EEG/MEG source imaging in the absence of subject's brain MRI scan: Perspective on co‐registration and MRI selection approach

EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel. As part of this computation, co‐registration of the digitized head information and brain MRI scan is the essential step. However, in the absence of a brain MRI scan, an approximated sourcemodel...

Full description

Saved in:
Bibliographic Details
Published in:International journal of imaging systems and technology Vol. 33; no. 1; pp. 287 - 298
Main Authors: Gohel, Bakul, Khare, Mahish
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-01-2023
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel. As part of this computation, co‐registration of the digitized head information and brain MRI scan is the essential step. However, in the absence of a brain MRI scan, an approximated sourcemodel and headmodel can be computed from the subject's digitized head information and brain MRI scans from other subjects. In the present work, we compared the fiducial (FID)‐ and iterative closet point (ICP)‐based co‐registration approaches for computing an approximated sourcemodel using single and multiple available brain MRI scans. We also evaluated the two different template MRI selection strategies: one is based on objective registration error, and another on sourcemodel approximation error. The outcome suggests that averaged approximated solutions using multiple template brain MRI scans showed better performance than single‐template MRI‐based solutions. The FID‐based approach performed better than the ICP‐based approach for co‐registration of the digitized head surface and brain MRI scan. While selecting template MRIs, the selection approach based on objective registration error showed better performance than a sourcemodel approximation error‐based criterion. Cross‐dataset performance analysis showed a higher model approximation error than within‐dataset analysis. In conclusion, the FID‐based co‐registration approach and objective registration error‐based MRI selection criteria provide a simple, fast and more accurate solution to compute averaged approximated models compared with the ICP‐based approach. The demography of brain MRI scans should be similar to that of the query subject whose brain MRI scan was unavailable.
AbstractList EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel. As part of this computation, co‐registration of the digitized head information and brain MRI scan is the essential step. However, in the absence of a brain MRI scan, an approximated sourcemodel and headmodel can be computed from the subject's digitized head information and brain MRI scans from other subjects. In the present work, we compared the fiducial (FID)‐ and iterative closet point (ICP)‐based co‐registration approaches for computing an approximated sourcemodel using single and multiple available brain MRI scans. We also evaluated the two different template MRI selection strategies: one is based on objective registration error, and another on sourcemodel approximation error. The outcome suggests that averaged approximated solutions using multiple template brain MRI scans showed better performance than single‐template MRI‐based solutions. The FID‐based approach performed better than the ICP‐based approach for co‐registration of the digitized head surface and brain MRI scan. While selecting template MRIs, the selection approach based on objective registration error showed better performance than a sourcemodel approximation error‐based criterion. Cross‐dataset performance analysis showed a higher model approximation error than within‐dataset analysis. In conclusion, the FID‐based co‐registration approach and objective registration error‐based MRI selection criteria provide a simple, fast and more accurate solution to compute averaged approximated models compared with the ICP‐based approach. The demography of brain MRI scans should be similar to that of the query subject whose brain MRI scan was unavailable.
EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel . As part of this computation, co‐registration of the digitized head information and brain MRI scan is the essential step. However, in the absence of a brain MRI scan, an approximated sourcemodel and headmodel can be computed from the subject's digitized head information and brain MRI scans from other subjects. In the present work, we compared the fiducial (FID)‐ and iterative closet point (ICP)‐based co‐registration approaches for computing an approximated sourcemodel using single and multiple available brain MRI scans. We also evaluated the two different template MRI selection strategies: one is based on objective registration error, and another on sourcemodel approximation error. The outcome suggests that averaged approximated solutions using multiple template brain MRI scans showed better performance than single‐template MRI‐based solutions. The FID‐based approach performed better than the ICP‐based approach for co‐registration of the digitized head surface and brain MRI scan. While selecting template MRIs, the selection approach based on objective registration error showed better performance than a sourcemodel approximation error‐based criterion. Cross‐dataset performance analysis showed a higher model approximation error than within‐dataset analysis. In conclusion, the FID‐based co‐registration approach and objective registration error‐based MRI selection criteria provide a simple, fast and more accurate solution to compute averaged approximated models compared with the ICP‐based approach. The demography of brain MRI scans should be similar to that of the query subject whose brain MRI scan was unavailable.
Author Gohel, Bakul
Khare, Mahish
Author_xml – sequence: 1
  givenname: Bakul
  orcidid: 0000-0002-5435-0992
  surname: Gohel
  fullname: Gohel, Bakul
  email: bakul_gohel@daiict.ac.in
  organization: Dhirubhai Ambani Institute of Information and Communication Technology (DA‐IICT)
– sequence: 2
  givenname: Mahish
  orcidid: 0000-0002-2296-2732
  surname: Khare
  fullname: Khare, Mahish
  organization: Dhirubhai Ambani Institute of Information and Communication Technology (DA‐IICT)
BookMark eNp1kM9KAzEQxoMo2FYPvkHAg3jYNsnmz8ZbKWsttCii55BNs-2Wmq3JVulFfASf0Scx63r1MsN885sZ5uuDY1c7C8AFRkOMEBlVL3pIiMj4EehhJLOkDceghzIpE0mZOAX9EDYIYcwQ64GPPJ-OFvkUhnrvjYVxflW5FawcbNYW6iJYF-W6hGFfbKxprgIsvI7txeMMBqPdDXywPuxiq3qLoIOm_v788nZVhcbrpoqKdssOt9sWa5XdztfarM_ASam3wZ7_5QF4vs2fJnfJ_H46m4zniSFM8ERwVDIiC8EFIWapM8zEkmFpeIE4YYynKbUGy4wwLYr4JUozQ0ujqTaIWp0OwGW3N5593dvQqE3818WTighOKeVS4khdd5TxdQjelmrnoyH-oDBSrb0qVurX3siOOva92trD_6CaLcbdxA_sy32I
Cites_doi 10.1016/S0167-8655(03)00157-0
10.1016/j.neuroimage.2015.01.043
10.1016/j.neuroimage.2020.117430
10.1093/acprof:oso/9780195307238.001.0001
10.3389/fninf.2017.00050
10.1002/hbm.20171
10.1016/B978-008045046-9.00306-5
10.1093/cercor/bhy076
10.1002/hbm.20465
10.1016/j.neuroimage.2010.10.036
10.1016/j.cortex.2014.11.019
10.1038/s41467-019-10597-z
10.1007/s10439-010-0230-0
10.3389/fnins.2019.00076
10.1155/2009/656092
10.3109/10929080500066922
10.1371/journal.pone.0152482
10.3389/fneur.2019.00325
10.4015/S1016237220500192
10.1088/1741-2552/aafdd1
10.1016/j.jneumeth.2009.09.005
10.3389/fnhum.2020.00192
10.1155/2011/156869
10.1155/2011/879716
10.1002/hbm.10133
10.3389/fnins.2018.00530
10.1111/psyp.12769
10.3390/jimaging3030028
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals, LLC
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals, LLC
DBID AAYXX
CITATION
DOI 10.1002/ima.22786
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 298
ExternalDocumentID 10_1002_ima_22786
IMA22786
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c2576-760f529b76722cda8157d519c6b062556334ec19825a7b457038c4fca4ac04ea3
IEDL.DBID 33P
ISSN 0899-9457
IngestDate Tue Nov 19 03:38:22 EST 2024
Fri Nov 22 01:07:21 EST 2024
Sat Aug 24 01:02:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2576-760f529b76722cda8157d519c6b062556334ec19825a7b457038c4fca4ac04ea3
ORCID 0000-0002-2296-2732
0000-0002-5435-0992
PQID 2764446991
PQPubID 1026352
PageCount 12
ParticipantIDs proquest_journals_2764446991
crossref_primary_10_1002_ima_22786
wiley_primary_10_1002_ima_22786_IMA22786
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2011a; 2011
2017; 3
2021; 2
2010
2019; 10
2021; 224
2019; 13
2004; 9
2009
2019; 16
2011; 54
2020; 14
2004
2020; 32
2011; 39
2016; 11
2009; 2009
2006; 27
2017; 11
2008; 29
2017; 54
2015; 66
2015; 110
2003; 24
2019; 29
2009; 185
2018; 12
2003; 20
e_1_2_9_30_1
Zorzos I (e_1_2_9_6_1) 2021; 2
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 27
  start-page: 129
  issue: 2
  year: 2006
  end-page: 143
  article-title: Generic head models for atlas‐based EEG source analysis
  publication-title: Hum Brain Mapp
– volume: 3
  start-page: 28
  issue: 3
  year: 2017
  article-title: Assessment of geometric distortion in six clinical scanners using a 3D‐printed grid phantom
  publication-title: J Imaging
– volume: 54
  start-page: 2732
  issue: 4
  year: 2011
  end-page: 2740
  article-title: Practical constraints on estimation of source extent with MEG beamformers
  publication-title: Neuroimage
– volume: 39
  start-page: 983
  issue: 3
  year: 2011
  end-page: 995
  article-title: EEG‐MRI co‐registration and sensor labeling using a 3D laser scanner
  publication-title: Ann Biomed Eng
– volume: 20
  start-page: 142
  issue: 3
  year: 2003
  end-page: 147
  article-title: Accuracy and applications of group MEG studies using cortical source locations estimated from Participants' scalp surfaces
  publication-title: Hum Brain Mapp
– volume: 224
  start-page: 1
  year: 2021
  article-title: Spatial fidelity of MEG/EEG source estimates: a general evaluation approach
  publication-title: Neuroimage
– volume: 2011
  start-page: 879716
  year: 2011a
  article-title: Brainstorm: a user‐friendly application for MEG/EEG analysis
  publication-title: Comput Intell Neurosci
– volume: 32
  start-page: 2050019
  issue: 3
  year: 2020
  article-title: Automatic co‐registration of MEG and 3D digitization using 3d generalized hough transform
  publication-title: Biomed Eng Appl Basis Commun
– volume: 14
  year: 2020
  article-title: Modulation of intrinsic brain connectivity by implicit electroencephalographic neurofeedback
  publication-title: Front Hum Neurosci
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  article-title: Learning of distant state predictions by the orbitofrontal cortex in humans
  publication-title: Nat Commun
– volume: 13
  start-page: 1
  year: 2019
  article-title: MEG/EEG group analysis with brainstorm
  publication-title: Front Neurosci
– volume: 9
  start-page: 145
  issue: 4
  year: 2004
  end-page: 153
  article-title: Submillimetric target‐registration error using a novel, non‐invasive fiducial system for image‐guided otologic surgery
  publication-title: Computer Aided Surg
– volume: 110
  start-page: 60
  year: 2015
  end-page: 77
  article-title: Influence of the head model on EEG and MEG source connectivity analyses
  publication-title: Neuroimage
– year: 2010
– volume: 12
  start-page: 1
  year: 2018
  article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices
  publication-title: Front Neurosci
– volume: 29
  start-page: 1969
  issue: 5
  year: 2019
  end-page: 1983
  article-title: Cross‐task contributions of Frontobasal ganglia circuitry in response inhibition and conflict‐induced slowing
  publication-title: Cereb Cortex
– volume: 2011
  start-page: 156869
  year: 2011a
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput Intell Neurosci
– volume: 29
  start-page: 1288
  issue: 11
  year: 2008
  end-page: 1301
  article-title: Validation of a method for co‐registering scalp recording locations with 3D structural MR images
  publication-title: Hum Brain Mapp
– year: 2004
– volume: 11
  start-page: 1
  issue: 5
  year: 2016
  article-title: Grey matter changes associated with heavy cannabis use: a longitudinal sMRI study
  publication-title: PLoS ONE
– volume: 10
  start-page: 1
  year: 2019
  article-title: EEG source imaging: a practical review of the analysis steps
  publication-title: Front Neurol
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 12
  article-title: EEG/MEG source imaging: methods, challenges, and open issues
  publication-title: Comput Intell Neurosci
– volume: 11
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Approximate subject specific pseudo MRI from an available MRI dataset for MEG source imaging
  publication-title: Front Neuroinform
– volume: 24
  start-page: 2967
  issue: 16
  year: 2003
  end-page: 2976
  article-title: An accurate and fast point‐to‐plane registration technique
  publication-title: Pattern Recog Lett
– volume: 16
  start-page: 1
  issue: 2
  year: 2019
  article-title: Spatial localization of EEG electrodes using 3D scanning
  publication-title: J Neural Eng
– volume: 54
  start-page: 24
  issue: 1
  year: 2017
  end-page: 33
  article-title: A test‐retest reliability analysis of diffusion measures of white matter tracts relevant for cognitive control
  publication-title: Psychophysiology
– year: 2009
  article-title: Voxel based morphometry
  publication-title: Encyclopedia of Neuroscience
– volume: 66
  start-page: 115
  year: 2015
  end-page: 133
  article-title: A purely confirmatory replication study of structural brain‐behavior correlations
  publication-title: Cortex
– volume: 185
  start-page: 125
  issue: 1
  year: 2009
  end-page: 132
  article-title: Approximate average head models for EEG source imaging
  publication-title: J Neurosci Methods
– volume: 2
  start-page: 378
  issue: 3
  year: 2021
  end-page: 391
  article-title: Advances in electrical source imaging: a review of the current approaches
  publication-title: Appl Challenges Signal
– ident: e_1_2_9_17_1
  doi: 10.1016/S0167-8655(03)00157-0
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neuroimage.2015.01.043
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuroimage.2020.117430
– ident: e_1_2_9_3_1
  doi: 10.1093/acprof:oso/9780195307238.001.0001
– ident: e_1_2_9_11_1
  doi: 10.3389/fninf.2017.00050
– ident: e_1_2_9_10_1
  doi: 10.1002/hbm.20171
– ident: e_1_2_9_18_1
  doi: 10.1016/B978-008045046-9.00306-5
– ident: e_1_2_9_27_1
  doi: 10.1093/cercor/bhy076
– ident: e_1_2_9_15_1
  doi: 10.1002/hbm.20465
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2010.10.036
– ident: e_1_2_9_16_1
– ident: e_1_2_9_26_1
  doi: 10.1016/j.cortex.2014.11.019
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-019-10597-z
– ident: e_1_2_9_20_1
  doi: 10.1007/s10439-010-0230-0
– ident: e_1_2_9_14_1
  doi: 10.3389/fnins.2019.00076
– ident: e_1_2_9_5_1
  doi: 10.1155/2009/656092
– ident: e_1_2_9_19_1
  doi: 10.3109/10929080500066922
– ident: e_1_2_9_30_1
  doi: 10.1371/journal.pone.0152482
– ident: e_1_2_9_4_1
  doi: 10.3389/fneur.2019.00325
– ident: e_1_2_9_7_1
  doi: 10.4015/S1016237220500192
– ident: e_1_2_9_21_1
  doi: 10.1088/1741-2552/aafdd1
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jneumeth.2009.09.005
– ident: e_1_2_9_31_1
  doi: 10.3389/fnhum.2020.00192
– volume: 2
  start-page: 378
  issue: 3
  year: 2021
  ident: e_1_2_9_6_1
  article-title: Advances in electrical source imaging: a review of the current approaches
  publication-title: Appl Challenges Signal
  contributor:
    fullname: Zorzos I
– ident: e_1_2_9_8_1
  doi: 10.1155/2011/156869
– ident: e_1_2_9_9_1
  doi: 10.1155/2011/879716
– ident: e_1_2_9_12_1
  doi: 10.1002/hbm.10133
– ident: e_1_2_9_25_1
  doi: 10.3389/fnins.2018.00530
– ident: e_1_2_9_29_1
  doi: 10.1111/psyp.12769
– ident: e_1_2_9_24_1
  doi: 10.3390/jimaging3030028
SSID ssj0011505
Score 2.3479002
Snippet EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel. As part of this computation, co‐registration of the...
