Comparison of different models for the estimation of genetic parameters in tropical goats
This study aimed to estimate the variance components and genetic parameters for body weight in tropical goats testing different models using Bayesian approach and investigate the effectiveness of fitting the effects of maternal genetic, permanent environmental, and covariance between direct and mate...
Saved in:
Published in: | Tropical animal health and production Vol. 54; no. 6; p. 381 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
01-12-2022
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study aimed to estimate the variance components and genetic parameters for body weight in tropical goats testing different models using Bayesian approach and investigate the effectiveness of fitting the effects of maternal genetic, permanent environmental, and covariance between direct and maternal effects. Records from 1980 to 2010 of 1453 Anglo-Nubian goats’ herd were used. Six performance growth traits: birth weight (BW, kg), at 28 (W28, kg), 56 (W56, kg), 112 (W112, kg), 140 (W140, kg), and 196 (W196; kg) days of age, were evaluated. There was a negative covariance between direct genetic effects and maternal additive for all weights. The effect of maternal permanent environment is an important source of variation for performance characteristics in goats until the 196 days, and must be considered in genetic evaluation models in order to obtain accurate predictions of breeding values of individuals. The importance of inclusion of the additive maternal effect appears to be more dependent on the structure of the data set under evaluation. Given the structure of the data, the described management and criteria for choosing the best model (deviance information criterion and the Bayes factor) should make the estimation of parameters for weights at birth and at 28 and 56 days using model IV, since that will provide more consistent results than the type I (less complex), without the need of accurate representations of knowledge prior to data collection. Over time, the breeding program will have more data and thereby increase the possibility of building a prior distribution confident that would enable the inference of parameters for more complex models. However, these are preferable components for the estimation of the characteristics and weights to 112 at 140 and at 196 days, using model I (less complex). |
---|---|
AbstractList | This study aimed to estimate the variance components and genetic parameters for body weight in tropical goats testing different models using Bayesian approach and investigate the effectiveness of fitting the effects of maternal genetic, permanent environmental, and covariance between direct and maternal effects. Records from 1980 to 2010 of 1453 Anglo-Nubian goats' herd were used. Six performance growth traits: birth weight (BW, kg), at 28 (W28, kg), 56 (W56, kg), 112 (W112, kg), 140 (W140, kg), and 196 (W196; kg) days of age, were evaluated. There was a negative covariance between direct genetic effects and maternal additive for all weights. The effect of maternal permanent environment is an important source of variation for performance characteristics in goats until the 196 days, and must be considered in genetic evaluation models in order to obtain accurate predictions of breeding values of individuals. The importance of inclusion of the additive maternal effect appears to be more dependent on the structure of the data set under evaluation. Given the structure of the data, the described management and criteria for choosing the best model (deviance information criterion and the Bayes factor) should make the estimation of parameters for weights at birth and at 28 and 56 days using model IV, since that will provide more consistent results than the type I (less complex), without the need of accurate representations of knowledge prior to data collection. Over time, the breeding program will have more data and thereby increase the possibility of building a prior distribution confident that would enable the inference of parameters for more complex models. However, these are preferable components for the estimation of the characteristics and weights to 112 at 140 and at 196 days, using model I (less complex). This study aimed to estimate the variance components and genetic parameters for body weight in tropical goats testing different models using Bayesian approach and investigate the effectiveness of fitting the effects of maternal genetic, permanent environmental, and covariance between direct and maternal effects. Records from 1980 to 2010 of 1453 Anglo-Nubian goats’ herd were used. Six performance growth traits: birth weight (BW, kg), at 28 (W28, kg), 56 (W56, kg), 112 (W112, kg), 140 (W140, kg), and 196 (W196; kg) days of age, were evaluated. There was a negative covariance between direct genetic effects and maternal additive for all weights. The effect of maternal permanent environment is an important source of variation for performance characteristics in goats until the 196 days, and must be considered in genetic evaluation models in order to obtain accurate predictions of breeding values of individuals. The importance of inclusion of the additive maternal effect appears to be more dependent on the structure of the data set under evaluation. Given the structure of the data, the described management and criteria for choosing the best model (deviance information criterion and the Bayes factor) should make the estimation of parameters for weights at birth and at 28 and 56 days using model IV, since that will provide more consistent results than the type I (less complex), without the need of accurate representations of knowledge prior to data collection. Over time, the breeding program will have more data and thereby increase the possibility of building a prior distribution confident that would enable the inference of parameters for more complex models. However, these are preferable components for the estimation of the characteristics and weights to 112 at 140 and at 196 days, using model I (less complex). |
ArticleNumber | 381 |
Author | Del Pilar Solar Diaz, Iara Ferreira, Josiel de Souza, José Ernandes Rufino Silveira, Robson Mateus Freitas de Sousa, Wandrick Hauss |
Author_xml | – sequence: 1 givenname: José Ernandes Rufino surname: de Souza fullname: de Souza, José Ernandes Rufino organization: Department of Animal Science, Federal Rural University of the Semi-Arid Region (UFERSA) – sequence: 2 givenname: Josiel surname: Ferreira fullname: Ferreira, Josiel email: jjosielborges@hotmail.com organization: Instituto de Zootecnia – sequence: 3 givenname: Iara surname: Del Pilar Solar Diaz fullname: Del Pilar Solar Diaz, Iara organization: Escola de Medicina Veterinária e Zootecnia, Federal University of the Bahia (UFBA) – sequence: 4 givenname: Robson Mateus Freitas orcidid: 0000-0003-2285-9695 surname: Silveira fullname: Silveira, Robson Mateus Freitas email: robsonmateus1994@hotmail.com, robsonmateusfs@gmail.com organization: Department of Animal Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP) – sequence: 5 givenname: Wandrick Hauss surname: de Sousa fullname: de Sousa, Wandrick Hauss organization: Empresa Estadual de Pesquisa Agropecuária da Paraíba (EMEPA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36376512$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kLtOAzEQRS0URB7wAxTIEvWC396UKOIlRaJJQ2U53nHYKLsOtlPw9xg2QEc1hc-9Mz5TNOpDDwhdUnJDCdG3iVImSUUYqwjnWlTqBE2o1LzSgtcjNCFEzCuhhR6jaUpbQkqsVmdozBXXSlI2Qa-L0O1tbFPocfC4ab2HCH3GXWhgl7APEec3wJBy29ncDtgGesitwyVpO8gQE257nGPYt87u8CbYnM7Rqbe7BBfHOUOrh_vV4qlavjw-L-6WlWNS5co6L-VaUA_gnOXzmmkt17Rpag3Ec9EoVjsrufeudiBJQ2ohG285YaAt8Bm6Hmr3MbwfyplmGw6xLxsN01wRzZlihWID5WJIKYI3-1j-Ez8MJeZLphlkmiLTfMs0qoSujtWHdQfNb-THXgH4AKTy1G8g_u3-p_YTjWWCtw |
Cites_doi | 10.1007/s11250-020-02345-z 10.1214/ss/1177011143 10.2527/1996.74112586x 10.1590/S0102-09352006000400021 10.1590/S1413-70542006000300021 10.1007/s11250-020-02445-w 10.1127/0941-2948/2013/0507 10.1023/A:1018598421607 10.1590/S1516-35982007000700012 10.1287/opre.31.6.1109 10.1080/01621459.1995.10476572 10.1111/1467-9868.00353 10.21034/sr.148 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 2022. The Author(s), under exclusive licence to Springer Nature B.V. The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature B.V. – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7T7 7U7 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0K M0S M1P M7N M7P P64 PQEST PQQKQ PQUKI |
DOI | 10.1007/s11250-022-03374-6 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Zoology Agriculture |
EISSN | 1573-7438 |
ExternalDocumentID | 10_1007_s11250_022_03374_6 36376512 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Capes |
GroupedDBID | --- -4W -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FW 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOSHJ APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EDH EIOEI EJD EMOBN EN4 EPAXT ESBYG ESTFP EYRJQ F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M1P M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBY SCLPG SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7R Z7U Z7W Z83 ZMTXR ZOVNA ~EX ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AIGIU ALIPV CGR CUY CVF ECM EIF NPM AAEOY AAQLM AAYXX CITATION H13 7QL 7T7 7U7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PQEST PQUKI |
ID | FETCH-LOGICAL-c256t-acf55b41feecca3982775b1dd87e0f34d628ca53ffc8ce50d0845dfa302e7ae3 |
IEDL.DBID | AEJHL |
ISSN | 0049-4747 |
IngestDate | Fri Oct 25 07:50:02 EDT 2024 Thu Nov 21 20:57:34 EST 2024 Wed Oct 16 00:40:09 EDT 2024 Sat Dec 16 12:06:32 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Anglo-Nubian goats Improvement Models Performance Genetic parameters |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c256t-acf55b41feecca3982775b1dd87e0f34d628ca53ffc8ce50d0845dfa302e7ae3 |
ORCID | 0000-0003-2285-9695 |
PMID | 36376512 |
PQID | 2736073262 |
PQPubID | 44713 |
ParticipantIDs | proquest_journals_2736073262 crossref_primary_10_1007_s11250_022_03374_6 pubmed_primary_36376512 springer_journals_10_1007_s11250_022_03374_6 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: United States |
PublicationTitle | Tropical animal health and production |
PublicationTitleAbbrev | Trop Anim Health Prod |
PublicationTitleAlternate | Trop Anim Health Prod |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Van Kaam, J.B.C.H.M., 1998. Gibnal 2.9: Analyzing program for Markow Chain Monte Carlo Sequences. Wageningen, The Netherlands: Department of Animal Science, Wageningen Agricultural University. Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 711–728. TesemaZAlemayehuKGetachewTKebedeDDeribeBTayeMTilahunMLakewMKefaleABelaynehNZegeyeAYizengawLEstimation of genetic parameters for growth traits and Kleiber ratios in Boer x Central Highland goatTropical Animal Health and Production2020523195320510.1007/s11250-020-02345-z HeidelbergerPWelchPDSimulation run length control in the presence of an initial transientOperations Research1983311109114410.1287/opre.31.6.1109 Perotto, D., 2000. O efeito materno no melhoramento animal. IV Curso de Melhoramento de Gado de Corte da EMBRAPA – GENEPLUS. Campo Grande, EMBRAPA- Gado de Corte. DempsterAPThe direct use of likelihood for significance testingStatistics and Computing1997724725210.1023/A:1018598421607 SarmentoJLRToresRASousaWHPereiraCSLopesPSBredaFCEstimação de parâmetros genéticos para características de crescimento de ovinos Santa Inês utilizando modelos uni e multicaracterísticasArquivo Brasileiro De Medicina Veterinária e Zootecnia20065858158910.1590/S0102-09352006000400021 SousaJERSarmentoJLRSousaWHSousaMSMSousa JúniorSCde ÒAOSantosGVAspectos genéticos da curva de crescimento de caprinos AnglonubianoRevista Brasileira de Saúde e Produção Animal201112340349 KassRERafteryAEBayes factorsJournal of the American Statistical Association19959077379510.1080/01621459.1995.10476572 IBGE. Instituto Brasileiro de Geografia e Estatística, Pesquisa Pecuária Municipal, 2018. Available in https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2018, Access in: 19st May 2021. FonsecaRCobuciJAPiresAVInfluência da informação à priori na escolha de modelos para avaliação genética de suínosCiência e Agrotecnologia20063053854610.1590/S1413-70542006000300021 RafteryAELewisSMComment: One long run with diagnostics: implementation strategies for Markov Chain Monte CarloStatistical Science19927449349710.1214/ss/1177011143 Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4 (ed JM Bernado, JO Berger, AP Dawid and AFM Smith). Clarendon Press, Oxford, UK Misztal, I., Tsuruta, S., Strabel, T., 2002. Blupf90 and related programs (BGF90). In: World Congress on Genetics Applied to Livestock Production, 7, 2002, Monpellier, France. Anais… Montpellier: WCGALP, 2002, p.7. Carneiro JúniorJMAssisGMLEuclydesRFTorresRALopesPSEstimulação de componentes de variância utilizando-se inferência Bayesiana e frequentista em dados simulados sob heterogeneidade de variânciasRevista Brasileira De Zootecnia2005361539154810.1590/S1516-35982007000700012 Van TasselCPVan VleckLDMultiple-trait Gibbs sampler for animal models: Flexible programs for Bayesian and likelihood-based (co)variance component inferenceJournal of Animal Science1996742586259710.2527/1996.74112586x TeraAGetachewTMelesseARekikMRischkowskyBMwacharoJMAbateZHaileAEstimates of genetic parameters and trends for reproduction traits in Bonga sheep, EthiopiaTropical Animal Health and Production2020534210.1007/s11250-020-02445-w SpiegelhalterDMBestNGCarlinBPVan Der LindeABayesian measures of model complexity and fitJournal of Royal Statistical Society- Series B (Statistical Methodology)20026458361610.1111/1467-9868.00353 JER Sousa (3374_CR14) 2011; 12 JM Carneiro Júnior (3374_CR2) 2005; 36 JLR Sarmento (3374_CR12) 2006; 58 P Heidelberger (3374_CR6) 1983; 31 RE Kass (3374_CR8) 1995; 90 R Fonseca (3374_CR4) 2006; 30 Z Tesema (3374_CR16) 2020; 52 A Tera (3374_CR15) 2020; 53 DM Spiegelhalter (3374_CR13) 2002; 64 AP Dempster (3374_CR3) 1997; 7 3374_CR9 3374_CR5 3374_CR7 3374_CR10 AE Raftery (3374_CR11) 1992; 7 3374_CR17 3374_CR1 CP Van Tassel (3374_CR18) 1996; 74 |
References_xml | – volume: 52 start-page: 3195 year: 2020 ident: 3374_CR16 publication-title: Tropical Animal Health and Production doi: 10.1007/s11250-020-02345-z contributor: fullname: Z Tesema – volume: 7 start-page: 493 issue: 4 year: 1992 ident: 3374_CR11 publication-title: Statistical Science doi: 10.1214/ss/1177011143 contributor: fullname: AE Raftery – volume: 74 start-page: 2586 year: 1996 ident: 3374_CR18 publication-title: Journal of Animal Science doi: 10.2527/1996.74112586x contributor: fullname: CP Van Tassel – volume: 58 start-page: 581 year: 2006 ident: 3374_CR12 publication-title: Arquivo Brasileiro De Medicina Veterinária e Zootecnia doi: 10.1590/S0102-09352006000400021 contributor: fullname: JLR Sarmento – ident: 3374_CR10 – volume: 30 start-page: 538 year: 2006 ident: 3374_CR4 publication-title: Ciência e Agrotecnologia doi: 10.1590/S1413-70542006000300021 contributor: fullname: R Fonseca – ident: 3374_CR7 – ident: 3374_CR9 – volume: 53 start-page: 42 year: 2020 ident: 3374_CR15 publication-title: Tropical Animal Health and Production doi: 10.1007/s11250-020-02445-w contributor: fullname: A Tera – ident: 3374_CR1 doi: 10.1127/0941-2948/2013/0507 – volume: 7 start-page: 247 year: 1997 ident: 3374_CR3 publication-title: Statistics and Computing doi: 10.1023/A:1018598421607 contributor: fullname: AP Dempster – volume: 36 start-page: 1539 year: 2005 ident: 3374_CR2 publication-title: Revista Brasileira De Zootecnia doi: 10.1590/S1516-35982007000700012 contributor: fullname: JM Carneiro Júnior – ident: 3374_CR17 – volume: 12 start-page: 340 year: 2011 ident: 3374_CR14 publication-title: Revista Brasileira de Saúde e Produção Animal contributor: fullname: JER Sousa – volume: 31 start-page: 1109 year: 1983 ident: 3374_CR6 publication-title: Operations Research doi: 10.1287/opre.31.6.1109 contributor: fullname: P Heidelberger – volume: 90 start-page: 773 year: 1995 ident: 3374_CR8 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1995.10476572 contributor: fullname: RE Kass – volume: 64 start-page: 583 year: 2002 ident: 3374_CR13 publication-title: Journal of Royal Statistical Society- Series B (Statistical Methodology) doi: 10.1111/1467-9868.00353 contributor: fullname: DM Spiegelhalter – ident: 3374_CR5 doi: 10.21034/sr.148 |
SSID | ssj0010086 |
Score | 2.339978 |
Snippet | This study aimed to estimate the variance components and genetic parameters for body weight in tropical goats testing different models using Bayesian approach... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 381 |
SubjectTerms | Age Animal sciences Animals Bayes Theorem Bayesian analysis Biomedical and Life Sciences Birth weight Body Weight Breeding Covariance Data collection Estimates Female Genetic effects Goats Goats - genetics Knowledge representation Life Sciences Males Maternal effects Maternal Inheritance Mathematical models Models, Genetic Parameters Parturition Phenotype Pregnancy Short Communications Software Sorghum Veterinary Medicine/Veterinary Science Zoology |
Title | Comparison of different models for the estimation of genetic parameters in tropical goats |
URI | https://link.springer.com/article/10.1007/s11250-022-03374-6 https://www.ncbi.nlm.nih.gov/pubmed/36376512 https://www.proquest.com/docview/2736073262 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64IOjBZdzGjRy8aaQmTdMeh3FERL0o4ngpaZKKiO0w7fx_X7rMIKMHPRVKlvK-17yPvA3gVGmNVkgnVCdSUj-NDI3QDNFIa6mZSDhLqtYJj_LhJbwauDI5fHp1kX1ctB7J6qCe5bqhKfaoCz73OJc-DRZhGW2PQOVe7g1ub-6mzgNH02vHckR9pMtNrszPq3y3R3Mkc85BWtmd641_ffEmrDc0k_RqvdiCBZt1YK33Nm5KbdgOdJ5dJEyVjkvuGw97B1Ze8-qifRuG_WmLQpKnpO2kUpKqeU5BkO0SZI_Elemo8x_dMNRHlxZJXEnxT7dBQd4zUo7zkdMG8parstiBp-vBU_-GNo0YKMIVlFTpVIjEv0ytA5xHIZNSJJfGhNJ6KfdNwEKtBE9THWorPOOFvjCp4h6zUlm-C0tZntl9IFJzge-R5HjaV0IqaQLBGVfa1yZSvAtnLRrxqC63Ec8KKzt5xijPuJJnHHThqAUsbn69IkY-FuC5xQLWhb0axOlSPMDzFClOF85byGYTf9_n4G_DD2GVOdSroJcjWCrHE3sMi4WZnDSq6p4vw-HVFwNr5Cw |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwEB1xCAEFx3Itpws6sBR8JuUKWEAcDSsENJFjO4iCDdqE_8d2kl0hoIA2cuxo5nnmKXMBHCqtnRfSGdaZlJjlicGJc0M40VpqwjNKsjA64V7ePcZn575NDmtrYUK2exuSDJZ6UuzmfHGEffZ5RKlkWEzDLEsEc1ie7V0NLvrj6IHn6XVkOcHM8eWmWObnXb46pG8s81uENDie_vL_PnkFlhqiiXo1MlZhyg47sNh7GTXNNmwHOg8-FyYU5KLbJsbegbnnIvxqX4On0_GQQlTkqJ2lUqEwPqdEju8ixx-Rb9RRV0D6ZQ6RvjAS-abib_6AEr0OUTUq3j0e0EuhqnIdBv3zweklbkYxYKcwUWGlc84zdpJbr3KaxERKnp0YE0sb5ZQZQWKtOM1zHWvLIxPFjJtc0YhYqSzdgJlhMbRbgKSm3D13NCfSTHGppBGcEqo00yZRtAtHrTrS97rhRjpprezlmTp5pkGeqejCbquxtLl8ZeoYmXCWiwjShc1ai-OtqHAW1ZGcLhy3Kpu8-Ps5239bfgDzl4Pbm_Tm6u56BxaIR0BIgdmFmWr0YfdgujQf-w1uPwGOAOZq |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VEAgOfSyPLqXFB27U2uBHnBxXsCvKS5VAqPQSOX4gDiSrTfj_Heexq4r2UPUaOXbk-Zz5kpn5BuBIG4NeyOTU5EpR4VNLU3RDNDVGGSZzzvKmdcKtuvmRnE2CTM6iir_Jdu9Dkm1NQ1BpKurRzPrRsvAN_XJEQyZ6xLkSNF6BNYFfMoj0tfHk4vxqEUkInL2NMqdUIHfuCmf-PMvvzukV43wVLW2c0PTd_z_-e3jbEVAybhHzAd64YgBb48d5J8LhBjC4DzkyTaEuue5i7wNY_1k2v-C34eF00byQlJ70PVZq0rTVqQjyYIK8kgQBj7YyMgxDpIaCSRLExp_DAhV5Kkg9L2cBJ-Sx1HW1A3fTyd3pOe1aNFA0ZFxTbbyUuTjxLkCBpwlTSuYn1ibKRZ4LG7PEaMm9N4lxMrJRIqT1mkfMKe34LqwWZeE-AlGGS7yO9CcyQkullY0lZ1wbYWyq-RCOe9Nks1aII1tKLof9zHA_s2Y_s3gIB731su5QVhkytRghwmI2hL3WooupeIxvWiQ_Q_jam29549_X2f-34Yew8f1sml19u7n8BJssAKDJjDmA1Xr-4j7DSmVfvnQQ_gVMve8t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+different+models+for+the+estimation+of+genetic+parameters+in+tropical+goats&rft.jtitle=Tropical+animal+health+and+production&rft.au=de+Souza%2C+Jos%C3%A9+Ernandes+Rufino&rft.au=Ferreira%2C+Josiel&rft.au=Del+Pilar+Solar+Diaz%2C+Iara&rft.au=Silveira%2C+Robson+Mateus+Freitas&rft.date=2022-12-01&rft.pub=Springer+Netherlands&rft.issn=0049-4747&rft.eissn=1573-7438&rft.volume=54&rft.issue=6&rft_id=info:doi/10.1007%2Fs11250-022-03374-6&rft.externalDocID=10_1007_s11250_022_03374_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-4747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-4747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-4747&client=summon |