine learning Mathematical models Maximum likelihood estimation Network topologies Network topology non-Bayesian social learning nonasymptotic rates Numerical analysis Numerical models Parameters Random variables Task analysis |
Title | Nonasymptotic Concentration Rates in Cooperative Learning-Part II: Inference on Compact Hypothesis Sets |
URI | https://ieeexplore.ieee.org/document/9670668 https://www.proquest.com/docview/2716349642 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUoEwx8FUT5kgcmRMCJE8fHhgpVu1SIFoktcpyj6kASkXbg33NO0goEC1tkXazozvHds_2eGbvELAKJsfF8DYIAilGetn7ogUylgSwII-mIwsNJPH7VD49OJud6zYVBxPrwGd64x3ovPyvs0i2V3YKKKUPqDuvEoBuu1rf1lCjSsWw3Ln0Bt9P-eEIAMAgIlzp-p_6Reuq7VH5NwHVWGez-73v22E5bPfL7Jtz7bAPzA7b9TVOwy2Zjqq2rz_dyUZAR7ztaYt5q4_JnV1nyeU7NRYmN6DdvJVZn3hMNIz4a3fHRigXIC2daEyn58LN0bK1qXvEJLqpD9jJ4nPaHXnubgmcpCS_I-2BTJMAnkLJ6KKVSgNpqIN-k1qi3FIW1YFSqYpMJjKUlKETloW9ASIPyiG3mRY7HjANgJiJhI8AoNDYFFVIHBmNUOiJ80mNXK0cnZSOakdRgQ0DiopK4qCRtVHqs6zy7Nmyd2mNnq9Ak7W9VJQGhO6dwHwYnf791yrZc380hsDO2ufhY4jnrVNnyoh4uXy5kv1s |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB2V9AA9lM-qKRT2wKmqYeP1fnGr0kSJgAg1qcTNWq8HxKF2hJND_j2ztoOo4MLNWo3X1szaM29331uAU8ylFahd1DOWE0BxKjK-l0RWZMLZPE6kCETh0VRPbs3vQZDJ-fnMhUHEevMZnoXLei0_L_0yTJWdW6UpQ5oN-CgTrXTD1noxoyKl0aJduuxxez7rT6YEAeOYkGlgeJr_kk99msqrX3CdV4bb73ujHfjc1o_sVxPwXfiAxR58eqEquA_3E6quq9W_-aIkI9YPxMSiVcdlf0JtyR4Kai7n2Mh-s1Zk9T66oYHExuMLNl7zAFkZTGsqJRut5oGvVT1UbIqL6gD-Dgez_ihqz1OIPKXhBfnf-gwJ8nGkvJ4IoZRF440l32TeqbsMuffWqUxpl3PUwhMYogKx5ywXDsUX6BRlgV-BWYs5l9xLizJxPrMqoQ4calRGEkLpwo-1o9N5I5uR1nCD2zREJQ1RSduodGE_ePbZsHVqF47WoUnbD6tKY8J3QeM-ib-9fdcJbI5m11fp1XhyeQhb4TnNlrAj6Cwel_gdNqp8eVwPnSdpGcKs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonasymptotic+Concentration+Rates+in+Cooperative+Learning-Part+II%3A+Inference+on+Compact+Hypothesis+Sets&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Uribe%2C+Cesar+A.&rft.au=Olshevsky%2C+Alexander&rft.au=Nedic%2C+Angelia&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2325-5870&rft.volume=9&rft.issue=3&rft.spage=1141&rft.epage=1153&rft_id=info:doi/10.1109%2FTCNS.2022.3140698&rft.externalDocID=9670668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon |