Nonasymptotic Concentration Rates in Cooperative Learning-Part II: Inference on Compact Hypothesis Sets

In this article, we study the problem of cooperative inference, where a group of agents interacts over a network and seeks to estimate a joint parameter that best explains a set of network-wide observations using local information only. Agents do not know the network topology or the observations of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control of network systems Vol. 9; no. 3; pp. 1141 - 1153
Main Authors: Uribe, Cesar A., Olshevsky, Alexander, Nedic, Angelia
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-09-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we study the problem of cooperative inference, where a group of agents interacts over a network and seeks to estimate a joint parameter that best explains a set of network-wide observations using local information only. Agents do not know the network topology or the observations of other agents. We explore a variational interpretation of the Bayesian posterior and its relation to the stochastic mirror descent algorithm to prove that, under appropriate assumptions, the beliefs generated by the proposed algorithm concentrate around the true parameter exponentially fast. Part I of this two-part article series focuses on providing a variation approach to distributed Bayesian filtering. Moreover, we develop explicit and computationally efficient algorithms for observation models in the exponential families. In addition, we provide a novel nonasymptotic belief concentration analysis for distributed non-Bayesian learning on finite hypothesis sets. This new analysis method is the basis for the results presented in Part II. Part II provides the first nonasymptotic belief concentration rate analysis for distributed non-Bayesian learning over networks on compact hypothesis sets. In addition, we provide extensive numerical analysis for various distributed inference tasks on networks for observational models in the exponential family of distributions.
AbstractList In this article, we study the problem of cooperative inference, where a group of agents interacts over a network and seeks to estimate a joint parameter that best explains a set of network-wide observations using local information only. Agents do not know the network topology or the observations of other agents. We explore a variational interpretation of the Bayesian posterior and its relation to the stochastic mirror descent algorithm to prove that, under appropriate assumptions, the beliefs generated by the proposed algorithm concentrate around the true parameter exponentially fast. Part I of this two-part article series focuses on providing a variation approach to distributed Bayesian filtering. Moreover, we develop explicit and computationally efficient algorithms for observation models in the exponential families. In addition, we provide a novel nonasymptotic belief concentration analysis for distributed non-Bayesian learning on finite hypothesis sets. This new analysis method is the basis for the results presented in Part II. Part II provides the first nonasymptotic belief concentration rate analysis for distributed non-Bayesian learning over networks on compact hypothesis sets. In addition, we provide extensive numerical analysis for various distributed inference tasks on networks for observational models in the exponential family of distributions.
Author Nedic, Angelia
Olshevsky, Alexander
Uribe, Cesar A.
Author_xml – sequence: 1
  givenname: Cesar A.
  orcidid: 0000-0002-7080-9724
  surname: Uribe
  fullname: Uribe, Cesar A.
  email: cauribe@rice.edu
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
– sequence: 2
  givenname: Alexander
  orcidid: 0000-0002-5852-9789
  surname: Olshevsky
  fullname: Olshevsky, Alexander
  email: alexols@bu.edu
  organization: Department of Electrical and Computer Engineering and the Division of Systems Engineering, Boston University, Boston, MA, USA
– sequence: 3
  givenname: Angelia
  orcidid: 0000-0001-9365-6321
  surname: Nedic
  fullname: Nedic, Angelia
  email: angelia.nedich@asu.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
BookMark eNpNkE9LAzEQxYNUsNZ-APES8Lw1f7bJxpsUtQuliq3nJRtn6xabrEkq9NubpUU8zczj92aYd4kG1llA6JqSCaVE3a1ny9WEEcYmnOZEqOIMDRln02xaSDL411-gcQhbQghl0zTzIdosndXhsOuii63BM2cN2Oh1bJ3FbzpCwK1NsuugF38AL0B729pN9qp9xGV5j0vbgIdkxK5Hd502Ec8PnYufENqAVxDDFTpv9FeA8amO0PvT43o2zxYvz-XsYZEZJkTMFFemBskoAVrQnHMhFBSmUOmt2mjR1ECMUVrUQuoPApIblRApqVaEa-AjdHvc23n3vYcQq63be5tOVkxSwXMlcpYoeqSMdyF4aKrOtzvtDxUlVR9p1Uda9ZFWp0iT5-boaQHgj1dCEiEK_guAcHRH
CODEN ITCNAY
CitedBy_id crossref_primary_10_1109_TIT_2023_3281647
crossref_primary_10_1109_TSP_2023_3347918
crossref_primary_10_1109_TCNS_2022_3140683
crossref_primary_10_1109_OJSP_2023_3261132
crossref_primary_10_1109_TSP_2024_3401418
Cites_doi 10.1007/978-1-4419-8744-0
10.1016/j.tcs.2008.10.020
10.1002/rsa.20227
10.1109/TCNS.2022.3140683
10.1109/ChiCC.2015.7260745
10.1016/j.automatica.2004.01.014
10.1109/ACC.2016.7525057
10.1090/mbk/107
10.1016/j.jspi.2014.07.009
10.1109/CDC.2008.4739167
10.1109/CDC40024.2019.9029838
10.1016/j.geb.2012.06.001
10.2139/ssrn.2266979
10.1214/009053606000001172
10.1137/16m1076629
10.1109/TAC.2015.2506903
10.1214/ss/1177013825
10.1109/TAC.2014.2364096
10.1109/5.554208
10.23919/ACC.2019.8815195
10.1109/CDC.2010.5717946
10.1214/aos/1176349032
10.1007/s00440-013-0479-y
10.1016/B978-0-12-396500-4.00007-7
10.1109/TAC.2017.2690401
10.1239/aap/1427814580
10.1137/16M1073376
10.1016/S0899-8256(03)00144-1
10.1109/TIT.2018.2837050
10.1017/cbo9780511802256
10.1016/j.tcs.2007.02.065
10.1109/ACC.2015.7172262
10.1109/TAC.1984.1103385
10.1109/ACC.2015.7171178
10.1007/978-94-009-0619-8_4
10.1016/0047-259X(74)90005-0
10.1109/CDC.2016.7799315
10.1109/TAC.2003.812781
10.1109/TAC.1982.1102982
10.2307/2285509
10.1214/11-AOP647
10.1109/18.243470
10.1109/CDC.2015.7403087
10.1016/0362-546X(91)90072-9
10.1214/aos/1193342380
10.1109/ALLERTON.2016.7852262
10.1093/restud/rdr004
10.3982/ECTA14613
10.1109/CAMSAP.2015.7383850
10.1214/12-BA710
10.1109/EWSN.2005.1461994
10.1007/s11590-016-1071-z
10.23919/ACC.2004.1384706
10.1007/11533382_11
10.1007/s00373-012-1175-x
10.1109/TSP.2005.845429
10.1214/07-AOP358
10.1007/978-3-319-49259-9_28
10.1017/S0963548306007504
10.1007/BF00535479
10.1109/CDC.2013.6760868
10.1002/rsa.20539
10.1257/mic.2.1.112
10.1214/aos/1016218228
10.1007/BF01270385
10.1017/cbo9780511546594
10.1214/aos/1176343654
10.1109/TSP.2020.3006755
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCNS.2022.3140698
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2325-5870
2372-2533
EndPage 1153
ExternalDocumentID 10_1109_TCNS_2022_3140698
9670668
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CPS 15-44953
  funderid: 10.13039/501100008982
– fundername: Office of Naval Research
  grantid: N00014-17-1-2195
  funderid: 10.13039/100000006
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
RIG
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c266t-939cbe7210e181433669e8c89406bca6fbe0cc9a6b67ad0e73c9669771a903ae3
IEDL.DBID RIE
ISSN 2325-5870
IngestDate Thu Oct 10 20:15:45 EDT 2024
Fri Aug 23 03:10:04 EDT 2024
Wed Jun 26 19:28:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-939cbe7210e181433669e8c89406bca6fbe0cc9a6b67ad0e73c9669771a903ae3
ORCID 0000-0002-7080-9724
0000-0002-5852-9789
0000-0001-9365-6321
OpenAccessLink https://doi.org/10.1109/tcns.2022.3140698
PQID 2716349642
PQPubID 2040410
PageCount 13
ParticipantIDs proquest_journals_2716349642
crossref_primary_10_1109_TCNS_2022_3140698
ieee_primary_9670668
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on control of network systems
PublicationTitleAbbrev TCNS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
S (ref44) 1997
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
Boyd (ref64) 2005
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
Qipeng (ref28) 2011
ref67
ref26
ref25
ref69
ref20
ref63
ref22
ref66
ref21
ref65
Aldous (ref59) 2002
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref54
  doi: 10.1007/978-1-4419-8744-0
– ident: ref56
  doi: 10.1016/j.tcs.2008.10.020
– ident: ref62
  doi: 10.1002/rsa.20227
– ident: ref49
  doi: 10.1109/TCNS.2022.3140683
– start-page: 240
  volume-title: Proc. 7th Workshop Algorithm Eng. Exp./2nd Workshop Analytic Algorithmics Combinatorics
  year: 2005
  ident: ref64
  article-title: Mixing times for random walks on geometric random graphs
  contributor:
    fullname: Boyd
– ident: ref29
  doi: 10.1109/ChiCC.2015.7260745
– ident: ref15
  doi: 10.1016/j.automatica.2004.01.014
– ident: ref35
  doi: 10.1109/ACC.2016.7525057
– ident: ref55
  doi: 10.1090/mbk/107
– ident: ref43
  doi: 10.1016/j.jspi.2014.07.009
– ident: ref22
  doi: 10.1109/CDC.2008.4739167
– ident: ref39
  doi: 10.1109/CDC40024.2019.9029838
– ident: ref1
  doi: 10.1016/j.geb.2012.06.001
– ident: ref19
  doi: 10.2139/ssrn.2266979
– ident: ref47
  doi: 10.1214/009053606000001172
– ident: ref25
  doi: 10.1137/16m1076629
– ident: ref30
  doi: 10.1109/TAC.2015.2506903
– ident: ref8
  doi: 10.1214/ss/1177013825
– ident: ref24
  doi: 10.1109/TAC.2014.2364096
– ident: ref14
  doi: 10.1109/5.554208
– start-page: 4768
  volume-title: Proc. 30th Chinese Control Conf.
  year: 2011
  ident: ref28
  article-title: Non-Bayesian learning in social networks with time-varying weights
  contributor:
    fullname: Qipeng
– ident: ref38
  doi: 10.23919/ACC.2019.8815195
– ident: ref2
  doi: 10.1109/CDC.2010.5717946
– ident: ref11
  doi: 10.1214/aos/1176349032
– ident: ref26
  doi: 10.1007/s00440-013-0479-y
– ident: ref41
  doi: 10.1016/B978-0-12-396500-4.00007-7
– ident: ref33
  doi: 10.1109/TAC.2017.2690401
– ident: ref69
  doi: 10.1239/aap/1427814580
– ident: ref63
  doi: 10.1137/16M1073376
– ident: ref16
  doi: 10.1016/S0899-8256(03)00144-1
– ident: ref27
  doi: 10.1109/TIT.2018.2837050
– ident: ref53
  doi: 10.1017/cbo9780511802256
– ident: ref65
  doi: 10.1016/j.tcs.2007.02.065
– ident: ref34
  doi: 10.1109/ACC.2015.7172262
– ident: ref7
  doi: 10.1109/TAC.1984.1103385
– ident: ref31
  doi: 10.1109/ACC.2015.7171178
– ident: ref9
  doi: 10.1007/978-94-009-0619-8_4
– ident: ref72
  doi: 10.1016/0047-259X(74)90005-0
– ident: ref42
  doi: 10.1109/CDC.2016.7799315
– volume-title: Proc. Varanashi Symp. Bayesian Inference
  year: 1997
  ident: ref44
  article-title: A review of consistency and convergence of posterior distribution
  contributor:
    fullname: S
– ident: ref23
  doi: 10.1109/TAC.2003.812781
– year: 2002
  ident: ref59
  article-title: Reversible Markov chains and random walks on graphs
  contributor:
    fullname: Aldous
– ident: ref6
  doi: 10.1109/TAC.1982.1102982
– ident: ref10
  doi: 10.2307/2285509
– ident: ref67
  doi: 10.1214/11-AOP647
– ident: ref12
  doi: 10.1109/18.243470
– ident: ref32
  doi: 10.1109/CDC.2015.7403087
– ident: ref73
  doi: 10.1016/0362-546X(91)90072-9
– ident: ref52
  doi: 10.1214/aos/1193342380
– ident: ref17
  doi: 10.1109/ALLERTON.2016.7852262
– ident: ref18
  doi: 10.1093/restud/rdr004
– ident: ref37
  doi: 10.3982/ECTA14613
– ident: ref50
  doi: 10.1109/CAMSAP.2015.7383850
– ident: ref48
  doi: 10.1214/12-BA710
– ident: ref60
  doi: 10.1109/EWSN.2005.1461994
– ident: ref51
  doi: 10.1007/s11590-016-1071-z
– ident: ref3
  doi: 10.23919/ACC.2004.1384706
– ident: ref4
  doi: 10.1007/11533382_11
– ident: ref57
  doi: 10.1007/s00373-012-1175-x
– ident: ref13
  doi: 10.1109/TSP.2005.845429
– ident: ref68
  doi: 10.1214/07-AOP358
– ident: ref71
  doi: 10.1137/16m1076629
– ident: ref36
  doi: 10.1007/978-3-319-49259-9_28
– ident: ref58
  doi: 10.1017/S0963548306007504
– ident: ref45
  doi: 10.1007/BF00535479
– ident: ref20
  doi: 10.1109/CDC.2013.6760868
– ident: ref66
  doi: 10.1002/rsa.20539
– ident: ref21
  doi: 10.1257/mic.2.1.112
– ident: ref46
  doi: 10.1214/aos/1016218228
– ident: ref61
  doi: 10.1007/BF01270385
– ident: ref70
  doi: 10.1017/cbo9780511546594
– ident: ref5
  doi: 10.1214/aos/1176343654
– ident: ref40
  doi: 10.1109/TSP.2020.3006755
SSID ssj0001255873
Score 2.3047533
Snippet In this article, we study the problem of cooperative inference, where a group of agents interacts over a network and seeks to estimate a joint parameter that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1141
SubjectTerms Algorithms
Bayes methods
Bayesian analysis
Computational modeling
Cooperative learning
Distributed inference
estimation over networks
Hypotheses
Inference
Machine learning
Mathematical models
Maximum likelihood estimation
Network topologies
Network topology
non-Bayesian social learning
nonasymptotic rates
Numerical analysis
Numerical models
Parameters
Random variables
Task analysis
Title Nonasymptotic Concentration Rates in Cooperative Learning-Part II: Inference on Compact Hypothesis Sets
URI https://ieeexplore.ieee.org/document/9670668
https://www.proquest.com/docview/2716349642
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUoEwx8FUT5kgcmRMCJE8fHhgpVu1SIFoktcpyj6kASkXbg33NO0goEC1tkXazozvHds_2eGbvELAKJsfF8DYIAilGetn7ogUylgSwII-mIwsNJPH7VD49OJud6zYVBxPrwGd64x3ovPyvs0i2V3YKKKUPqDuvEoBuu1rf1lCjSsWw3Ln0Bt9P-eEIAMAgIlzp-p_6Reuq7VH5NwHVWGez-73v22E5bPfL7Jtz7bAPzA7b9TVOwy2Zjqq2rz_dyUZAR7ztaYt5q4_JnV1nyeU7NRYmN6DdvJVZn3hMNIz4a3fHRigXIC2daEyn58LN0bK1qXvEJLqpD9jJ4nPaHXnubgmcpCS_I-2BTJMAnkLJ6KKVSgNpqIN-k1qi3FIW1YFSqYpMJjKUlKETloW9ASIPyiG3mRY7HjANgJiJhI8AoNDYFFVIHBmNUOiJ80mNXK0cnZSOakdRgQ0DiopK4qCRtVHqs6zy7Nmyd2mNnq9Ak7W9VJQGhO6dwHwYnf791yrZc380hsDO2ufhY4jnrVNnyoh4uXy5kv1s
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB2V9AA9lM-qKRT2wKmqYeP1fnGr0kSJgAg1qcTNWq8HxKF2hJND_j2ztoOo4MLNWo3X1szaM29331uAU8ylFahd1DOWE0BxKjK-l0RWZMLZPE6kCETh0VRPbs3vQZDJ-fnMhUHEevMZnoXLei0_L_0yTJWdW6UpQ5oN-CgTrXTD1noxoyKl0aJduuxxez7rT6YEAeOYkGlgeJr_kk99msqrX3CdV4bb73ujHfjc1o_sVxPwXfiAxR58eqEquA_3E6quq9W_-aIkI9YPxMSiVcdlf0JtyR4Kai7n2Mh-s1Zk9T66oYHExuMLNl7zAFkZTGsqJRut5oGvVT1UbIqL6gD-Dgez_ihqz1OIPKXhBfnf-gwJ8nGkvJ4IoZRF440l32TeqbsMuffWqUxpl3PUwhMYogKx5ywXDsUX6BRlgV-BWYs5l9xLizJxPrMqoQ4calRGEkLpwo-1o9N5I5uR1nCD2zREJQ1RSduodGE_ePbZsHVqF47WoUnbD6tKY8J3QeM-ib-9fdcJbI5m11fp1XhyeQhb4TnNlrAj6Cwel_gdNqp8eVwPnSdpGcKs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonasymptotic+Concentration+Rates+in+Cooperative+Learning-Part+II%3A+Inference+on+Compact+Hypothesis+Sets&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Uribe%2C+Cesar+A.&rft.au=Olshevsky%2C+Alexander&rft.au=Nedic%2C+Angelia&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2325-5870&rft.volume=9&rft.issue=3&rft.spage=1141&rft.epage=1153&rft_id=info:doi/10.1109%2FTCNS.2022.3140698&rft.externalDocID=9670668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon