Sharp turning maneuvers with avian-inspired wing and tail morphing
Flight in dense environments, such as forests and cities requires drones to perform sharp turns. Although fixed-wing drones are aerodynamically and energetically more efficient than multicopters, they require a comparatively larger area to turn and thus are not suitable for fast flight in confined s...
Saved in:
Published in: | Communications engineering Vol. 1; no. 1 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
24-11-2022
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Flight in dense environments, such as forests and cities requires drones to perform sharp turns. Although fixed-wing drones are aerodynamically and energetically more efficient than multicopters, they require a comparatively larger area to turn and thus are not suitable for fast flight in confined spaces. To improve the turning performance of winged drones, here we propose to adopt an avian-inspired strategy of wing folding and pitching combined with a folding and deflecting tail. We experiment in wind tunnel and flight tests how such morphing capabilities increase the roll rate and decrease the turn radius - two measures used for assessing turn performance. Our results indicate that asymmetric wing pitching outperforms asymmetric folding when rolling during cruise flight. Furthermore, the ability to symmetrically morph the wing and tail increases the lift force, which notably decreases the turn radius. These findings pave the way for a new generation of drones that use bird-like morphing strategies combined with a conventional propeller-driven thrust to enable aerodynamic efficient and agile flight in open and confined spaces.
Fixed wing drone flight in dense (urban or forest) environments is challenging due to a need for a large area to turn. Inspired by the avian wing morphing, Enrico Ajanic and colleagues proposed and tested a drone with wings capable of folding and pitching, and a tail capable of folding and deflecting as a strategy to increase the roll moment, lift force, and reduce the turn radius. This finding enables agile drone flight within limited space. |
---|---|
AbstractList | Flight in dense environments, such as forests and cities requires drones to perform sharp turns. Although fixed-wing drones are aerodynamically and energetically more efficient than multicopters, they require a comparatively larger area to turn and thus are not suitable for fast flight in confined spaces. To improve the turning performance of winged drones, here we propose to adopt an avian-inspired strategy of wing folding and pitching combined with a folding and deflecting tail. We experiment in wind tunnel and flight tests how such morphing capabilities increase the roll rate and decrease the turn radius - two measures used for assessing turn performance. Our results indicate that asymmetric wing pitching outperforms asymmetric folding when rolling during cruise flight. Furthermore, the ability to symmetrically morph the wing and tail increases the lift force, which notably decreases the turn radius. These findings pave the way for a new generation of drones that use bird-like morphing strategies combined with a conventional propeller-driven thrust to enable aerodynamic efficient and agile flight in open and confined spaces. Flight in dense environments, such as forests and cities requires drones to perform sharp turns. Although fixed-wing drones are aerodynamically and energetically more efficient than multicopters, they require a comparatively larger area to turn and thus are not suitable for fast flight in confined spaces. To improve the turning performance of winged drones, here we propose to adopt an avian-inspired strategy of wing folding and pitching combined with a folding and deflecting tail. We experiment in wind tunnel and flight tests how such morphing capabilities increase the roll rate and decrease the turn radius - two measures used for assessing turn performance. Our results indicate that asymmetric wing pitching outperforms asymmetric folding when rolling during cruise flight. Furthermore, the ability to symmetrically morph the wing and tail increases the lift force, which notably decreases the turn radius. These findings pave the way for a new generation of drones that use bird-like morphing strategies combined with a conventional propeller-driven thrust to enable aerodynamic efficient and agile flight in open and confined spaces. Fixed wing drone flight in dense (urban or forest) environments is challenging due to a need for a large area to turn. Inspired by the avian wing morphing, Enrico Ajanic and colleagues proposed and tested a drone with wings capable of folding and pitching, and a tail capable of folding and deflecting as a strategy to increase the roll moment, lift force, and reduce the turn radius. This finding enables agile drone flight within limited space. Flight in dense environments, such as forests and cities requires drones to perform sharp turns. Although fixed-wing drones are aerodynamically and energetically more efficient than multicopters, they require a comparatively larger area to turn and thus are not suitable for fast flight in confined spaces. To improve the turning performance of winged drones, here we propose to adopt an avian-inspired strategy of wing folding and pitching combined with a folding and deflecting tail. We experiment in wind tunnel and flight tests how such morphing capabilities increase the roll rate and decrease the turn radius - two measures used for assessing turn performance. Our results indicate that asymmetric wing pitching outperforms asymmetric folding when rolling during cruise flight. Furthermore, the ability to symmetrically morph the wing and tail increases the lift force, which notably decreases the turn radius. These findings pave the way for a new generation of drones that use bird-like morphing strategies combined with a conventional propeller-driven thrust to enable aerodynamic efficient and agile flight in open and confined spaces.Fixed wing drone flight in dense (urban or forest) environments is challenging due to a need for a large area to turn. Inspired by the avian wing morphing, Enrico Ajanic and colleagues proposed and tested a drone with wings capable of folding and pitching, and a tail capable of folding and deflecting as a strategy to increase the roll moment, lift force, and reduce the turn radius. This finding enables agile drone flight within limited space. |
ArticleNumber | 34 |
Author | Ajanic, Enrico Feroskhan, Mir Wüest, Valentin Floreano, Dario |
Author_xml | – sequence: 1 givenname: Enrico orcidid: 0000-0001-6772-2700 surname: Ajanic fullname: Ajanic, Enrico organization: School of Engineering, Ecole Polytechnique Fédérale de Lausanne – sequence: 2 givenname: Mir orcidid: 0000-0002-2889-7222 surname: Feroskhan fullname: Feroskhan, Mir email: mir.feroskhan@ntu.edu.sg organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University – sequence: 3 givenname: Valentin surname: Wüest fullname: Wüest, Valentin organization: School of Engineering, Ecole Polytechnique Fédérale de Lausanne – sequence: 4 givenname: Dario orcidid: 0000-0002-5330-4863 surname: Floreano fullname: Floreano, Dario email: dario.floreano@epfl.ch organization: School of Engineering, Ecole Polytechnique Fédérale de Lausanne |
BookMark | eNp9kEtPAyEUhYnRxFr7B1xN4nqU5wAro42vpIkLdU0QmA5Ny4wwU-O_F53Gx8aQG8jlnMPlOwL7oQ0OgBMEzxAk4jxRijguIc4FIWEl3gMTzAkqCZFs_9f5EMxSWmUR5pJCISbg6rHRsSv6IQYflsVGBzdsXUzFm--bQm-9DqUPqfPR2dzLEh1s0Wu_LjZt7JrcOQYHtV4nN9vtU_B8c_00vysXD7f388tFaXBFcWkt54JTKK12iBpWUWoFqpG2Fa-xFJiyvAxnHFPIhcEEGiwZywYrDazIFFyMud3wsnHWuNBHvVZd9Bsd31Wrvfp7E3yjlu1WIShZBaHMCae7hNi-Di71atXmj-ehVUYkmUAVR1mFR5WJbUrR1d9PIKg-gasRuMrA1RdwhbOJjKaUxWHp4k_0P64PIPSEXw |
CitedBy_id | crossref_primary_10_1002_aisy_202300420 crossref_primary_10_1088_1748_3190_ad475a crossref_primary_10_3390_app132111814 crossref_primary_10_1242_jeb_245409 crossref_primary_10_1186_s40462_023_00438_6 |
Cites_doi | 10.1111/j.1600-048X.2011.05105.x 10.1038/nature05733 10.2514/1.4782 10.1034/j.1600-048X.2003.03006.x 10.1038/nature14542 10.2514/1.25356 10.1006/jtbi.1996.0217 10.1006/jtbi.2001.2387 10.1109/MRA.2016.2580593 10.1139/cjz-2015-0103 10.1016/j.ast.2017.09.034 10.1260/1756-8293.2.2.91 10.1093/icb/42.1.141 10.1126/scirobotics.aay1246 10.1126/scirobotics.abc2897 10.1002/9781119964032.ch2 10.2514/6.2007-6311 10.1098/rsfs.2016.0092 10.1093/acprof:oso/9780199299928.001.0001 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U 5PM |
DOI | 10.1038/s44172-022-00035-2 |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Academic Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Science Journals Engineering Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2731-3395 |
ExternalDocumentID | 10_1038_s44172_022_00035_2 |
GrantInformation_xml | – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 871479 funderid: https://doi.org/10.13039/100010661 – fundername: National Centre of Competence in Research Robotics (Swiss National Center of Competence in Research "Robotics") grantid: 51NF40_185543 funderid: https://doi.org/10.13039/501100011021 |
GroupedDBID | 0R~ ALMA_UNASSIGNED_HOLDINGS C6C GROUPED_DOAJ M~E NAO PGMZT RPM AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG ACSMW AFKRA AJTQC AZQEC BENPR BGLVJ CCPQU DWQXO EBLON GNUQQ HCIFZ L6V M2P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U SNYQT 5PM |
ID | FETCH-LOGICAL-c2642-dd7787409dae14c5644d81f1ad67f298245454c75724078c230c295509dd9c063 |
IEDL.DBID | RPM |
ISSN | 2731-3395 |
IngestDate | Tue Sep 17 21:28:43 EDT 2024 Thu Oct 10 17:21:18 EDT 2024 Thu Nov 21 21:48:10 EST 2024 Fri Oct 11 20:48:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2642-dd7787409dae14c5644d81f1ad67f298245454c75724078c230c295509dd9c063 |
ORCID | 0000-0002-2889-7222 0000-0002-5330-4863 0000-0001-6772-2700 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956009/ |
PQID | 2739581671 |
PQPubID | 5642962 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10956009 proquest_journals_2739581671 crossref_primary_10_1038_s44172_022_00035_2 springer_journals_10_1038_s44172_022_00035_2 |
PublicationCentury | 2000 |
PublicationDate | 11-24-2022 |
PublicationDateYYYYMMDD | 2022-11-24 |
PublicationDate_xml | – month: 11 year: 2022 text: 11-24-2022 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications engineering |
PublicationTitleAbbrev | Commun Eng |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V |
References | Thomas, Taylor (CR7) 2001; 212 Lentink (CR15) 2007; 446 Herzog (CR10) 1968 CR18 CR17 CR16 Mintchev, Floreano (CR4) 2016; 23 Gillies, Thomas, Taylor (CR13) 2011; 42 Greatwood, Waldock, Richardson (CR20) 2017; 71 CR11 Stanford, Abdulrahim, Lind, Ifju (CR22) 2007; 44 Alexander (CR5) 2002 Abdulrahim, Garcia, Lind (CR21) 2005; 42 CR2 Tobalske, Hedrick, Biewener (CR23) 2003; 34 Warrick (CR6) 2002; 42 CR3 Altshuler (CR12) 2015; 93 CR8 CR9 CR25 CR24 Grant, Abdulrahim, Lind (CR19) 2010; 2 Floreano, Wood (CR1) 2015; 521 Thomas (CR14) 1996; 183 M Abdulrahim (35_CR21) 2005; 42 S Mintchev (35_CR4) 2016; 23 D Floreano (35_CR1) 2015; 521 35_CR25 35_CR24 DR Warrick (35_CR6) 2002; 42 35_CR8 DL Altshuler (35_CR12) 2015; 93 AL Thomas (35_CR14) 1996; 183 35_CR9 DT Grant (35_CR19) 2010; 2 35_CR2 35_CR3 35_CR11 D Lentink (35_CR15) 2007; 446 B Stanford (35_CR22) 2007; 44 BW Tobalske (35_CR23) 2003; 34 ALR Thomas (35_CR7) 2001; 212 C Greatwood (35_CR20) 2017; 71 JA Gillies (35_CR13) 2011; 42 DE Alexander (35_CR5) 2002 35_CR16 K Herzog (35_CR10) 1968 35_CR18 35_CR17 |
References_xml | – volume: 42 start-page: 377 year: 2011 end-page: 386 ident: CR13 article-title: Soaring and manoeuvring flight of a steppe eagle Aquila nipalensis publication-title: J. Avian Biol. doi: 10.1111/j.1600-048X.2011.05105.x contributor: fullname: Taylor – ident: CR18 – volume: 446 start-page: 1082 year: 2007 end-page: 1085 ident: CR15 article-title: How swifts control their glide performance with morphing wings publication-title: Nature doi: 10.1038/nature05733 contributor: fullname: Lentink – year: 2002 ident: CR5 publication-title: Nature’s Fliers: Birds, Insects, and the Biomechanics of Flight contributor: fullname: Alexander – volume: 42 start-page: 131 year: 2005 end-page: 137 ident: CR21 article-title: Flight characteristics of shaping the membrane wing of a micro air vehicle publication-title: J. Aircraft doi: 10.2514/1.4782 contributor: fullname: Lind – ident: CR2 – ident: CR16 – volume: 34 start-page: 177 year: 2003 end-page: 184 ident: CR23 article-title: Wing kinematics of avian flight across speeds publication-title: J. Avian Biol. doi: 10.1034/j.1600-048X.2003.03006.x contributor: fullname: Biewener – volume: 521 start-page: 460 year: 2015 end-page: 466 ident: CR1 article-title: Science, technology and the future of small autonomous drones publication-title: Nature doi: 10.1038/nature14542 contributor: fullname: Wood – ident: CR8 – ident: CR25 – volume: 44 start-page: 741 year: 2007 end-page: 749 ident: CR22 article-title: Investigation of membrane actuation for roll control of a micro air vehicle publication-title: J. Aircraft doi: 10.2514/1.25356 contributor: fullname: Ifju – volume: 183 start-page: 237 year: 1996 end-page: 245 ident: CR14 article-title: The flight of birds that have wings and a tail: variable geometry expands the envelope of flight performance publication-title: J. Theor. Biol. doi: 10.1006/jtbi.1996.0217 contributor: fullname: Thomas – volume: 212 start-page: 399 year: 2001 end-page: 424 ident: CR7 article-title: Animal flight dynamics I. Stability in gliding flight publication-title: J. Theor. Biol. doi: 10.1006/jtbi.2001.2387 contributor: fullname: Taylor – ident: CR3 – year: 1968 ident: CR10 publication-title: Anatomie und Flugbiologie der Vogel contributor: fullname: Herzog – volume: 23 start-page: 42 year: 2016 end-page: 54 ident: CR4 article-title: Adaptive morphology: a design principle for multimodal and multifunctional robots publication-title: IEEE Robot. Automation Mag. doi: 10.1109/MRA.2016.2580593 contributor: fullname: Floreano – ident: CR17 – volume: 93 start-page: 961 year: 2015 end-page: 975 ident: CR12 article-title: The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors publication-title: Can. J. Zool. doi: 10.1139/cjz-2015-0103 contributor: fullname: Altshuler – ident: CR11 – ident: CR9 – volume: 71 start-page: 510 year: 2017 end-page: 520 ident: CR20 article-title: Perched landing manoeuvres with a variable sweep wing UAV publication-title: Aerospace Sci. Technol. doi: 10.1016/j.ast.2017.09.034 contributor: fullname: Richardson – volume: 2 start-page: 16 year: 2010 ident: CR19 article-title: Flight dynamics of a morphing aircraft utilizing independent multiple-joint wing sweep publication-title: Int. J. Micro Air Vehicles doi: 10.1260/1756-8293.2.2.91 contributor: fullname: Lind – ident: CR24 – volume: 42 start-page: 141 year: 2002 end-page: 148 ident: CR6 article-title: Bird maneuvering flight: blurred bodies, clear heads publication-title: Integrative Comparative Biol. doi: 10.1093/icb/42.1.141 contributor: fullname: Warrick – ident: 35_CR17 doi: 10.1126/scirobotics.aay1246 – volume-title: Anatomie und Flugbiologie der Vogel year: 1968 ident: 35_CR10 contributor: fullname: K Herzog – volume: 446 start-page: 1082 year: 2007 ident: 35_CR15 publication-title: Nature doi: 10.1038/nature05733 contributor: fullname: D Lentink – volume: 23 start-page: 42 year: 2016 ident: 35_CR4 publication-title: IEEE Robot. Automation Mag. doi: 10.1109/MRA.2016.2580593 contributor: fullname: S Mintchev – volume: 93 start-page: 961 year: 2015 ident: 35_CR12 publication-title: Can. J. Zool. doi: 10.1139/cjz-2015-0103 contributor: fullname: DL Altshuler – ident: 35_CR24 – volume: 42 start-page: 141 year: 2002 ident: 35_CR6 publication-title: Integrative Comparative Biol. doi: 10.1093/icb/42.1.141 contributor: fullname: DR Warrick – volume: 71 start-page: 510 year: 2017 ident: 35_CR20 publication-title: Aerospace Sci. Technol. doi: 10.1016/j.ast.2017.09.034 contributor: fullname: C Greatwood – ident: 35_CR18 doi: 10.1126/scirobotics.abc2897 – volume: 42 start-page: 131 year: 2005 ident: 35_CR21 publication-title: J. Aircraft doi: 10.2514/1.4782 contributor: fullname: M Abdulrahim – volume: 34 start-page: 177 year: 2003 ident: 35_CR23 publication-title: J. Avian Biol. doi: 10.1034/j.1600-048X.2003.03006.x contributor: fullname: BW Tobalske – volume: 2 start-page: 16 year: 2010 ident: 35_CR19 publication-title: Int. J. Micro Air Vehicles doi: 10.1260/1756-8293.2.2.91 contributor: fullname: DT Grant – ident: 35_CR3 – volume: 42 start-page: 377 year: 2011 ident: 35_CR13 publication-title: J. Avian Biol. doi: 10.1111/j.1600-048X.2011.05105.x contributor: fullname: JA Gillies – volume: 521 start-page: 460 year: 2015 ident: 35_CR1 publication-title: Nature doi: 10.1038/nature14542 contributor: fullname: D Floreano – ident: 35_CR9 doi: 10.1002/9781119964032.ch2 – ident: 35_CR11 doi: 10.2514/6.2007-6311 – ident: 35_CR16 doi: 10.1098/rsfs.2016.0092 – volume: 183 start-page: 237 year: 1996 ident: 35_CR14 publication-title: J. Theor. Biol. doi: 10.1006/jtbi.1996.0217 contributor: fullname: AL Thomas – volume: 212 start-page: 399 year: 2001 ident: 35_CR7 publication-title: J. Theor. Biol. doi: 10.1006/jtbi.2001.2387 contributor: fullname: ALR Thomas – volume: 44 start-page: 741 year: 2007 ident: 35_CR22 publication-title: J. Aircraft doi: 10.2514/1.25356 contributor: fullname: B Stanford – ident: 35_CR8 – ident: 35_CR25 doi: 10.1093/acprof:oso/9780199299928.001.0001 – ident: 35_CR2 – volume-title: Nature’s Fliers: Birds, Insects, and the Biomechanics of Flight year: 2002 ident: 35_CR5 contributor: fullname: DE Alexander |
SSID | ssj0002794088 |
Score | 2.2555153 |
Snippet | Flight in dense environments, such as forests and cities requires drones to perform sharp turns. Although fixed-wing drones are aerodynamically and... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | 631/61/2049 639/166/988 Asymmetry Banking Birds Confined spaces Drones Engineering Flight tests Folding Morphing Rotary wing aircraft Wind tunnel testing Wind tunnels |
Title | Sharp turning maneuvers with avian-inspired wing and tail morphing |
URI | https://link.springer.com/article/10.1038/s44172-022-00035-2 https://www.proquest.com/docview/2739581671 https://pubmed.ncbi.nlm.nih.gov/PMC10956009 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFCZuJy9Go8bqXDh4U9ZBf0CPOrfsojFRE2-EAY0zli3O-ff7YK1zS7x4ayih5Huv4Xu8jwdCF8oACejTkiQZL0lq4EllqSFlKUSS20Ik1u_pjh_5_Yu4HfoyOXlzFiaI9vVk2nPvVc9NX4O2cl7puNGJxQ93A-qr5wE5iFuoBeTwV4z-FlJpRQr_Tn1Cpp-IeOHv2WLEC9dD6oywzVVoTS23hZFb2dGw6Iz20V7NFvH1alYHaMe6Q3TjiyzPMawVfk8DV8rZpRdXYL-nitUXGJxMnc-gWwNt0EU5g71SFFczgBVajtDzaPg0GJP6KgSigbEwYgzn_vK8wihLU50BizGCllSZnJesECwFJpRqnnEfoQkNgYVmBUQfhTGFBhpyjNpu5uwJwnmhFGCkS6p1yi2Yw-RCTYDW6IzpMovQZQONnK8qXsiQqU6EXAEpAUgZgJQsQp0GPVl7_0Iyn_0TNOc0QmID0Z8RfVXrzTdg7FDdujFuhK4a8Ncj_z2R0_9_6QztMu8blBKWdlD782Npz1FrYZbdEKJ3g399A2NF1Bg |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhEJ74OOjFR9S4PvfgTWkL-4A9aq2p0TYm1sQbocDGGrttrPX3O9CutU289LYBwpL5IHzDfAwAF8ogCajRnEQJz0ls8EslsSF5LkSU2kxE1p3pNp95-1XcNlyanLS8C-NF-7rbqxQf_UrRe_PaymFfV0udWPWpVacuex6Sg-oqrOOCrdX-eOnvPpiWxbh6pndkapGojtxLW4w46boPnhE2vw_NyOWiNHIhPuq3nbvtZQe8A1tTohleT-p3YcUWe3Dj8jMPQ9xm3HFI2FeFHTtdRuiOY0P1jXOF9AoXfLcGy7CJKkzoRKZhf4CIYMk-vNw1OvUmmb6iQDSSHUaM4dy9u5cZZWmsEyRARtCcKpPynGWCxUiiYs0T7pw7odEn0SxDxyUzJtPIYA5grRgU9hDCNFMKjatzqnXMLSJpUqG6yIh0wnSeBHBZ2lQOJ8kypA9yR0JOEJCIgPQISBbASWl2OV04I8lc4FDQlNMAxBwUvz26hNjzNWh2nxi7NHMAVyVqs57_H8jR8n86h41mp_UoH-_bD8ewydwEo5Sw-ATWvj7H9hRWR2Z85qfnD1x96No |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH64gHhxQcW6zsGbptNklmS8abUoLggqeAsxC1bstFjr7_cl7Vhb8KK3IROS8L6EfC_vywvAgTJIAhrUkSTjjqQGv1SWGuKcEEluC5FYf6Z7cc9vn8TZuU-Tc1zdhQmiff3crpdvnXrZfgnayl5Hx5VOLL67aVKfPQ_JQdwzLp6FeVy0DfbDU38NAbUixRU0uifTSETc969tMeLl6yGARtjkXjQmmNPyyKkYadh6Wsv_GfQKLI0IZ3QyrLMKM7Zcg1Ofp7kX4Xbjj0WijirtwOszIn8sG6lPnDOkXfogvDVYhlVUaSIvNo06XUQGS9bhsXX-0Lwgo9cUiEbSw4gxnPv39wqjLE11hkTICOqoMjl3rBAsRTKVap5x7-QJjb6JZgU6MIUxhUYmswFzZbe0mxDlhVJoYO2o1im3iKjJhXpGZqQzpl1Wg8PKrrI3TJohQ7A7EXKIgkQUZEBBshrsVKaXowXUl8wHEAXNOa2BmIDju0WfGHvyD5o-JMiuTF2Dowq5ccu_D2Tr7z3tw8LdWUteX95ebcMi83OMUsLSHZj7eB_YXZjtm8FemKFf1B7rWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+turning+maneuvers+with+avian-inspired+wing+and+tail+morphing&rft.jtitle=Communications+engineering&rft.au=Ajanic%2C+Enrico&rft.au=Feroskhan%2C+Mir&rft.au=W%C3%BCest%2C+Valentin&rft.au=Floreano%2C+Dario&rft.date=2022-11-24&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2731-3395&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1038%2Fs44172-022-00035-2&rft.externalDocID=10_1038_s44172_022_00035_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-3395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-3395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-3395&client=summon |