Object Detection Techniques: A Comparison
Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object detection, a subset to computer vision is one of the prominent techniques in this area of research. Object detection is basically an algorithm based...
Saved in:
Published in: | 2020 7th International Conference on Smart Structures and Systems (ICSSS) pp. 1 - 4 |
---|---|
Main Authors: | , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-07-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object detection, a subset to computer vision is one of the prominent techniques in this area of research. Object detection is basically an algorithm based on either machine learning or deep learning approaches employed for classification of elements in diverse classes and localization in the image. This paper provides a comparison among the three prominent approaches to achieve object detection. R-CNN, Fast R-CNN, YOLO are the techniques in the trend which facilitates the developer in accomplishing the task of detecting an object in the image. These techniques train and compute the parameters of the model in reduced hence increase performance as compared to the traditional object detection techniques. |
---|---|
AbstractList | Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object detection, a subset to computer vision is one of the prominent techniques in this area of research. Object detection is basically an algorithm based on either machine learning or deep learning approaches employed for classification of elements in diverse classes and localization in the image. This paper provides a comparison among the three prominent approaches to achieve object detection. R-CNN, Fast R-CNN, YOLO are the techniques in the trend which facilitates the developer in accomplishing the task of detecting an object in the image. These techniques train and compute the parameters of the model in reduced hence increase performance as compared to the traditional object detection techniques. |
Author | Malhotra, Priyanka Garg, Ekansh |
Author_xml | – sequence: 1 givenname: Priyanka surname: Malhotra fullname: Malhotra, Priyanka organization: Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India,140401 – sequence: 2 givenname: Ekansh surname: Garg fullname: Garg, Ekansh organization: Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India,140401 |
BookMark | eNotjj1Pw0AQRA8JChL4BRS4pbDx7drnW7rIfEWKlMKhju6WPXGInINtCv49lkgx8_Sa0SzUeeqTKHWry0Lrku7Xbdd1FRnQBZRQFjQ31NWZWugG7BxAvFR3W_8pPGWPMs2Ifcp2wh8pfv_I-JCtsrY_HN0Qxz5dqYvgvka5PnGp3p6fdu1rvtm-rNvVJmeomylnCg2I06KtxQBm9ndGQ94QBaMFGbFB8OgpOLbEgT2U1lY11xUFwqW6-d-NIrI_DvHght_96T3-ATs8Pp8 |
CitedBy_id | crossref_primary_10_12720_jait_14_6_1221_1229 crossref_primary_10_3390_s24051475 crossref_primary_10_1007_s11740_024_01278_y crossref_primary_10_3390_s24030782 crossref_primary_10_3233_JIFS_219272 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSSS49621.2020.9202254 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728172233 9781728172231 |
EndPage | 4 |
ExternalDocumentID | 9202254 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-c257t-c9f72ea1e1883f26c9fdc369b699f61e3c33732b3b9fac89cfcb208845c549f93 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:55 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-c9f72ea1e1883f26c9fdc369b699f61e3c33732b3b9fac89cfcb208845c549f93 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9202254 |
PublicationCentury | 2000 |
PublicationDate | 2020-July |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-July |
PublicationDecade | 2020 |
PublicationTitle | 2020 7th International Conference on Smart Structures and Systems (ICSSS) |
PublicationTitleAbbrev | ICSSS |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9223237 |
Snippet | Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Classification algorithms Computer vision Conferences Deep learning Feature extraction Machine learning Measurement Object detection |
Title | Object Detection Techniques: A Comparison |
URI | https://ieeexplore.ieee.org/document/9202254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3cnjyptOI3e_AimHaTtNmMN-kH9aLCVvBWkuzkuBXb_n-T3XVF8OItCSEhA8nwJm_eANxKVZqMVMmMlJaNPZfMGO2Ztcb4KD9uXUwUXhb587uezaNMzn2XC0NENfmMhrFZ_-WXG7ePobIRBqQeAE0CSY66ydVqKVs8w9HTtCiKMSoRYZ_Ihu3sX2VTaq-xOPrffscw-Em_S187x3ICB1T14e7FxpBJOqNdzZ6q0tW3_Or2IX1Mp11BwQG8Lear6ZK1dQ6YCxdmxxz6XJDhxLWWXqjQL51UaBWiV5ykkzKXwkqL3jiNzjsrwuswnriA7jzKU-hVm4rOIHUmz7WZoOfCx4rnmEnhwqoGOXpSdA79eMz1RyNlsW5PePH38CUcRks27NQr6O0-93QNybbc39TG_wKSF4Zn |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ1oPehJTWv8dg9eTKTdhS3seDP9SBtrNdmaeGuAHY5bY9v_L2zXGhMv3oAQCBCYvGHmPYBbIQsdkyyYFsKw1CWCaZ05ZozWLtCPGxsShUe5mr5n_UGgybnf5sIQURV8Ru1QrP7yi4VdB1dZBz1S94BmF_a6qZJqk61VB20lMXbGvTzPU5Q8AD8et-v-v4RTKrsxPPzfjEfQ-knAi163puUYdqhswt2LCU6TqE-rKn6qjGbfBKzLh-gx6m0lBVvwNhzMeiNWKx0w66_Mill0ipNOKMky4bj09cIKiUYiOpmQsEIowY0w6LTN0DpruH8f0q71-M6hOIFGuSjpFCKrlcp0F13CXdA8x1hw60fVmKAjSWfQDMucf2zILOb1Cs__br6B_dHseTKfjKdPF3AQdnUTq3oJjdXnmq5gd1msr6uD-ALcZYm4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+7th+International+Conference+on+Smart+Structures+and+Systems+%28ICSSS%29&rft.atitle=Object+Detection+Techniques%3A+A+Comparison&rft.au=Malhotra%2C+Priyanka&rft.au=Garg%2C+Ekansh&rft.date=2020-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICSSS49621.2020.9202254&rft.externalDocID=9202254 |