EEG/MEG source localization requires a subject's brain MRI to compute the sourcemodel and headmodel . As part of this computation, co‐registration of the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 287
SubjectTerms Approximation
Brain
Datasets
Demography
Digitization
EEG
Error analysis
forward model
ICP
inverse modelling
Iterative methods
Magnetic resonance imaging
MEG
MRI co‐registration
Registration
Title EEG/MEG source imaging in the absence of subject's brain MRI scan: Perspective on co‐registration and MRI selection approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22786
https://www.proquest.com/docview/2764446991
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIaDDgi68DIqjo4SRNBNmTZJk1ZXg3Yui5HBC7graS4wm1assxUfwWf0SUzSdkYXguCuLWlaenLa_5wm3wHgjFGOUEy1hzHHJkCR0vgczzzKcYaV1Dxw4PnRPbt9im4Si8m5atbCVHyIRcLNeoZ7X1sH51nZW0JDZxYbhFhkcdsmSnDLN_B08QfBCB03fTGyBEoSsoYq5KPe4syf36KlwPwuU913ZrD1rzvcBpu1vIT9ajzsgBWVt8HGN-hgG6y5SZ-i3AVvSTLsTZIhrDL40PRkSxbBWQ6NLITmMtbtYaFhOc9svua8hJktKQEnd2NYGqNcwulysSYsciiKz_cPW-yhwfFCnsuquSu4447UGPM98DhIHq5HXl2PwRM2LPEY9XWI4oxRhpCQPApCJo0CFDTzqUWZYUyUCGITdHKWEcv2igTRghMufKI43getvMjVAYBE-JHmJtoLAkV0IGKJsAqVoCbC0jHWHXDaWCZ9rrAbaQVYRqnZS91j7YBuY7O09rwyRcwoPBPzx0EHXDjr_N5BOp703cbh35segXVbcb7KwnRB6_Vlro7BainnJ24AfgHZf9w6
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfThH14G9x_gwi6KWsTbKkFS-i1Q3dGDrBW0nTBHbpxLqr-Cf4N_qXmKTrpgdB8NaWNJS-vOb7XpPPAzjmTGAcMe0RIogJULLM-JxIPSZISlSmReDA860H3n0Kr2KLyTmv9sKUfIhJws16hvteWwe3CenGlBo6sNwgzENWgznKzEC0GzhIb_IPwUgdt4AxtAxK2uQVV8jHjcmtP2ejqcT8LlTdTHO98r9nXIXlscJEF-WQWIMZla_D0jfu4DrMu3WfstiAtzi-aXTiG1Qm8ZHpyVYtQoMcGWWIRFpYz0dDjYpRalM2JwVKbVUJ1Llvo8LY5Qz1pvs10TBHcvj5_mHrPVREXiTyrGzuau64K2OS-SY8Xsf9y5Y3LsngSRuZeJz5uomjlDOOscxEGDR5ZkSgZKnPLM2MEKpkEJm4U_CUWrxXKKmWggrpUyXIFszmw1xtA6LSD7UwAV8QKKoDGWWYqKaSzARZOiK6DkeVaZLnkryRlIxlnJizxL3WOuxVRkvGzlckmBuRZ8L-KKjDqTPP7x0k7c6FO9j5e9NDWGj1O3fJXbt7uwuLtgB9mZTZg9nXl5Hah1qRjQ7caPwC0NHgYg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcHHyh68C2uzyCCXsq2STZp9STa1UVXFh_graR5gJeuWPcqfgQ_o5_EJN3u6kEQvLUlDaWTaf4zTX4DcMCZwDhhJiBEEBugKGV9TuQBEyQnWhkRefD85R2_eYzPU4fJOan3wlR8iFHCzXmG_147B39WpjmGhj45bBDmMZuEaWpluAPnE9Ib_UKwSsevX4wdgpK2eI0VCnFzdOvPyWisML_rVD_RtBf_9YhLsDDUl-i0GhDLMKGLFZj_Rh1cgRm_6lOWq_CWphfNbnqBqhQ-sj25mkXoqUBWFyKRl87vUd-gcpC7hM1hiXJXUwJ1bzuotFY5Rr3xbk3UL5Dsf75_uGoPNY8XiUJVzX3FHX9lyDFfg4d2en92GQwLMgTSxSUBZ6Fp4STnjGMslYijFldWAkqWh8yxzAihWkaJjToFz6mDe8WSGimokCHVgqzDVNEv9AYgKsPYCBvuRZGmJpKJwkS3tGQ2xDIJMQ3Yry2TPVfcjawiLOPMnmX-tTZgu7ZZNnS9MsPcSjwb9CdRA468dX7vIOt0T_3B5t-b7sFs77ydXXdurrZgzlWfrzIy2zD1-jLQOzBZqsGuH4tfL1DfCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG%2FMEG+source+imaging+in+the+absence+of+subject%27s+brain+MRI+scan%3A+Perspective+on+co%E2%80%90registration+and+MRI+selection+approach&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Gohel%2C+Bakul&rft.au=Khare%2C+Mahish&rft.date=2023-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=33&rft.issue=1&rft.spage=287&rft.epage=298&rft_id=info:doi/10.1002%2Fima.22786&rft.externalDBID=10.1002%252Fima.22786&rft.externalDocID=IMA22786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon