EEG/MEG source imaging in the absence of subject's brain MRI scan: Perspective on co‐registration and MRI selection approach
EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel. As part of this computation, co‐registration of the digitized head information and brain MRI scan is the essential step. However, in the absence of a brain MRI scan, an approximated sourcemodel...
Saved in:
Published in: | International journal of imaging systems and technology Vol. 33; no. 1; pp. 287 - 298 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-01-2023
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel. As part of this computation, co‐registration of the digitized head information and brain MRI scan is the essential step. However, in the absence of a brain MRI scan, an approximated sourcemodel and headmodel can be computed from the subject's digitized head information and brain MRI scans from other subjects. In the present work, we compared the fiducial (FID)‐ and iterative closet point (ICP)‐based co‐registration approaches for computing an approximated sourcemodel using single and multiple available brain MRI scans. We also evaluated the two different template MRI selection strategies: one is based on objective registration error, and another on sourcemodel approximation error. The outcome suggests that averaged approximated solutions using multiple template brain MRI scans showed better performance than single‐template MRI‐based solutions. The FID‐based approach performed better than the ICP‐based approach for co‐registration of the digitized head surface and brain MRI scan. While selecting template MRIs, the selection approach based on objective registration error showed better performance than a sourcemodel approximation error‐based criterion. Cross‐dataset performance analysis showed a higher model approximation error than within‐dataset analysis. In conclusion, the FID‐based co‐registration approach and objective registration error‐based MRI selection criteria provide a simple, fast and more accurate solution to compute averaged approximated models compared with the ICP‐based approach. The demography of brain MRI scans should be similar to that of the query subject whose brain MRI scan was unavailable. |
---|---|
AbstractList | EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel. As part of this computation, co‐registration of the digitized head information and brain MRI scan is the essential step. However, in the absence of a brain MRI scan, an approximated sourcemodel and headmodel can be computed from the subject's digitized head information and brain MRI scans from other subjects. In the present work, we compared the fiducial (FID)‐ and iterative closet point (ICP)‐based co‐registration approaches for computing an approximated sourcemodel using single and multiple available brain MRI scans. We also evaluated the two different template MRI selection strategies: one is based on objective registration error, and another on sourcemodel approximation error. The outcome suggests that averaged approximated solutions using multiple template brain MRI scans showed better performance than single‐template MRI‐based solutions. The FID‐based approach performed better than the ICP‐based approach for co‐registration of the digitized head surface and brain MRI scan. While selecting template MRIs, the selection approach based on objective registration error showed better performance than a sourcemodel approximation error‐based criterion. Cross‐dataset performance analysis showed a higher model approximation error than within‐dataset analysis. In conclusion, the FID‐based co‐registration approach and objective registration error‐based MRI selection criteria provide a simple, fast and more accurate solution to compute averaged approximated models compared with the ICP‐based approach. The demography of brain MRI scans should be similar to that of the query subject whose brain MRI scan was unavailable. EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel . As part of this computation, co‐registration of the digitized head information and brain MRI scan is the essential step. However, in the absence of a brain MRI scan, an approximated sourcemodel and headmodel can be computed from the subject's digitized head information and brain MRI scans from other subjects. In the present work, we compared the fiducial (FID)‐ and iterative closet point (ICP)‐based co‐registration approaches for computing an approximated sourcemodel using single and multiple available brain MRI scans. We also evaluated the two different template MRI selection strategies: one is based on objective registration error, and another on sourcemodel approximation error. The outcome suggests that averaged approximated solutions using multiple template brain MRI scans showed better performance than single‐template MRI‐based solutions. The FID‐based approach performed better than the ICP‐based approach for co‐registration of the digitized head surface and brain MRI scan. While selecting template MRIs, the selection approach based on objective registration error showed better performance than a sourcemodel approximation error‐based criterion. Cross‐dataset performance analysis showed a higher model approximation error than within‐dataset analysis. In conclusion, the FID‐based co‐registration approach and objective registration error‐based MRI selection criteria provide a simple, fast and more accurate solution to compute averaged approximated models compared with the ICP‐based approach. The demography of brain MRI scans should be similar to that of the query subject whose brain MRI scan was unavailable. |
Author | Gohel, Bakul Khare, Mahish |
Author_xml | – sequence: 1 givenname: Bakul orcidid: 0000-0002-5435-0992 surname: Gohel fullname: Gohel, Bakul email: bakul_gohel@daiict.ac.in organization: Dhirubhai Ambani Institute of Information and Communication Technology (DA‐IICT) – sequence: 2 givenname: Mahish orcidid: 0000-0002-2296-2732 surname: Khare fullname: Khare, Mahish organization: Dhirubhai Ambani Institute of Information and Communication Technology (DA‐IICT) |
BookMark | eNp1kM9KAzEQxoMo2FYPvkHAg3jYNsnmz8ZbKWsttCii55BNs-2Wmq3JVulFfASf0Scx63r1MsN885sZ5uuDY1c7C8AFRkOMEBlVL3pIiMj4EehhJLOkDceghzIpE0mZOAX9EDYIYcwQ64GPPJ-OFvkUhnrvjYVxflW5FawcbNYW6iJYF-W6hGFfbKxprgIsvI7txeMMBqPdDXywPuxiq3qLoIOm_v788nZVhcbrpoqKdssOt9sWa5XdztfarM_ASam3wZ7_5QF4vs2fJnfJ_H46m4zniSFM8ERwVDIiC8EFIWapM8zEkmFpeIE4YYynKbUGy4wwLYr4JUozQ0ujqTaIWp0OwGW3N5593dvQqE3818WTighOKeVS4khdd5TxdQjelmrnoyH-oDBSrb0qVurX3siOOva92trD_6CaLcbdxA_sy32I |
Cites_doi | 10.1016/S0167-8655(03)00157-0 10.1016/j.neuroimage.2015.01.043 10.1016/j.neuroimage.2020.117430 10.1093/acprof:oso/9780195307238.001.0001 10.3389/fninf.2017.00050 10.1002/hbm.20171 10.1016/B978-008045046-9.00306-5 10.1093/cercor/bhy076 10.1002/hbm.20465 10.1016/j.neuroimage.2010.10.036 10.1016/j.cortex.2014.11.019 10.1038/s41467-019-10597-z 10.1007/s10439-010-0230-0 10.3389/fnins.2019.00076 10.1155/2009/656092 10.3109/10929080500066922 10.1371/journal.pone.0152482 10.3389/fneur.2019.00325 10.4015/S1016237220500192 10.1088/1741-2552/aafdd1 10.1016/j.jneumeth.2009.09.005 10.3389/fnhum.2020.00192 10.1155/2011/156869 10.1155/2011/879716 10.1002/hbm.10133 10.3389/fnins.2018.00530 10.1111/psyp.12769 10.3390/jimaging3030028 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals, LLC |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals, LLC |
DBID | AAYXX CITATION |
DOI | 10.1002/ima.22786 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1098-1098 |
EndPage | 298 |
ExternalDocumentID | 10_1002_ima_22786 IMA22786 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-c2576-760f529b76722cda8157d519c6b062556334ec19825a7b457038c4fca4ac04ea3 |
IEDL.DBID | 33P |
ISSN | 0899-9457 |
IngestDate | Tue Nov 19 03:38:22 EST 2024 Fri Nov 22 01:07:21 EST 2024 Sat Aug 24 01:02:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2576-760f529b76722cda8157d519c6b062556334ec19825a7b457038c4fca4ac04ea3 |
ORCID | 0000-0002-2296-2732 0000-0002-5435-0992 |
PQID | 2764446991 |
PQPubID | 1026352 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2764446991 crossref_primary_10_1002_ima_22786 wiley_primary_10_1002_ima_22786_IMA22786 |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | International journal of imaging systems and technology |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2011a; 2011 2017; 3 2021; 2 2010 2019; 10 2021; 224 2019; 13 2004; 9 2009 2019; 16 2011; 54 2020; 14 2004 2020; 32 2011; 39 2016; 11 2009; 2009 2006; 27 2017; 11 2008; 29 2017; 54 2015; 66 2015; 110 2003; 24 2019; 29 2009; 185 2018; 12 2003; 20 e_1_2_9_30_1 Zorzos I (e_1_2_9_6_1) 2021; 2 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 27 start-page: 129 issue: 2 year: 2006 end-page: 143 article-title: Generic head models for atlas‐based EEG source analysis publication-title: Hum Brain Mapp – volume: 3 start-page: 28 issue: 3 year: 2017 article-title: Assessment of geometric distortion in six clinical scanners using a 3D‐printed grid phantom publication-title: J Imaging – volume: 54 start-page: 2732 issue: 4 year: 2011 end-page: 2740 article-title: Practical constraints on estimation of source extent with MEG beamformers publication-title: Neuroimage – volume: 39 start-page: 983 issue: 3 year: 2011 end-page: 995 article-title: EEG‐MRI co‐registration and sensor labeling using a 3D laser scanner publication-title: Ann Biomed Eng – volume: 20 start-page: 142 issue: 3 year: 2003 end-page: 147 article-title: Accuracy and applications of group MEG studies using cortical source locations estimated from Participants' scalp surfaces publication-title: Hum Brain Mapp – volume: 224 start-page: 1 year: 2021 article-title: Spatial fidelity of MEG/EEG source estimates: a general evaluation approach publication-title: Neuroimage – volume: 2011 start-page: 879716 year: 2011a article-title: Brainstorm: a user‐friendly application for MEG/EEG analysis publication-title: Comput Intell Neurosci – volume: 32 start-page: 2050019 issue: 3 year: 2020 article-title: Automatic co‐registration of MEG and 3D digitization using 3d generalized hough transform publication-title: Biomed Eng Appl Basis Commun – volume: 14 year: 2020 article-title: Modulation of intrinsic brain connectivity by implicit electroencephalographic neurofeedback publication-title: Front Hum Neurosci – volume: 10 start-page: 1 issue: 1 year: 2019 article-title: Learning of distant state predictions by the orbitofrontal cortex in humans publication-title: Nat Commun – volume: 13 start-page: 1 year: 2019 article-title: MEG/EEG group analysis with brainstorm publication-title: Front Neurosci – volume: 9 start-page: 145 issue: 4 year: 2004 end-page: 153 article-title: Submillimetric target‐registration error using a novel, non‐invasive fiducial system for image‐guided otologic surgery publication-title: Computer Aided Surg – volume: 110 start-page: 60 year: 2015 end-page: 77 article-title: Influence of the head model on EEG and MEG source connectivity analyses publication-title: Neuroimage – year: 2010 – volume: 12 start-page: 1 year: 2018 article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices publication-title: Front Neurosci – volume: 29 start-page: 1969 issue: 5 year: 2019 end-page: 1983 article-title: Cross‐task contributions of Frontobasal ganglia circuitry in response inhibition and conflict‐induced slowing publication-title: Cereb Cortex – volume: 2011 start-page: 156869 year: 2011a article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput Intell Neurosci – volume: 29 start-page: 1288 issue: 11 year: 2008 end-page: 1301 article-title: Validation of a method for co‐registering scalp recording locations with 3D structural MR images publication-title: Hum Brain Mapp – year: 2004 – volume: 11 start-page: 1 issue: 5 year: 2016 article-title: Grey matter changes associated with heavy cannabis use: a longitudinal sMRI study publication-title: PLoS ONE – volume: 10 start-page: 1 year: 2019 article-title: EEG source imaging: a practical review of the analysis steps publication-title: Front Neurol – volume: 2009 start-page: 1 year: 2009 end-page: 12 article-title: EEG/MEG source imaging: methods, challenges, and open issues publication-title: Comput Intell Neurosci – volume: 11 start-page: 1 year: 2017 end-page: 12 article-title: Approximate subject specific pseudo MRI from an available MRI dataset for MEG source imaging publication-title: Front Neuroinform – volume: 24 start-page: 2967 issue: 16 year: 2003 end-page: 2976 article-title: An accurate and fast point‐to‐plane registration technique publication-title: Pattern Recog Lett – volume: 16 start-page: 1 issue: 2 year: 2019 article-title: Spatial localization of EEG electrodes using 3D scanning publication-title: J Neural Eng – volume: 54 start-page: 24 issue: 1 year: 2017 end-page: 33 article-title: A test‐retest reliability analysis of diffusion measures of white matter tracts relevant for cognitive control publication-title: Psychophysiology – year: 2009 article-title: Voxel based morphometry publication-title: Encyclopedia of Neuroscience – volume: 66 start-page: 115 year: 2015 end-page: 133 article-title: A purely confirmatory replication study of structural brain‐behavior correlations publication-title: Cortex – volume: 185 start-page: 125 issue: 1 year: 2009 end-page: 132 article-title: Approximate average head models for EEG source imaging publication-title: J Neurosci Methods – volume: 2 start-page: 378 issue: 3 year: 2021 end-page: 391 article-title: Advances in electrical source imaging: a review of the current approaches publication-title: Appl Challenges Signal – ident: e_1_2_9_17_1 doi: 10.1016/S0167-8655(03)00157-0 – ident: e_1_2_9_2_1 doi: 10.1016/j.neuroimage.2015.01.043 – ident: e_1_2_9_23_1 doi: 10.1016/j.neuroimage.2020.117430 – ident: e_1_2_9_3_1 doi: 10.1093/acprof:oso/9780195307238.001.0001 – ident: e_1_2_9_11_1 doi: 10.3389/fninf.2017.00050 – ident: e_1_2_9_10_1 doi: 10.1002/hbm.20171 – ident: e_1_2_9_18_1 doi: 10.1016/B978-008045046-9.00306-5 – ident: e_1_2_9_27_1 doi: 10.1093/cercor/bhy076 – ident: e_1_2_9_15_1 doi: 10.1002/hbm.20465 – ident: e_1_2_9_22_1 doi: 10.1016/j.neuroimage.2010.10.036 – ident: e_1_2_9_16_1 – ident: e_1_2_9_26_1 doi: 10.1016/j.cortex.2014.11.019 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-019-10597-z – ident: e_1_2_9_20_1 doi: 10.1007/s10439-010-0230-0 – ident: e_1_2_9_14_1 doi: 10.3389/fnins.2019.00076 – ident: e_1_2_9_5_1 doi: 10.1155/2009/656092 – ident: e_1_2_9_19_1 doi: 10.3109/10929080500066922 – ident: e_1_2_9_30_1 doi: 10.1371/journal.pone.0152482 – ident: e_1_2_9_4_1 doi: 10.3389/fneur.2019.00325 – ident: e_1_2_9_7_1 doi: 10.4015/S1016237220500192 – ident: e_1_2_9_21_1 doi: 10.1088/1741-2552/aafdd1 – ident: e_1_2_9_13_1 doi: 10.1016/j.jneumeth.2009.09.005 – ident: e_1_2_9_31_1 doi: 10.3389/fnhum.2020.00192 – volume: 2 start-page: 378 issue: 3 year: 2021 ident: e_1_2_9_6_1 article-title: Advances in electrical source imaging: a review of the current approaches publication-title: Appl Challenges Signal contributor: fullname: Zorzos I – ident: e_1_2_9_8_1 doi: 10.1155/2011/156869 – ident: e_1_2_9_9_1 doi: 10.1155/2011/879716 – ident: e_1_2_9_12_1 doi: 10.1002/hbm.10133 – ident: e_1_2_9_25_1 doi: 10.3389/fnins.2018.00530 – ident: e_1_2_9_29_1 doi: 10.1111/psyp.12769 – ident: e_1_2_9_24_1 doi: 10.3390/jimaging3030028 |
SSID | ssj0011505 |
Score | 2.3479002 |
Snippet | EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel. As part of this computation, co‐registration of the... EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel . As part of this computation, co‐registration of the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 287 |
SubjectTerms | Approximation Brain Datasets Demography Digitization EEG Error analysis forward model ICP inverse modelling Iterative methods Magnetic resonance imaging MEG MRI co‐registration Registration |
Title | EEG/MEG source imaging in the absence of subject's brain MRI scan: Perspective on co‐registration and MRI selection approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22786 https://www.proquest.com/docview/2764446991 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIaDDgi68DIqjo4SRNBNmTZJk1ZXg3Yui5HBC7graS4wm1assxUfwWf0SUzSdkYXguCuLWlaenLa_5wm3wHgjFGOUEy1hzHHJkCR0vgczzzKcYaV1Dxw4PnRPbt9im4Si8m5atbCVHyIRcLNeoZ7X1sH51nZW0JDZxYbhFhkcdsmSnDLN_B08QfBCB03fTGyBEoSsoYq5KPe4syf36KlwPwuU913ZrD1rzvcBpu1vIT9ajzsgBWVt8HGN-hgG6y5SZ-i3AVvSTLsTZIhrDL40PRkSxbBWQ6NLITmMtbtYaFhOc9svua8hJktKQEnd2NYGqNcwulysSYsciiKz_cPW-yhwfFCnsuquSu4447UGPM98DhIHq5HXl2PwRM2LPEY9XWI4oxRhpCQPApCJo0CFDTzqUWZYUyUCGITdHKWEcv2igTRghMufKI43getvMjVAYBE-JHmJtoLAkV0IGKJsAqVoCbC0jHWHXDaWCZ9rrAbaQVYRqnZS91j7YBuY7O09rwyRcwoPBPzx0EHXDjr_N5BOp703cbh35segXVbcb7KwnRB6_Vlro7BainnJ24AfgHZf9w6 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfThH14G9x_gwi6KWsTbKkFS-i1Q3dGDrBW0nTBHbpxLqr-Cf4N_qXmKTrpgdB8NaWNJS-vOb7XpPPAzjmTGAcMe0RIogJULLM-JxIPSZISlSmReDA860H3n0Kr2KLyTmv9sKUfIhJws16hvteWwe3CenGlBo6sNwgzENWgznKzEC0GzhIb_IPwUgdt4AxtAxK2uQVV8jHjcmtP2ejqcT8LlTdTHO98r9nXIXlscJEF-WQWIMZla_D0jfu4DrMu3WfstiAtzi-aXTiG1Qm8ZHpyVYtQoMcGWWIRFpYz0dDjYpRalM2JwVKbVUJ1Llvo8LY5Qz1pvs10TBHcvj5_mHrPVREXiTyrGzuau64K2OS-SY8Xsf9y5Y3LsngSRuZeJz5uomjlDOOscxEGDR5ZkSgZKnPLM2MEKpkEJm4U_CUWrxXKKmWggrpUyXIFszmw1xtA6LSD7UwAV8QKKoDGWWYqKaSzARZOiK6DkeVaZLnkryRlIxlnJizxL3WOuxVRkvGzlckmBuRZ8L-KKjDqTPP7x0k7c6FO9j5e9NDWGj1O3fJXbt7uwuLtgB9mZTZg9nXl5Hah1qRjQ7caPwC0NHgYg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcHHyh68C2uzyCCXsq2STZp9STa1UVXFh_graR5gJeuWPcqfgQ_o5_EJN3u6kEQvLUlDaWTaf4zTX4DcMCZwDhhJiBEEBugKGV9TuQBEyQnWhkRefD85R2_eYzPU4fJOan3wlR8iFHCzXmG_147B39WpjmGhj45bBDmMZuEaWpluAPnE9Ib_UKwSsevX4wdgpK2eI0VCnFzdOvPyWisML_rVD_RtBf_9YhLsDDUl-i0GhDLMKGLFZj_Rh1cgRm_6lOWq_CWphfNbnqBqhQ-sj25mkXoqUBWFyKRl87vUd-gcpC7hM1hiXJXUwJ1bzuotFY5Rr3xbk3UL5Dsf75_uGoPNY8XiUJVzX3FHX9lyDFfg4d2en92GQwLMgTSxSUBZ6Fp4STnjGMslYijFldWAkqWh8yxzAihWkaJjToFz6mDe8WSGimokCHVgqzDVNEv9AYgKsPYCBvuRZGmJpKJwkS3tGQ2xDIJMQ3Yry2TPVfcjawiLOPMnmX-tTZgu7ZZNnS9MsPcSjwb9CdRA468dX7vIOt0T_3B5t-b7sFs77ydXXdurrZgzlWfrzIy2zD1-jLQOzBZqsGuH4tfL1DfCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG%2FMEG+source+imaging+in+the+absence+of+subject%27s+brain+MRI+scan%3A+Perspective+on+co%E2%80%90registration+and+MRI+selection+approach&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Gohel%2C+Bakul&rft.au=Khare%2C+Mahish&rft.date=2023-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=33&rft.issue=1&rft.spage=287&rft.epage=298&rft_id=info:doi/10.1002%2Fima.22786&rft.externalDBID=10.1002%252Fima.22786&rft.externalDocID=IMA22786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |