Evaluation of silver nanoparticle-impregnated PMMA loaded with vancomycin or gentamicin against bacterial biofilm formation
Bone cement containing vancomycin or gentamicin is a therapeutic strategy for combating orthopedic infections: however, the activity of these antibiotics is narrow. Silver nanoparticles (AgNPs) are nanocomponents with a wide spectrum, including multidrug-resistant bacteria. In the present study, we...
Saved in:
Published in: | Injury Vol. 54 Suppl 6; p. 110649 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
01-11-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bone cement containing vancomycin or gentamicin is a therapeutic strategy for combating orthopedic infections: however, the activity of these antibiotics is narrow. Silver nanoparticles (AgNPs) are nanocomponents with a wide spectrum, including multidrug-resistant bacteria. In the present study, we aimed to evaluate the effect of AgNP-loaded polymethylmethacrylate (PMMA) on biofilm formation by Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis.
The effect of AgNP-loaded PMMA with and without vancomycin or gentamicin on biofilm production was quantitatively analyzed. S. aureus, E. coli, P. aeruginosa, and S. epidermidis were included as biofilm-producing microorganisms in the in vitro model.
AgNP-loaded PMMA with antibiotics reduced the number of colony-forming units (CFUs; p<0.001). However, AgNP-loaded PMMA alone did not significantly reduce biofilm formation.
Our study demonstrated the potential of AgNP-loaded PMMA. Notably, we observed that AgNP-loaded PMMA containing vancomycin or gentamycin exhibited significantly superior efficacy, with satisfactory activity against most biofilm-forming microbial agents examined. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-1383 1879-0267 |
DOI: | 10.1016/j.injury.2023.02.032 |