Texture analysis of high-resolution dedicated breast 18 F-FDG PET images correlates with immunohistochemical factors and subtype of breast cancer
This study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast tumors. One hundred and thirty-nine breast tumors from 127 consecutive patients were included in this analysis. All of them underwent a F-FDG PET s...
Saved in:
Published in: | European journal of nuclear medicine and molecular imaging Vol. 45; no. 2; pp. 196 - 206 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Springer Nature B.V
01-02-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast tumors.
One hundred and thirty-nine breast tumors from 127 consecutive patients were included in this analysis. All of them underwent a
F-FDG PET scan before treatment. Well-known PET quantitative parameters such as SUV
, SUV
, metabolically active tumor volume (MATV) and total lesion glycolysis (TLG) were extracted. Together with these parameters, local, regional, and global heterogeneity descriptors, which included five textural features (TF), were computed. Immunohistochemical classification of breast cancer considered five subtypes: luminal A like (LA), luminal B like/HER2 - (LB -), luminal B like/HER2+ (LB+), HER2-positive-non-luminal (HER2pnl), and triple negative (TN). Associations between PET features and tumor characteristics were assessed using non-parametric hypothesis tests.
Along with well-established associations, new correlations were found. HER2-positive tumors had significantly higher uptake (p < 0.001, AUCs > 0.70) and presented different global and regional heterogeneity (p = 0.002, p = 0.016, respectively, AUCs < 0.70). Nine out of ten analyzed features were significantly associated with immunohistochemical subtype. Uptake was lower for LA tumors (p < 0.001) with AUCs ranging from 0.71 to 0.88 for each subgroup comparison. Heterogeneity metrics were significantly associated when comparing LA and LB - (p < 0.01), being regional heterogeneity metrics more discriminative than any other parameter (AUC = 0.80 compared to AUC = 0.71 for SUV). LB+ and HER2pnl tumors also showed more regional heterogeneity than LA tumors (AUCs = 0.79 and 0.84, respectively). After comparison with whole-body PET studies, we observed an overall improvement in the classification ability of both non-heterogeneity metrics and textural features.
PET parameters extracted from high-resolution dedicated breast PET images showed new and stronger correlations with immunohistochemical factors and immunohistochemical subtype of breast cancer compared to whole-body PET. |
---|---|
AbstractList | This study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast tumors.
One hundred and thirty-nine breast tumors from 127 consecutive patients were included in this analysis. All of them underwent a
F-FDG PET scan before treatment. Well-known PET quantitative parameters such as SUV
, SUV
, metabolically active tumor volume (MATV) and total lesion glycolysis (TLG) were extracted. Together with these parameters, local, regional, and global heterogeneity descriptors, which included five textural features (TF), were computed. Immunohistochemical classification of breast cancer considered five subtypes: luminal A like (LA), luminal B like/HER2 - (LB -), luminal B like/HER2+ (LB+), HER2-positive-non-luminal (HER2pnl), and triple negative (TN). Associations between PET features and tumor characteristics were assessed using non-parametric hypothesis tests.
Along with well-established associations, new correlations were found. HER2-positive tumors had significantly higher uptake (p < 0.001, AUCs > 0.70) and presented different global and regional heterogeneity (p = 0.002, p = 0.016, respectively, AUCs < 0.70). Nine out of ten analyzed features were significantly associated with immunohistochemical subtype. Uptake was lower for LA tumors (p < 0.001) with AUCs ranging from 0.71 to 0.88 for each subgroup comparison. Heterogeneity metrics were significantly associated when comparing LA and LB - (p < 0.01), being regional heterogeneity metrics more discriminative than any other parameter (AUC = 0.80 compared to AUC = 0.71 for SUV). LB+ and HER2pnl tumors also showed more regional heterogeneity than LA tumors (AUCs = 0.79 and 0.84, respectively). After comparison with whole-body PET studies, we observed an overall improvement in the classification ability of both non-heterogeneity metrics and textural features.
PET parameters extracted from high-resolution dedicated breast PET images showed new and stronger correlations with immunohistochemical factors and immunohistochemical subtype of breast cancer compared to whole-body PET. PurposeThis study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast tumors.MethodsOne hundred and thirty-nine breast tumors from 127 consecutive patients were included in this analysis. All of them underwent a 18F-FDG PET scan before treatment. Well-known PET quantitative parameters such as SUVmax, SUVmean, metabolically active tumor volume (MATV) and total lesion glycolysis (TLG) were extracted. Together with these parameters, local, regional, and global heterogeneity descriptors, which included five textural features (TF), were computed. Immunohistochemical classification of breast cancer considered five subtypes: luminal A like (LA), luminal B like/HER2 − (LB −), luminal B like/HER2+ (LB+), HER2-positive-non-luminal (HER2pnl), and triple negative (TN). Associations between PET features and tumor characteristics were assessed using non-parametric hypothesis tests.ResultsAlong with well-established associations, new correlations were found. HER2-positive tumors had significantly higher uptake (p < 0.001, AUCs > 0.70) and presented different global and regional heterogeneity (p = 0.002, p = 0.016, respectively, AUCs < 0.70). Nine out of ten analyzed features were significantly associated with immunohistochemical subtype. Uptake was lower for LA tumors (p < 0.001) with AUCs ranging from 0.71 to 0.88 for each subgroup comparison. Heterogeneity metrics were significantly associated when comparing LA and LB − (p < 0.01), being regional heterogeneity metrics more discriminative than any other parameter (AUC = 0.80 compared to AUC = 0.71 for SUV). LB+ and HER2pnl tumors also showed more regional heterogeneity than LA tumors (AUCs = 0.79 and 0.84, respectively). After comparison with whole-body PET studies, we observed an overall improvement in the classification ability of both non-heterogeneity metrics and textural features.ConclusionsPET parameters extracted from high-resolution dedicated breast PET images showed new and stronger correlations with immunohistochemical factors and immunohistochemical subtype of breast cancer compared to whole-body PET. PURPOSEThis study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast tumors.METHODSOne hundred and thirty-nine breast tumors from 127 consecutive patients were included in this analysis. All of them underwent a 18F-FDG PET scan before treatment. Well-known PET quantitative parameters such as SUV m a x , SUV m e a n , metabolically active tumor volume (MATV) and total lesion glycolysis (TLG) were extracted. Together with these parameters, local, regional, and global heterogeneity descriptors, which included five textural features (TF), were computed. Immunohistochemical classification of breast cancer considered five subtypes: luminal A like (LA), luminal B like/HER2 - (LB -), luminal B like/HER2+ (LB+), HER2-positive-non-luminal (HER2pnl), and triple negative (TN). Associations between PET features and tumor characteristics were assessed using non-parametric hypothesis tests.RESULTSAlong with well-established associations, new correlations were found. HER2-positive tumors had significantly higher uptake (p < 0.001, AUCs > 0.70) and presented different global and regional heterogeneity (p = 0.002, p = 0.016, respectively, AUCs < 0.70). Nine out of ten analyzed features were significantly associated with immunohistochemical subtype. Uptake was lower for LA tumors (p < 0.001) with AUCs ranging from 0.71 to 0.88 for each subgroup comparison. Heterogeneity metrics were significantly associated when comparing LA and LB - (p < 0.01), being regional heterogeneity metrics more discriminative than any other parameter (AUC = 0.80 compared to AUC = 0.71 for SUV). LB+ and HER2pnl tumors also showed more regional heterogeneity than LA tumors (AUCs = 0.79 and 0.84, respectively). After comparison with whole-body PET studies, we observed an overall improvement in the classification ability of both non-heterogeneity metrics and textural features.CONCLUSIONSPET parameters extracted from high-resolution dedicated breast PET images showed new and stronger correlations with immunohistochemical factors and immunohistochemical subtype of breast cancer compared to whole-body PET. |
Author | Domínguez-Prado, Inés Pardo-Montero, Juan Fernández-Ferreiro, Anxo Argibay, Sonia Moscoso, Alexis Herranz, Míchel Albaina, Luis Aguiar, Pablo Ruibal, Álvaro Silva-Rodríguez, Jesús |
Author_xml | – sequence: 1 givenname: Alexis surname: Moscoso fullname: Moscoso, Alexis organization: Nuclear Medicine Department and Molecular Imaging Group, Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain – sequence: 2 givenname: Álvaro surname: Ruibal fullname: Ruibal, Álvaro organization: Fundación Tejerina, Madrid, 28003, Spain – sequence: 3 givenname: Inés surname: Domínguez-Prado fullname: Domínguez-Prado, Inés organization: Nuclear Medicine Department and Molecular Imaging Group, Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain – sequence: 4 givenname: Anxo surname: Fernández-Ferreiro fullname: Fernández-Ferreiro, Anxo organization: Pharmacy Department and Pharmacology group, Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain – sequence: 5 givenname: Míchel surname: Herranz fullname: Herranz, Míchel organization: Nuclear Medicine Department and Molecular Imaging Group, Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain – sequence: 6 givenname: Luis surname: Albaina fullname: Albaina, Luis organization: Department of General Surgery, University Hospital A Coruña (SERGAS), A Coruña, Spain – sequence: 7 givenname: Sonia surname: Argibay fullname: Argibay, Sonia organization: Nuclear Medicine Department and Molecular Imaging Group, Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain – sequence: 8 givenname: Jesús surname: Silva-Rodríguez fullname: Silva-Rodríguez, Jesús organization: Nuclear Medicine Department and Molecular Imaging Group, Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain – sequence: 9 givenname: Juan surname: Pardo-Montero fullname: Pardo-Montero, Juan email: juan.pardo.montero@sergas.es, juan.pardo.montero@sergas.es organization: Medical Physics Department, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Travesía Choupana s/n, Santiago de Compostela, 15706, Spain. juan.pardo.montero@sergas.es – sequence: 10 givenname: Pablo orcidid: 0000-0002-7322-2195 surname: Aguiar fullname: Aguiar, Pablo email: pablo.aguiar.fernandez@sergas.es, pablo.aguiar.fernandez@sergas.es organization: Molecular Imaging Group, Department of Radiology, Faculty of Medicine, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, 15782, Spain. pablo.aguiar.fernandez@sergas.es |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28936601$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc9u3CAQh1GVqvnXB-ilQuqlF1rG2BiOVZJNKkVqD5szYmEcO7LNFrCSfYy-cVjtNodeAKFvfqOZ75yczGFGQj4B_wact98T51WjGYeWCSU4g3fkDCRo1nKlT97eLT8l5yk9cQ6qUvoDOS2nkJLDGfm7xpe8RKR2tuMuDYmGjvbDY88ipjAueQgz9egHZzN6uoloU6ag6Iqtrm_p75s1HSb7iIm6ECOOhUr0ech9-Z6WOfRDysH1OJWAkXbW5RBTaeZpWjZ5t8V9v2Oqs7PDeEned3ZM-PF4X5CH1c366o7d_7r9efXjnrkyc2YSW5RSNtaKpgIvvZRgsQbhG-UbrXXTSWWFdZ4rLmqPmw4tOtBdq4WvtLggXw-52xj-LJiymYbkcBztjGFJBnRdybZR0Bb0y3_oU1hiWdieUiBrXYMsFBwoF0NKETuzjWU3cWeAm70vc_Blii-z92Wg1Hw-Ji-bCf1bxT9B4hV5UJPS |
CitedBy_id | crossref_primary_10_1186_s13550_023_01053_7 crossref_primary_10_1016_j_cpet_2023_06_004 crossref_primary_10_1016_j_remn_2020_10_009 crossref_primary_10_1007_s40336_018_0299_2 crossref_primary_10_2214_AJR_18_19796 crossref_primary_10_1088_1361_6560_ac1024 crossref_primary_10_1097_MNM_0000000000001019 crossref_primary_10_1007_s00330_020_07507_z crossref_primary_10_3389_fonc_2022_965773 crossref_primary_10_1007_s00259_022_05904_8 crossref_primary_10_1186_s13550_024_01115_4 crossref_primary_10_3769_radioisotopes_67_309 crossref_primary_10_1088_1361_6560_aad648 crossref_primary_10_3390_cancers14030637 crossref_primary_10_3390_diagnostics12061329 crossref_primary_10_1093_jbi_wbab014 crossref_primary_10_1016_j_ymeth_2020_01_007 crossref_primary_10_3390_ijms232113409 crossref_primary_10_1016_j_ejrad_2023_111050 crossref_primary_10_1016_j_ejso_2021_02_026 crossref_primary_10_1016_j_remnie_2020_12_009 crossref_primary_10_1007_s10549_020_06088_1 crossref_primary_10_3389_fmed_2021_792581 crossref_primary_10_1007_s00259_019_04422_4 crossref_primary_10_1016_j_semcancer_2023_03_005 crossref_primary_10_3390_diagnostics11020380 crossref_primary_10_1016_j_remn_2019_02_004 crossref_primary_10_1016_j_remn_2022_08_005 crossref_primary_10_1038_s41598_020_78865_3 crossref_primary_10_1016_j_remnie_2019_03_002 crossref_primary_10_1007_s10527_020_10009_3 crossref_primary_10_1007_s00259_019_04370_z crossref_primary_10_1016_j_remnie_2022_11_001 crossref_primary_10_3389_fmed_2020_603303 crossref_primary_10_1088_1361_6560_abf275 crossref_primary_10_1186_s13550_018_0466_5 crossref_primary_10_3389_fonc_2020_01301 crossref_primary_10_54097_hset_v19i_2843 |
Cites_doi | 10.1093/jnci/djr393 10.1097/MNM.0000000000000072 10.1038/ncomms5006 10.1093/annonc/mdt303 10.2967/jnumed.108.060459 10.2967/jnumed.110.082404 10.1007/s00259-015-3110-x 10.1007/s00259-013-2486-8 10.1056/NEJMoa1113205 10.1186/1755-8794-5-44 10.1111/j.2517-6161.1995.tb02031.x 10.1038/nrclinonc.2015.73 10.1371/journal.pone.0110300 10.1371/journal.pone.0094017 10.1118/1.4742850 10.1007/s00259-011-1845-6 10.1007/s00259-012-2211-z 10.1186/1471-2407-14-585 10.1118/1.4945271 10.2967/jnumed.108.054098 10.1126/science.959840 10.2967/jnumed.114.144055 10.1007/s13139-016-0444-7 10.1007/s00259-012-2247-0 10.1007/s00259-017-3641-4 10.1093/jnci/djp082 10.1109/TSMC.1973.4309314 10.1007/s00259-016-3314-8 10.2967/jnumed.111.099127 10.2967/jnumed.115.156927 10.1109/21.44046 10.2967/jnumed.112.116715 |
ContentType | Journal Article |
Copyright | European Journal of Nuclear Medicine and Molecular Imaging is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: European Journal of Nuclear Medicine and Molecular Imaging is a copyright of Springer, (2017). All Rights Reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7RV 7TK 7X7 7XB 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1007/s00259-017-3830-1 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1619-7089 |
EndPage | 206 |
ExternalDocumentID | 10_1007_s00259_017_3830_1 28936601 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ramón y Cajal grantid: RYC-2015- 17430 – fundername: ISCIII grantid: PI14/02001 – fundername: Miguel Servet grantid: CP12/03162 |
GroupedDBID | --- -5E -5G -BR -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1N0 203 29G 29~ 2JN 2JY 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 40D 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AACDK AAEOY AAHNG AAIAL AAJBT AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABECU ABFTV ABHQN ABIPD ABJNI ABJOX ABKCH ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACIPQ ACIWK ACMDZ ACMLO ACOKC ACOMO ACPRK ACUDM ACZOJ ADBBV ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJOOF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BVXVI CAG CCPQU CGR COF CSCUP CUY CVF DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBB EBC EBD EBLON EBO EBS EBX ECM EHN EIF EIHBH EIOEI EJD EMB EMK EMOBN EN4 EPL EPT ESBYG ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPM NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS Q~Q R89 R9I RNI RNS ROL RPX RRX RSV RZK S1Z S26 S27 S28 S37 S3B SAP SCLPG SDH SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TH9 TSG TSK TT1 TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 ZMTXR ~8M AAYXX CITATION 7TK 7XB 8FK AZQEC DWQXO GNUQQ K9. PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-c259t-6e7e6665aa3521d6d661ae413d58d59995f68a3acd08034debfeaec19f793d293 |
ISSN | 1619-7070 |
IngestDate | Fri Oct 25 05:36:34 EDT 2024 Thu Oct 10 22:11:27 EDT 2024 Fri Nov 22 03:11:26 EST 2024 Wed Oct 16 01:01:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Dedicated breast Heterogeneity Texture analysis Breast cancer 18F-FDG PET |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c259t-6e7e6665aa3521d6d661ae413d58d59995f68a3acd08034debfeaec19f793d293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7322-2195 |
PMID | 28936601 |
PQID | 1981649416 |
PQPubID | 42802 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1942675817 proquest_journals_1981649416 crossref_primary_10_1007_s00259_017_3830_1 pubmed_primary_28936601 |
PublicationCentury | 2000 |
PublicationDate | 2018-Feb 2018-2-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-Feb |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Heidelberg |
PublicationTitle | European journal of nuclear medicine and molecular imaging |
PublicationTitleAlternate | Eur J Nucl Med Mol Imaging |
PublicationYear | 2018 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 26229145 - J Nucl Med. 2015 Nov;56(11):1667-73 22957607 - Med Phys. 2012 Sep;39(9):5393-404 28250861 - Nucl Med Mol Imaging. 2017 Mar;51(1):79-85 21960707 - J Natl Cancer Inst. 2011 Nov 16;103(22):1656-64 22454484 - J Nucl Med. 2012 May;53(5):693-700 24892406 - Nat Commun. 2014 Jun 03;5:4006 25500829 - J Nucl Med. 2015 Jan;56(1):38-44 6372991 - Cancer Res. 1984 Jun;44(6):2259-65 22397650 - N Engl J Med. 2012 Mar 8;366(10 ):883-892 24722644 - PLoS One. 2014 Apr 10;9(4):e94017 23035882 - BMC Med Genomics. 2012 Oct 04;5:44 23204495 - J Nucl Med. 2013 Jan;54(1):19-26 25330171 - PLoS One. 2014 Oct 20;9(10):e110300 21321270 - J Nucl Med. 2011 Mar;52(3):369-78 23064544 - Eur J Nucl Med Mol Imaging. 2013 Jan;40(1):133-40 25112709 - BMC Cancer. 2014 Aug 12;14 :585 25895611 - Nat Rev Clin Oncol. 2015 Jul;12(7):381-94 28188325 - Eur J Nucl Med Mol Imaging. 2017 Jul;44(7):1145-1154 23917950 - Ann Oncol. 2013 Sep;24(9):2206-23 26830299 - Eur J Nucl Med Mol Imaging. 2016 Jul;43(8):1453-60 24686195 - Nucl Med Commun. 2014 May;35(5):446-52 23857457 - Eur J Nucl Med Mol Imaging. 2013 Oct;40(11):1662-71 22895862 - Eur J Nucl Med Mol Imaging. 2012 Dec;39(12 ):1830-8 19436038 - J Natl Cancer Inst. 2009 May 20;101(10):736-50 20237034 - J Nucl Med. 2010 Apr;51(4):543-50 21617975 - Eur J Nucl Med Mol Imaging. 2011 Sep;38(9):1636-47 19837767 - J Nucl Med. 2009 Nov;50(11):1820-7 959840 - Science. 1976 Oct 1;194(4260):23-8 27147338 - Med Phys. 2016 May;43(5):2261 24263086 - J Nucl Med. 2014 Jan;55(1):37-42 26140849 - Eur J Nucl Med Mol Imaging. 2015 Oct;42(11):1682-1691 P Lovinfosse (3830_CR9) 2016; 43 M Amadasun (3830_CR5) 1989; 19 M Soussan (3830_CR15) 2014; 9 F Tixier (3830_CR23) 2012; 53 GH Heppner (3830_CR1) 1984; 44 M Gerlinger (3830_CR11) 2012; 366 FJ Brooks (3830_CR29) 2014; 55 RM Haralick (3830_CR4) 1973; SMC-3 L Moliner (3830_CR18) 2012; 39 3830_CR21 M Hatt (3830_CR25) 2015; 56 SH Son (3830_CR14) 2014; 14 F Tixier (3830_CR8) 2011; 52 S Chicklore (3830_CR7) 2013; 40 3830_CR26 RR Bastien (3830_CR13) 2012; 5 GJ Cook (3830_CR10) 2013; 54 M Dowsett (3830_CR35) 2011; 103 T García Hernández (3830_CR19) 2016; 43 JR Osborne (3830_CR31) 2010; 51 D Groheux (3830_CR16) 2015; 42 M Hatt (3830_CR24) 2013; 40 BB Koolen (3830_CR32) 2012; 39 A Goldhirsch (3830_CR3) 2013; 24 BB Koolen (3830_CR20) 2014; 35 Y Benjamini (3830_CR27) 1995; 57 HJ Aerts (3830_CR28) 2014; 5 SS Lee (3830_CR33) 2017; 51 L Alic (3830_CR6) 2014; 9 3830_CR17 D Zardavas (3830_CR12) 2015; 12 FHP Velden Van (3830_CR22) 2011; 38 MC Cheang (3830_CR34) 2009; 101 H Jadvar (3830_CR30) 2009; 50 PC Nowell (3830_CR2) 1976; 194 |
References_xml | – volume: 103 start-page: 1656 issue: 22 year: 2011 ident: 3830_CR35 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djr393 contributor: fullname: M Dowsett – volume: 35 start-page: 446 issue: 5 year: 2014 ident: 3830_CR20 publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000000072 contributor: fullname: BB Koolen – volume: 5 start-page: 4006 year: 2014 ident: 3830_CR28 publication-title: Nat Commun doi: 10.1038/ncomms5006 contributor: fullname: HJ Aerts – volume: 44 start-page: 2259 year: 1984 ident: 3830_CR1 publication-title: Cancer Res contributor: fullname: GH Heppner – volume: 24 start-page: 2206 issue: 9 year: 2013 ident: 3830_CR3 publication-title: Ann Oncol doi: 10.1093/annonc/mdt303 contributor: fullname: A Goldhirsch – volume: 51 start-page: 543 issue: 4 year: 2010 ident: 3830_CR31 publication-title: J Nucl Med doi: 10.2967/jnumed.108.060459 contributor: fullname: JR Osborne – volume: 52 start-page: 369378 year: 2011 ident: 3830_CR8 publication-title: J Nucl Med doi: 10.2967/jnumed.110.082404 contributor: fullname: F Tixier – volume: 42 start-page: 1682 issue: 11 year: 2015 ident: 3830_CR16 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-015-3110-x contributor: fullname: D Groheux – volume: 40 start-page: 1662 year: 2013 ident: 3830_CR24 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-013-2486-8 contributor: fullname: M Hatt – volume: 366 start-page: 883892 year: 2012 ident: 3830_CR11 publication-title: Engl J Med doi: 10.1056/NEJMoa1113205 contributor: fullname: M Gerlinger – volume: 5 start-page: 44 year: 2012 ident: 3830_CR13 publication-title: BMC Med Genomics. doi: 10.1186/1755-8794-5-44 contributor: fullname: RR Bastien – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 3830_CR27 publication-title: J Royal Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x contributor: fullname: Y Benjamini – volume: 54 start-page: 1926 year: 2013 ident: 3830_CR10 publication-title: J Nucl Med contributor: fullname: GJ Cook – volume: 12 start-page: 381 issue: 7 year: 2015 ident: 3830_CR12 publication-title: Nat Rev Clin Oncol. doi: 10.1038/nrclinonc.2015.73 contributor: fullname: D Zardavas – volume: 9 start-page: 1 year: 2014 ident: 3830_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0110300 contributor: fullname: L Alic – volume: 9 start-page: e94017 issue: 4 year: 2014 ident: 3830_CR15 publication-title: PLoS One doi: 10.1371/journal.pone.0094017 contributor: fullname: M Soussan – volume: 39 start-page: 5393 year: 2012 ident: 3830_CR18 publication-title: Med Phys doi: 10.1118/1.4742850 contributor: fullname: L Moliner – volume: 38 start-page: 1636 year: 2011 ident: 3830_CR22 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-011-1845-6 contributor: fullname: FHP Velden Van – volume: 39 start-page: 1830 issue: 12 year: 2012 ident: 3830_CR32 publication-title: Eur J Nucl Med Mol Imaging. doi: 10.1007/s00259-012-2211-z contributor: fullname: BB Koolen – volume: 14 start-page: 585 year: 2014 ident: 3830_CR14 publication-title: BMC Cancer doi: 10.1186/1471-2407-14-585 contributor: fullname: SH Son – volume: 43 start-page: 2261 year: 2016 ident: 3830_CR19 publication-title: Med Phys doi: 10.1118/1.4945271 contributor: fullname: T García Hernández – volume: 50 start-page: 1820 issue: 11 year: 2009 ident: 3830_CR30 publication-title: J Nucl Med doi: 10.2967/jnumed.108.054098 contributor: fullname: H Jadvar – volume: 194 start-page: 23 year: 1976 ident: 3830_CR2 publication-title: Science doi: 10.1126/science.959840 contributor: fullname: PC Nowell – volume: 56 start-page: 38 year: 2015 ident: 3830_CR25 publication-title: J Nucl Med doi: 10.2967/jnumed.114.144055 contributor: fullname: M Hatt – volume: 51 start-page: 79 issue: 1 year: 2017 ident: 3830_CR33 publication-title: Nucl Med Mol Imaging doi: 10.1007/s13139-016-0444-7 contributor: fullname: SS Lee – volume: 40 start-page: 133 year: 2013 ident: 3830_CR7 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-012-2247-0 contributor: fullname: S Chicklore – ident: 3830_CR17 doi: 10.1007/s00259-017-3641-4 – ident: 3830_CR21 – volume: 101 start-page: 736 issue: 10 year: 2009 ident: 3830_CR34 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djp082 contributor: fullname: MC Cheang – volume: SMC-3 start-page: 610 year: 1973 ident: 3830_CR4 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 contributor: fullname: RM Haralick – volume: 43 start-page: 1453 year: 2016 ident: 3830_CR9 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-016-3314-8 contributor: fullname: P Lovinfosse – volume: 53 start-page: 693 year: 2012 ident: 3830_CR23 publication-title: J Nucl Med doi: 10.2967/jnumed.111.099127 contributor: fullname: F Tixier – ident: 3830_CR26 doi: 10.2967/jnumed.115.156927 – volume: 19 start-page: 1264 year: 1989 ident: 3830_CR5 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.44046 contributor: fullname: M Amadasun – volume: 55 start-page: 37 issue: 1 year: 2014 ident: 3830_CR29 publication-title: J Nucl Med doi: 10.2967/jnumed.112.116715 contributor: fullname: FJ Brooks |
SSID | ssj0018289 |
Score | 2.444521 |
Snippet | This study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast... PurposeThis study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast... PURPOSEThis study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 196 |
SubjectTerms | Breast cancer Breast Neoplasms - diagnostic imaging Breast Neoplasms - metabolism Breast Neoplasms - pathology Cancer Classification ErbB-2 protein Feature extraction Female Fluorodeoxyglucose F18 Glycolysis Heterogeneity High resolution Humans Image Processing, Computer-Assisted Image resolution Immunohistochemistry Male Middle Aged Positron emission Positron emission tomography Scanners Signal-To-Noise Ratio Tomography Tumors |
Title | Texture analysis of high-resolution dedicated breast 18 F-FDG PET images correlates with immunohistochemical factors and subtype of breast cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28936601 https://www.proquest.com/docview/1981649416 https://search.proquest.com/docview/1942675817 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bixMxFA57AfFFvFtdJYJPDpGmnUvmsdh2u6hLYSv4NqRJRgrbGZm2Iv4L_7Hn5DLTXV3RB19Kmw7JMOebk-9ccg4hrzD3S8ZpwvIyj1lcSsGEUJwBd44zo3OlbLmm2UV2_kmMJ_Hk4DB0e-vG_qukYQxkjSdn_0Ha7aQwAN9B5vAJUofPv5M7aFsXFOiqjWBNYgZ2tV840jY6g1xziTnp24iLaMqm49NoPllEq7XEwg8K-3ZcIhV1ztoVniSpbX1iFaoMhG491vu-W1p_LqznZ1WIqOZG37_nwRVWVJZNG-W3k61D1157N2F7tcnBG1Vv2rM5q71U_ZVrXhBh7F_wy6-yqVuaXq9tRsC4-rwz39m8kbp22tElCnSHYEzjhjj61hn8bMzKHwWqvtX7PhIuQlr1NR8pJoCjBNozPFblgwnJsr5rX_LG7I-55kZhn3BlL_37MNhT-jxP9_jDwFZQ-HVrctko2AUswQw1UO1i2Ge824dD7sFsdFHMx9Pi_dn5u0NyPAANCgr8eHS2OJ22ATI0lNGXEG4-BOz7tj7u1SWuUq4b7CjLpxZ3yR1vCNGRQ_A9cmCq--TWBw-CB-SHBzINQKZ1Sa8BmbZApg5ylAtqgUwByNQBmXZApghk-hsgUw9kWExTD2Rcz8_qgPyQfJxOFm9nzPcPYQoewJalJjNgnSdSgpXBdaqBi0oDrE0nQidgGSVlKuRQKg1m0zDWZlkaaRTPS3jkGnjwI3JU1ZV5QqjiWSmBxql-soxVDDNmUkohJZcZVlDskdfhERdfXJmYoi0IbuVRgDwKlEcBF58EIRT-ddsUPBc8jXOwj3rkZfs36HoM4MnK1Du8Bvg0GPg865HHTnjtaoCHYZr2-dM_T_6M3O5ekBNytG125jk53OjdCw-xn2wp0Po |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+analysis+of+high-resolution+dedicated+breast+18+F-FDG+PET+images+correlates+with+immunohistochemical+factors+and+subtype+of+breast+cancer&rft.jtitle=European+journal+of+nuclear+medicine+and+molecular+imaging&rft.au=Moscoso%2C+Alexis&rft.au=Ruibal%2C+%C3%81lvaro&rft.au=Dom%C3%ADnguez-Prado%2C+In%C3%A9s&rft.au=Fern%C3%A1ndez-Ferreiro%2C+Anxo&rft.date=2018-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1619-7070&rft.eissn=1619-7089&rft.volume=45&rft.issue=2&rft.spage=196&rft.epage=206&rft_id=info:doi/10.1007%2Fs00259-017-3830-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-7070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-7070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-7070&client=summon |