Decreased collagen thermal stability as a response to the loss of structural integrity of thyroid cartilage
The amino acid composition, thermal behavior and birefringence properties of thyroid cartilage tissues have been studied. A collagen component in perichondrium consists of type-I and type-II collagens whose fibers form a highly ordered anisotropic structure with a birefringence of 4.75 × 10 −3 and a...
Saved in:
Published in: | Biophysics (Oxford) Vol. 53; no. 5; pp. 470 - 475 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
SP MAIK Nauka/Interperiodica
01-10-2008
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The amino acid composition, thermal behavior and birefringence properties of thyroid cartilage tissues have been studied. A collagen component in perichondrium consists of type-I and type-II collagens whose fibers form a highly ordered anisotropic structure with a birefringence of 4.75 × 10
−3
and a melting (denaturation) temperature of 65°C. The hyaline constituent, which is visualized as a quasi-anisotropic medium, contains of only type-II collagen, which does not denature in intact tissues at temperatures up to 100°C. However, in tissues whose proteoglycane subsystem is damaged by trypsin, the denaturation of collagen takes place at 60°C. In the integral perichondrium-hyaline system, the temperature of collagen denaturation in the perichondrium reaches 75°C, which indicates the immobilization of collagen in this tissue by the extracellular matrix of the hyaline constituent. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0006-3509 1555-6654 |
DOI: | 10.1134/S0006350908050266 |