Hybridizing graph‐based Gaussian mixture model with machine learning for classification of fraudulent transactions

Summary It has been observed that a good number of financial organizations often face a number of threats due to credit card fraud that affects consistently to the card holder as well as the organizations. This is one of the fastest‐growing frauds of its kind and the most emerging problems for the i...

Full description

Saved in:
Bibliographic Details
Published in:Computational intelligence Vol. 38; no. 6; pp. 2134 - 2160
Main Authors: Prusti, Debachudamani, Behera, Ranjan Kumar, Rath, Santanu Kumar
Format: Journal Article
Language:English
Published: Hoboken Blackwell Publishing Ltd 01-12-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary It has been observed that a good number of financial organizations often face a number of threats due to credit card fraud that affects consistently to the card holder as well as the organizations. This is one of the fastest‐growing frauds of its kind and the most emerging problems for the institutions to prevent. A number of researchers and analysts have shown interest to work on this area in order to identify such issues in an effective manner by applying various supervised as well as unsupervised learning approaches. In this assessment, three classification techniques such as support vector machine (SVM), k‐nearest neighbor (k‐NN), and extreme learning machine (ELM) that come under supervised learning category are applied to the BankSim data to categorize the normal and fraudulent class transactions in credit card. These algorithms are incorporated with the graph features extracted from the dataset by using a database tool Neo4j. The nodes of the graph represent the transactional data samples and the edges create relationships among the nodes to find the patterns of data using connected data analysis. k‐fold cross validation approach in Gaussian mixture model (GMM) has been applied for classification of the credit card transaction data in a single distribution. Further, a combined graph‐based Gaussian mixture model (CGB‐GMM) has been proposed to effectively detect the fraudulent instances in credit card transactions with the application of graph algorithms such as degree centrality, LPA, page rank, and so forth. Each of the learning algorithms are implemented with and without the application of graph algorithms and their performances are assessed empirically for analysis.
AbstractList It has been observed that a good number of financial organizations often face a number of threats due to credit card fraud that affects consistently to the card holder as well as the organizations. This is one of the fastest‐growing frauds of its kind and the most emerging problems for the institutions to prevent. A number of researchers and analysts have shown interest to work on this area in order to identify such issues in an effective manner by applying various supervised as well as unsupervised learning approaches. In this assessment, three classification techniques such as support vector machine (SVM), k ‐nearest neighbor ( k ‐NN), and extreme learning machine (ELM) that come under supervised learning category are applied to the BankSim data to categorize the normal and fraudulent class transactions in credit card. These algorithms are incorporated with the graph features extracted from the dataset by using a database tool Neo4j . The nodes of the graph represent the transactional data samples and the edges create relationships among the nodes to find the patterns of data using connected data analysis. k‐fold cross validation approach in Gaussian mixture model (GMM) has been applied for classification of the credit card transaction data in a single distribution. Further, a combined graph‐based Gaussian mixture model (CGB‐GMM) has been proposed to effectively detect the fraudulent instances in credit card transactions with the application of graph algorithms such as degree centrality, LPA, page rank, and so forth. Each of the learning algorithms are implemented with and without the application of graph algorithms and their performances are assessed empirically for analysis.
Summary It has been observed that a good number of financial organizations often face a number of threats due to credit card fraud that affects consistently to the card holder as well as the organizations. This is one of the fastest‐growing frauds of its kind and the most emerging problems for the institutions to prevent. A number of researchers and analysts have shown interest to work on this area in order to identify such issues in an effective manner by applying various supervised as well as unsupervised learning approaches. In this assessment, three classification techniques such as support vector machine (SVM), k‐nearest neighbor (k‐NN), and extreme learning machine (ELM) that come under supervised learning category are applied to the BankSim data to categorize the normal and fraudulent class transactions in credit card. These algorithms are incorporated with the graph features extracted from the dataset by using a database tool Neo4j. The nodes of the graph represent the transactional data samples and the edges create relationships among the nodes to find the patterns of data using connected data analysis. k‐fold cross validation approach in Gaussian mixture model (GMM) has been applied for classification of the credit card transaction data in a single distribution. Further, a combined graph‐based Gaussian mixture model (CGB‐GMM) has been proposed to effectively detect the fraudulent instances in credit card transactions with the application of graph algorithms such as degree centrality, LPA, page rank, and so forth. Each of the learning algorithms are implemented with and without the application of graph algorithms and their performances are assessed empirically for analysis.
It has been observed that a good number of financial organizations often face a number of threats due to credit card fraud that affects consistently to the card holder as well as the organizations. This is one of the fastest‐growing frauds of its kind and the most emerging problems for the institutions to prevent. A number of researchers and analysts have shown interest to work on this area in order to identify such issues in an effective manner by applying various supervised as well as unsupervised learning approaches. In this assessment, three classification techniques such as support vector machine (SVM), k‐nearest neighbor (k‐NN), and extreme learning machine (ELM) that come under supervised learning category are applied to the BankSim data to categorize the normal and fraudulent class transactions in credit card. These algorithms are incorporated with the graph features extracted from the dataset by using a database tool Neo4j. The nodes of the graph represent the transactional data samples and the edges create relationships among the nodes to find the patterns of data using connected data analysis. k‐fold cross validation approach in Gaussian mixture model (GMM) has been applied for classification of the credit card transaction data in a single distribution. Further, a combined graph‐based Gaussian mixture model (CGB‐GMM) has been proposed to effectively detect the fraudulent instances in credit card transactions with the application of graph algorithms such as degree centrality, LPA, page rank, and so forth. Each of the learning algorithms are implemented with and without the application of graph algorithms and their performances are assessed empirically for analysis.
Author Behera, Ranjan Kumar
Prusti, Debachudamani
Rath, Santanu Kumar
Author_xml – sequence: 1
  givenname: Debachudamani
  surname: Prusti
  fullname: Prusti, Debachudamani
  organization: National Institute of Technology Rourkela
– sequence: 2
  givenname: Ranjan Kumar
  surname: Behera
  fullname: Behera, Ranjan Kumar
  email: jranjanb.19@gmail.com
  organization: Birla Institute of Technology, Mesra, Ranchi
– sequence: 3
  givenname: Santanu Kumar
  surname: Rath
  fullname: Rath, Santanu Kumar
  organization: National Institute of Technology Rourkela
BookMark eNp9kL9OwzAQhy1UJNrCwhNYYkNKsfPHiUdUQVsJ0QVm6-LYravELnaiUiYegWfkSUgoM7fccN_vTvdN0Mg6qxC6pmRG-7qTztgZjTNGz9CYpiyPCpaSERqTIk6jnCfZBZqEsCOE0CQtxqhdHktvKvNh7AZvPOy3359fJQRV4QV0IRiwuDHvbecVblylanww7RY3ILfGKlwr8HaIauexrKEPaCOhNc5ip7H20FVdrWyLWw82gBwm4RKda6iDuvrrU_T6-PAyX0ZP68Vqfv8UyZgRGkkCVCpeciCcK8Y4qP7HRKeacqkylnFa8DSTOWVVHHOWAS-rWEMm45TJRCZTdHPau_furVOhFTvXedufFHGeJUXOU0J66vZESe9C8EqLvTcN-KOgRAxWxWBV_FrtYXqCD6ZWx39IMV-vnk-ZH-_2fxA
Cites_doi 10.1007/s13278-020-00636-9
10.1016/S0031-3203(03)00175-4
10.1109/IGARSS.2016.7729792
10.1007/s10489-020-01724-1
10.1016/0378-8733(78)90021-7
10.3390/app7111173
10.1007/978-1-4842-1227-1_1
10.1109/SIEDS.2017.7937699
10.1016/j.procs.2016.07.311
10.1016/j.dss.2012.01.016
10.1007/s10044-018-0705-4
10.1007/978-3-642-16567-2_7
10.1007/978-3-319-50901-3_57
10.1109/BigData.2018.8622120
10.1023/B:DAMI.0000023676.72185.7c
10.1109/TENCON.2019.8929372
10.1109/ICCCNT45670.2019.8944867
10.1109/HICSS.1994.323314
10.1007/978-3-319-23868-5_11
10.1007/s10044-019-00852-w
10.1007/s13369-020-04636-x
10.1016/j.eswa.2018.06.011
10.1007/s13369-021-05682-9
10.1016/j.neucom.2020.04.078
10.4249/scholarpedia.1883
10.4018/IJSESD.2021070105
10.1016/j.neucom.2005.12.126
10.1109/ICIRCA48905.2020.9182954
10.1007/978-3-030-37720-5_3
10.1016/j.procs.2018.05.199
10.1109/TSMC.1985.6313426
10.1109/TSMCB.2011.2168604
10.1109/18.661502
10.1103/PhysRevE.76.036106
10.1142/S0218001406004624
10.1007/978-3-030-32101-7_35
10.1145/502512.502570
10.1007/978-3-642-18178-8_9
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/coin.12561
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1467-8640
EndPage 2160
ExternalDocumentID 10_1111_coin_12561
COIN12561
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
UCJ
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~WT
AAMNL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2601-c0a1ce9b9a099e669ae1113f4f19ce565918945c716d22965a9bd2fa5c246c3c3
IEDL.DBID 33P
ISSN 0824-7935
IngestDate Thu Oct 10 18:42:40 EDT 2024
Fri Nov 22 00:15:26 EST 2024
Sat Aug 24 01:02:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2601-c0a1ce9b9a099e669ae1113f4f19ce565918945c716d22965a9bd2fa5c246c3c3
PQID 2753879400
PQPubID 34323
PageCount 27
ParticipantIDs proquest_journals_2753879400
crossref_primary_10_1111_coin_12561
wiley_primary_10_1111_coin_12561_COIN12561
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computational intelligence
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2006; 70
2021; 46
2017; 7
2017; 4
2019; 5
1985; 4
2010
2004; 8
2003; 36
1994
1978; 1
2016; 93
2020; 10
2007; 76
2018; 21
2011; 6
2012; 53
1998; 44
2020; 407
1999
2018; 9
2018; 110
2016; 7
2018; 132
2012; 2
2006; 20
2021; 12
2001
2020; 50
2020
2011; 42
2019
2018
2017
2016
2020; 23
2015
2020; 45
2014
2009; 4
2009; 2
2022; 104
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_51_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
Lu Q (e_1_2_11_12_1) 2011; 6
e_1_2_11_2_1
Lepoivre MR (e_1_2_11_36_1) 2016; 7
Rawat DS (e_1_2_11_19_1) 2017; 4
e_1_2_11_20_1
e_1_2_11_47_1
Anjaneyulu M (e_1_2_11_22_1) 2019; 5
e_1_2_11_24_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
Magomedov S (e_1_2_11_25_1) 2018; 9
e_1_2_11_38_1
Dheepa V (e_1_2_11_31_1) 2012; 2
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Kumari A (e_1_2_11_45_1) 2022; 104
Dheepa V (e_1_2_11_13_1) 2009; 2
Page L (e_1_2_11_48_1) 1999
e_1_2_11_21_1
Needham M (e_1_2_11_41_1) 2019
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 44
  start-page: 525
  issue: 2
  year: 1998
  end-page: 536
  article-title: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
  publication-title: IEEETrans Inf Theory
– volume: 46
  start-page: 1
  issue: 9
  year: 2021
  end-page: 20
  article-title: Credit card fraud detection technique by applying graph database model
  publication-title: Arab J Sci Eng Springer
– volume: 132
  start-page: 385
  year: 2018
  end-page: 395
  article-title: Predictive modelling for credit card fraud detection using data analytics
  publication-title: Procedia Comput Sci
– start-page: 112
  year: 2017
  end-page: 116
– start-page: 1
  year: 2019
  end-page: 6
– volume: 93
  start-page: 1070
  year: 2016
  end-page: 1076
  article-title: Spanning tree based community detection using min‐max modularity
  publication-title: Procedia Comput Sci
– start-page: 235
  year: 2001
  end-page: 255
– volume: 23
  start-page: 1457
  issue: 3
  year: 2020
  end-page: 1477
  article-title: Customs fraud detection
  publication-title: Pattern Anal Appl
– start-page: 1
  year: 2014
  end-page: 11
– volume: 9
  start-page: 33
  issue: 11
  year: 2018
  end-page: 38
  article-title: Anomaly detection with machine learning and graph databases in fraud management
  publication-title: Int J Adv Comput Sci Appl
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomput
– volume: 42
  start-page: 513
  issue: 2
  year: 2011
  end-page: 529
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– start-page: 99
  year: 2010
  end-page: 113
– start-page: 89
  year: 2010
  end-page: 102
– volume: 7
  start-page: 1173
  issue: 11
  year: 2017
  article-title: Large scale community detection using a small world model
  publication-title: Appl Sci
– volume: 12
  start-page: 66
  issue: 3
  year: 2021
  end-page: 78
  article-title: Structural mining for link prediction using various machine learning algorithms
  publication-title: Int J Soc Ecol Sustain Dev
– volume: 20
  start-page: 227
  issue: 2
  year: 2006
  end-page: 239
  article-title: A new binary support vector system for increasing detection rate of credit card fraud
  publication-title: Int J Pattern Recognit Artif Intell
– start-page: 3063
  year: 2016
  end-page: 3065
– volume: 6
  start-page: 62
  issue: 1
  year: 2011
  end-page: 68
  article-title: Research on credit card fraud detection model based on class weighted support vector machine
  publication-title: J Converg Inf Technol
– volume: 407
  start-page: 50
  year: 2020
  end-page: 62
  article-title: Optimizing weighted extreme learning machines for imbalanced classification and application to credit card fraud detection
  publication-title: Neurocomputing
– year: 2019
– volume: 76
  start-page: 1
  issue: 3
  year: 2007
  end-page: 11
  article-title: Near linear time algorithm to detect community structures in large‐scale networks
  publication-title: Phys Rev E
– start-page: 1208
  year: 2018
  end-page: 1217
– start-page: 151
  year: 2015
  end-page: 167
– volume: 5
  start-page: 2395
  issue: 3
  year: 2019
  end-page: 566X
  article-title: Financial fraud detection with anomaly feature detection on credit card
  publication-title: Int J Sci Res Eng
– volume: 53
  start-page: 226
  issue: 1
  year: 2012
  end-page: 233
  article-title: Preprocessing unbalanced data using support vector machine
  publication-title: Decis Support Syst
– start-page: 605
  year: 2019
  end-page: 623
– volume: 1
  start-page: 215
  issue: 3
  year: 1978
  end-page: 239
  article-title: Centrality in social networks conceptual clarification
  publication-title: Soc Netw
– volume: 2
  start-page: 391
  issue: 7
  year: 2012
  end-page: 397
  article-title: Behavior based credit card fraud detection using support vector machines
  publication-title: ICTACT J Soft Comput
– start-page: 32
  year: 2019
  end-page: 46
– volume: 104
  start-page: 1077
  issue: 5
  year: 2022
  end-page: 1098
  article-title: Prediction of link evolution using community detection in social network
  publication-title: Comput Secur
– volume: 45
  start-page: 10199
  issue: 12
  year: 2020
  end-page: 10222
  article-title: Map‐reduce‐based centrality detection in social networks: an algorithmic approach
  publication-title: Arab J Sci Eng
– start-page: 389
  year: 2001
  end-page: 394
– volume: 4
  start-page: 42
  issue: 5
  year: 2017
  end-page: 49
  article-title: Analysis of fraudulent in graph database for identification and prevention
  publication-title: Int J Innov Res Sci Technol
– start-page: 642
  year: 2020
  end-page: 646
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  article-title: Mr‐ibc: Mapreduce‐based incremental betweenness centrality in large‐scale complex networks
  publication-title: Soc Netw Anal Min
– year: 2010
– volume: 8
  start-page: 275
  issue: 3
  year: 2004
  end-page: 300
  article-title: On‐line unsupervised outlier detection using finite mixtures with discounting learning algorithms
  publication-title: Data Min Knowl Disc
– volume: 7
  start-page: 34
  issue: 1
  year: 2016
  end-page: 38
  article-title: Credit card fraud detection with unsupervised algorithms
  publication-title: J Adv Inf Technol
– volume: 50
  start-page: 3291
  year: 2020
  end-page: 3300
  article-title: Improving graph‐based label propagation algorithm with group partition for fraud detection
  publication-title: Appl Intell
– start-page: 721
  year: 2019
  end-page: 733
– start-page: 492
  year: 2019
  end-page: 497
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  article-title: K‐nearest neighbor
  publication-title: Scholarpedia
– start-page: 144
  year: 2014
  end-page: 152
– volume: 110
  start-page: 381
  year: 2018
  end-page: 392
  article-title: Cost‐sensitive payment card fraud detection based on dynamic random forest and k‐nearest neighbors
  publication-title: Expert Syst Appl
– start-page: 621
  year: 1994
  end-page: 630
– start-page: 1
  year: 2018
  end-page: 19
– volume: 21
  start-page: 931
  issue: 4
  year: 2018
  end-page: 939
  article-title: Binary ranking for ordinal class imbalance
  publication-title: Pattern Anal Appl
– volume: 36
  start-page: 2757
  issue: 12
  year: 2003
  end-page: 2767
  article-title: Constructing support vector machine ensemble
  publication-title: Pattern Recognit
– volume: 4
  start-page: 580
  year: 1985
  end-page: 585
  article-title: A fuzzy k‐nearest neighbor algorithm
  publication-title: IEEE Trans Syst Man Cybern
– volume: 2
  start-page: 126
  issue: 3
  year: 2009
  end-page: 128
  article-title: Analysis of credit card fraud detection methods
  publication-title: Int J Recent Trends Eng
– year: 1999
– ident: e_1_2_11_30_1
  doi: 10.1007/s13278-020-00636-9
– volume: 4
  start-page: 42
  issue: 5
  year: 2017
  ident: e_1_2_11_19_1
  article-title: Analysis of fraudulent in graph database for identification and prevention
  publication-title: Int J Innov Res Sci Technol
  contributor:
    fullname: Rawat DS
– ident: e_1_2_11_26_1
  doi: 10.1016/S0031-3203(03)00175-4
– volume: 2
  start-page: 126
  issue: 3
  year: 2009
  ident: e_1_2_11_13_1
  article-title: Analysis of credit card fraud detection methods
  publication-title: Int J Recent Trends Eng
  contributor:
    fullname: Dheepa V
– ident: e_1_2_11_40_1
  doi: 10.1109/IGARSS.2016.7729792
– ident: e_1_2_11_16_1
  doi: 10.1007/s10489-020-01724-1
– ident: e_1_2_11_44_1
  doi: 10.1016/0378-8733(78)90021-7
– ident: e_1_2_11_51_1
  doi: 10.3390/app7111173
– ident: e_1_2_11_23_1
  doi: 10.1007/978-1-4842-1227-1_1
– ident: e_1_2_11_3_1
  doi: 10.1109/SIEDS.2017.7937699
– ident: e_1_2_11_50_1
  doi: 10.1016/j.procs.2016.07.311
– ident: e_1_2_11_27_1
  doi: 10.1016/j.dss.2012.01.016
– ident: e_1_2_11_5_1
  doi: 10.1007/s10044-018-0705-4
– ident: e_1_2_11_42_1
  doi: 10.1007/978-3-642-16567-2_7
– ident: e_1_2_11_21_1
  doi: 10.1007/978-3-319-50901-3_57
– ident: e_1_2_11_38_1
  doi: 10.1109/BigData.2018.8622120
– ident: e_1_2_11_14_1
  doi: 10.1023/B:DAMI.0000023676.72185.7c
– volume: 2
  start-page: 391
  issue: 7
  year: 2012
  ident: e_1_2_11_31_1
  article-title: Behavior based credit card fraud detection using support vector machines
  publication-title: ICTACT J Soft Comput
  contributor:
    fullname: Dheepa V
– ident: e_1_2_11_34_1
  doi: 10.1109/TENCON.2019.8929372
– ident: e_1_2_11_6_1
  doi: 10.1109/ICCCNT45670.2019.8944867
– ident: e_1_2_11_8_1
  doi: 10.1109/HICSS.1994.323314
– ident: e_1_2_11_24_1
  doi: 10.1007/978-3-319-23868-5_11
– ident: e_1_2_11_4_1
  doi: 10.1007/s10044-019-00852-w
– volume-title: The PageRank Citation Ranking: Bringing Order to the Web
  year: 1999
  ident: e_1_2_11_48_1
  contributor:
    fullname: Page L
– volume-title: Graph Algorithms: Practical Examples in Apache Spark and Neo4j
  year: 2019
  ident: e_1_2_11_41_1
  contributor:
    fullname: Needham M
– ident: e_1_2_11_52_1
– ident: e_1_2_11_47_1
  doi: 10.1007/s13369-020-04636-x
– ident: e_1_2_11_2_1
– volume: 9
  start-page: 33
  issue: 11
  year: 2018
  ident: e_1_2_11_25_1
  article-title: Anomaly detection with machine learning and graph databases in fraud management
  publication-title: Int J Adv Comput Sci Appl
  contributor:
    fullname: Magomedov S
– ident: e_1_2_11_10_1
  doi: 10.1016/j.eswa.2018.06.011
– ident: e_1_2_11_15_1
  doi: 10.1007/s13369-021-05682-9
– ident: e_1_2_11_11_1
  doi: 10.1016/j.neucom.2020.04.078
– ident: e_1_2_11_28_1
  doi: 10.4249/scholarpedia.1883
– ident: e_1_2_11_46_1
  doi: 10.4018/IJSESD.2021070105
– ident: e_1_2_11_43_1
– volume: 104
  start-page: 1077
  issue: 5
  year: 2022
  ident: e_1_2_11_45_1
  article-title: Prediction of link evolution using community detection in social network
  publication-title: Comput Secur
  contributor:
    fullname: Kumari A
– ident: e_1_2_11_29_1
  doi: 10.1016/j.neucom.2005.12.126
– ident: e_1_2_11_18_1
  doi: 10.1109/ICIRCA48905.2020.9182954
– ident: e_1_2_11_20_1
  doi: 10.1007/978-3-030-37720-5_3
– ident: e_1_2_11_53_1
  doi: 10.1016/j.procs.2018.05.199
– ident: e_1_2_11_32_1
  doi: 10.1109/TSMC.1985.6313426
– volume: 7
  start-page: 34
  issue: 1
  year: 2016
  ident: e_1_2_11_36_1
  article-title: Credit card fraud detection with unsupervised algorithms
  publication-title: J Adv Inf Technol
  contributor:
    fullname: Lepoivre MR
– ident: e_1_2_11_33_1
  doi: 10.1109/TSMCB.2011.2168604
– ident: e_1_2_11_35_1
  doi: 10.1109/18.661502
– ident: e_1_2_11_7_1
– volume: 5
  start-page: 2395
  issue: 3
  year: 2019
  ident: e_1_2_11_22_1
  article-title: Financial fraud detection with anomaly feature detection on credit card
  publication-title: Int J Sci Res Eng
  contributor:
    fullname: Anjaneyulu M
– ident: e_1_2_11_49_1
  doi: 10.1103/PhysRevE.76.036106
– ident: e_1_2_11_9_1
  doi: 10.1142/S0218001406004624
– volume: 6
  start-page: 62
  issue: 1
  year: 2011
  ident: e_1_2_11_12_1
  article-title: Research on credit card fraud detection model based on class weighted support vector machine
  publication-title: J Converg Inf Technol
  contributor:
    fullname: Lu Q
– ident: e_1_2_11_17_1
  doi: 10.1007/978-3-030-32101-7_35
– ident: e_1_2_11_37_1
  doi: 10.1145/502512.502570
– ident: e_1_2_11_39_1
  doi: 10.1007/978-3-642-18178-8_9
SSID ssj0001348
Score 2.3519013
Snippet Summary It has been observed that a good number of financial organizations often face a number of threats due to credit card fraud that affects consistently to...
It has been observed that a good number of financial organizations often face a number of threats due to credit card fraud that affects consistently to the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2134
SubjectTerms Algorithms
Artificial neural networks
classification algorithm
Credit card fraud
Credit cards
Data analysis
Feature extraction
Fraud
Gaussian mixture model
graph feature
Graph theory
Machine learning
Neo4j$$ Neo4j $$ database
Nodes
Probabilistic models
Support vector machines
Title Hybridizing graph‐based Gaussian mixture model with machine learning for classification of fraudulent transactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12561
https://www.proquest.com/docview/2753879400
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60Jy_WJ1arLOhJiDSbzWPBi9RWvVRBBW9hsw_poak0Dagnf4K_0V_izjRp60UQbyFkQ9iZ2e-bzc58hJwwpoVvEu6FWWQ9rnniSSYDL7Yd6Xc0U6FE6YT7ePCUXPagTc55XQsz6w8x33CDyMD1GgJcZsVSkKvxMD9z8Iy5j0sTsH4juJsvw36A0lkO4rjnnDCsepPCMZ7F0J9otKCYy0QVkabf_N83bpD1imHSi5lLbJIVk2-RZq3eQKtg3ibT6zeo1hq-O_Ci2Lf66-MTQE3TK1kWUFxJR8NX-MNAUS-Hwp4tHeHpS0MruYln6lgvVcDB4dAR2pmOLbUTWeoSII1OF5LkxQ557PceutdepcHgKWg25ilnMmVEJqSjkiaKhDQgTm-59YUyjg0KPxE8VC7t0oyJKJQi08zKUDEeqUAFu6SRj3OzR2gkQzdcOspkLI-dV0jf6lgJvBto3SLHtS3Sl1mrjbROUWAiU5zIFmnXZkqrcCtS5pKuJAaN9xY5RYP88oa0e3szwKv9vzx8QNYYlD7gUZY2aUwnpTkkq4Uuj9DxvgGiX94-
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60HvRifWK16oKehEiz2Tz24EFqa4u1ClbwFrb7kB6aStOAevIn-Bv9Je5sk7ZeBPEWQjaEnZmdbyYz8yF0Sohkroqo4_cD7VBJI4cT7jmhrnG3JonwuaVOeAi7T9FVA8bkXBS9MNP5ELOEG1iGPa_BwCEhvWDlYjRIzo1_huBnhQZGE6GDw7ufHcSuZ8mzjJOjjlFDP59OCoU887U__dEcZC5CVetrmuV_fuUGWs9BJr6casUmWlLJFioXBA44t-dtNGm9QcPW4N34L2xHV399fIJfk_iaZyn0V-Lh4BV-MmBLmYMhbYuHtgBT4Zxx4hkb4IsFwHCoO7KixiON9ZhnMgOvhidzVvJ0Bz02G716y8lpGBwB88YcYaQmFOszbtCkCgLGFfDTa6pdJpQBhMyNGPWFibwkISzwOetLorkvCA2EJ7xdVEpGidpDOOC-Wc4NalKahkYxuKtlKJi960lZQSeFMOKX6bSNuIhSYCNju5EVVC3kFOcWl8bExF1RCDTvFXRmJfLLG-L6Xbtrr_b_8vAxWm31bjtxp929OUBrBDohbGVLFZUm40wdouVUZkdWC78BqHriZg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60gnixPrFadUFPQqTZbB4LXqQPW5RaUMFb2O5DemhamgbUkz_B3-gvcWebtPUiiLcQsiHszOx8s9n5PoTOCZHMVRF1_H6gHSpp5HDCPSfUNe7WJBE-t9IJD2H3OWo0gSbnquiFmfFDzDfcIDLseg0BPpZ6KcjFaJBcmvQMtc8aNTgcmPM9rzdfh13PameZHEcd44V-Tk4K53gWY3-mowXGXEaqNtW0yv_7yC20mUNMfD3ziW20opIdVC7kG3Aezbto2n6Ddq3Bu8le2BJXf318QlaT-IZnKXRX4uHgFX4xYCuYg2HTFg_t8UuFc72JF2xgLxYAwuHUkTU0HmmsJzyTGeQ0PF1okqd76KnVfKy3nVyEwRHANuYIYzOhWJ9xgyVVEDCuQJ1eU-0yoQwcZG7EqC9M3SUJYYHPWV8SzX1BaCA84e2jUjJK1AHCAffNcG4wk9I0NG7BXS1DwexdT8oKOitsEY9nXBtxUaPARMZ2IiuoWpgpzuMtjYmpuqIQRN4r6MIa5Jc3xPX7TtdeHf7l4VO03mu04rtO9_YIbRBog7DHWqqoNJ1k6hitpjI7sT74DQyF4Qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridizing+graph%E2%80%90based+Gaussian+mixture+model+with+machine+learning+for+classification+of+fraudulent+transactions&rft.jtitle=Computational+intelligence&rft.au=Prusti%2C+Debachudamani&rft.au=Behera%2C+Ranjan+Kumar&rft.au=Rath%2C+Santanu+Kumar&rft.date=2022-12-01&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=38&rft.issue=6&rft.spage=2134&rft.epage=2160&rft_id=info:doi/10.1111%2Fcoin.12561&rft.externalDBID=10.1111%252Fcoin.12561&rft.externalDocID=COIN12561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon