Object Detection Techniques: A Comparison

Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object detection, a subset to computer vision is one of the prominent techniques in this area of research. Object detection is basically an algorithm based...

Full description

Saved in:
Bibliographic Details
Published in:2020 7th International Conference on Smart Structures and Systems (ICSSS) pp. 1 - 4
Main Authors: Malhotra, Priyanka, Garg, Ekansh
Format: Conference Proceeding
Language:English
Published: IEEE 01-07-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object detection, a subset to computer vision is one of the prominent techniques in this area of research. Object detection is basically an algorithm based on either machine learning or deep learning approaches employed for classification of elements in diverse classes and localization in the image. This paper provides a comparison among the three prominent approaches to achieve object detection. R-CNN, Fast R-CNN, YOLO are the techniques in the trend which facilitates the developer in accomplishing the task of detecting an object in the image. These techniques train and compute the parameters of the model in reduced hence increase performance as compared to the traditional object detection techniques.
AbstractList Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object detection, a subset to computer vision is one of the prominent techniques in this area of research. Object detection is basically an algorithm based on either machine learning or deep learning approaches employed for classification of elements in diverse classes and localization in the image. This paper provides a comparison among the three prominent approaches to achieve object detection. R-CNN, Fast R-CNN, YOLO are the techniques in the trend which facilitates the developer in accomplishing the task of detecting an object in the image. These techniques train and compute the parameters of the model in reduced hence increase performance as compared to the traditional object detection techniques.
Author Malhotra, Priyanka
Garg, Ekansh
Author_xml – sequence: 1
  givenname: Priyanka
  surname: Malhotra
  fullname: Malhotra, Priyanka
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India,140401
– sequence: 2
  givenname: Ekansh
  surname: Garg
  fullname: Garg, Ekansh
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India,140401
BookMark eNotjj1Pw0AQRA8JChL4BRS4pbDx7drnW7rIfEWKlMKhju6WPXGInINtCv49lkgx8_Sa0SzUeeqTKHWry0Lrku7Xbdd1FRnQBZRQFjQ31NWZWugG7BxAvFR3W_8pPGWPMs2Ifcp2wh8pfv_I-JCtsrY_HN0Qxz5dqYvgvka5PnGp3p6fdu1rvtm-rNvVJmeomylnCg2I06KtxQBm9ndGQ94QBaMFGbFB8OgpOLbEgT2U1lY11xUFwqW6-d-NIrI_DvHght_96T3-ATs8Pp8
CitedBy_id crossref_primary_10_12720_jait_14_6_1221_1229
crossref_primary_10_3390_s24051475
crossref_primary_10_1007_s11740_024_01278_y
crossref_primary_10_3390_s24030782
crossref_primary_10_3233_JIFS_219272
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSSS49621.2020.9202254
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728172233
9781728172231
EndPage 4
ExternalDocumentID 9202254
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-c257t-c9f72ea1e1883f26c9fdc369b699f61e3c33732b3b9fac89cfcb208845c549f93
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:55 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-c9f72ea1e1883f26c9fdc369b699f61e3c33732b3b9fac89cfcb208845c549f93
PageCount 4
ParticipantIDs ieee_primary_9202254
PublicationCentury 2000
PublicationDate 2020-July
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationTitle 2020 7th International Conference on Smart Structures and Systems (ICSSS)
PublicationTitleAbbrev ICSSS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9223237
Snippet Computer vision is one of the technologies that aim at digitally perceiving the real world at a higher level through digital images and videos. Object...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification algorithms
Computer vision
Conferences
Deep learning
Feature extraction
Machine learning
Measurement
Object detection
Title Object Detection Techniques: A Comparison
URI https://ieeexplore.ieee.org/document/9202254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3cnjyptOI3e_AimHaTtNmMN-kH9aLCVvBWkuzkuBXb_n-T3XVF8OItCSEhA8nwJm_eANxKVZqMVMmMlJaNPZfMGO2Ztcb4KD9uXUwUXhb587uezaNMzn2XC0NENfmMhrFZ_-WXG7ePobIRBqQeAE0CSY66ydVqKVs8w9HTtCiKMSoRYZ_Ihu3sX2VTaq-xOPrffscw-Em_S187x3ICB1T14e7FxpBJOqNdzZ6q0tW3_Or2IX1Mp11BwQG8Lear6ZK1dQ6YCxdmxxz6XJDhxLWWXqjQL51UaBWiV5ykkzKXwkqL3jiNzjsrwuswnriA7jzKU-hVm4rOIHUmz7WZoOfCx4rnmEnhwqoGOXpSdA79eMz1RyNlsW5PePH38CUcRks27NQr6O0-93QNybbc39TG_wKSF4Zn
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ1oPehJTWv8dg9eTKTdhS3seDP9SBtrNdmaeGuAHY5bY9v_L2zXGhMv3oAQCBCYvGHmPYBbIQsdkyyYFsKw1CWCaZ05ZozWLtCPGxsShUe5mr5n_UGgybnf5sIQURV8Ru1QrP7yi4VdB1dZBz1S94BmF_a6qZJqk61VB20lMXbGvTzPU5Q8AD8et-v-v4RTKrsxPPzfjEfQ-knAi163puUYdqhswt2LCU6TqE-rKn6qjGbfBKzLh-gx6m0lBVvwNhzMeiNWKx0w66_Mill0ipNOKMky4bj09cIKiUYiOpmQsEIowY0w6LTN0DpruH8f0q71-M6hOIFGuSjpFCKrlcp0F13CXdA8x1hw60fVmKAjSWfQDMucf2zILOb1Cs__br6B_dHseTKfjKdPF3AQdnUTq3oJjdXnmq5gd1msr6uD-ALcZYm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+7th+International+Conference+on+Smart+Structures+and+Systems+%28ICSSS%29&rft.atitle=Object+Detection+Techniques%3A+A+Comparison&rft.au=Malhotra%2C+Priyanka&rft.au=Garg%2C+Ekansh&rft.date=2020-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICSSS49621.2020.9202254&rft.externalDocID=9202254