Dynamic Inversion Method of Calculating Large-Scale Urban Building Height Based on Cooperative Satellite Laser Altimetry and Multi-Source Optical Remote Sensing

Building height is a crucial indicator when studying urban environments and human activities, necessitating accurate, large-scale, and fine-resolution calculations. However, mainstream machine learning-based methods for inferring building heights face numerous challenges, including limited sample da...

Full description

Saved in:
Bibliographic Details
Published in:Land (Basel) Vol. 13; no. 8; p. 1120
Main Authors: Xia, Haobin, Wu, Jianjun, Yao, Jiaqi, Xu, Nan, Gao, Xiaoming, Liang, Yubin, Yang, Jianhua, Zhang, Jianhang, Gao, Liang, Jin, Weiqi, Ni, Bowen
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Building height is a crucial indicator when studying urban environments and human activities, necessitating accurate, large-scale, and fine-resolution calculations. However, mainstream machine learning-based methods for inferring building heights face numerous challenges, including limited sample data and slow update frequencies. Alternatively, satellite laser altimetry technology offers a reliable means of calculating building heights with high precision. Here, we initially calculated building heights along satellite orbits based on building-rooftop contour vector datasets and ICESat-2 ATL03 photon data from 2019 to 2022. By integrating multi-source passive remote sensing observation data, we used the inferred building height results as reference data to train a random forest model, regressing building heights at a 10 m scale. Compared with ground-measured heights, building height samples constructed from ICESat-2 photon data outperformed methods that indirectly infer building heights using total building floor number. Moreover, the simulated building heights strongly correlated with actual observations at a single-city scale. Finally, using several years of inferred results, we analyzed building height changes in Tianjin from 2019 to 2022. Combined with the random forest model, the proposed model enables large-scale, high-precision inference of building heights with frequent updates, which has significant implications for global dynamic observation of urban three-dimensional features.
AbstractList Building height is a crucial indicator when studying urban environments and human activities, necessitating accurate, large-scale, and fine-resolution calculations. However, mainstream machine learning-based methods for inferring building heights face numerous challenges, including limited sample data and slow update frequencies. Alternatively, satellite laser altimetry technology offers a reliable means of calculating building heights with high precision. Here, we initially calculated building heights along satellite orbits based on building-rooftop contour vector datasets and ICESat-2 ATL03 photon data from 2019 to 2022. By integrating multi-source passive remote sensing observation data, we used the inferred building height results as reference data to train a random forest model, regressing building heights at a 10 m scale. Compared with ground-measured heights, building height samples constructed from ICESat-2 photon data outperformed methods that indirectly infer building heights using total building floor number. Moreover, the simulated building heights strongly correlated with actual observations at a single-city scale. Finally, using several years of inferred results, we analyzed building height changes in Tianjin from 2019 to 2022. Combined with the random forest model, the proposed model enables large-scale, high-precision inference of building heights with frequent updates, which has significant implications for global dynamic observation of urban three-dimensional features.
Author Wu, Jianjun
Liang, Yubin
Jin, Weiqi
Yao, Jiaqi
Gao, Xiaoming
Xia, Haobin
Yang, Jianhua
Gao, Liang
Ni, Bowen
Xu, Nan
Zhang, Jianhang
Author_xml – sequence: 1
  givenname: Haobin
  surname: Xia
  fullname: Xia, Haobin
– sequence: 2
  givenname: Jianjun
  surname: Wu
  fullname: Wu, Jianjun
– sequence: 3
  givenname: Jiaqi
  orcidid: 0000-0003-1449-7671
  surname: Yao
  fullname: Yao, Jiaqi
– sequence: 4
  givenname: Nan
  orcidid: 0009-0002-6129-3129
  surname: Xu
  fullname: Xu, Nan
– sequence: 5
  givenname: Xiaoming
  surname: Gao
  fullname: Gao, Xiaoming
– sequence: 6
  givenname: Yubin
  surname: Liang
  fullname: Liang, Yubin
– sequence: 7
  givenname: Jianhua
  surname: Yang
  fullname: Yang, Jianhua
– sequence: 8
  givenname: Jianhang
  surname: Zhang
  fullname: Zhang, Jianhang
– sequence: 9
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
– sequence: 10
  givenname: Weiqi
  surname: Jin
  fullname: Jin, Weiqi
– sequence: 11
  givenname: Bowen
  surname: Ni
  fullname: Ni, Bowen
BookMark eNpNkctqWzEQhkVJoGmaXR9A0G1Pq-u5LBM3bQwOgTiB7ISOzsiRkSVX0gn4bfqoVepSoo00mn---Yf5gE5CDIDQJ0q-cj6Qb16HiXLSU8rIO3TGSMcbIeTTyZv3e3SR85bUM1DeC3mGfn8_BL1zBi_DC6TsYsC3UJ7jhKPFC-3N7HVxYYNXOm2gWRvtAT-mUQd8NTs_vaZuwG2eC77SGWpZwIsY95Bq2QvgtS7gvStQARkSvvTF7aCkA6528e1cw2Yd52QA3-2Lq3h8D7tY9WsIudI_olOrfYaLf_c5evxx_bC4aVZ3P5eLy1VjmBSlGa3h0EpuJykMIUwaO_LOCOA1EGKi7dC3VnStGCTXPbHcSsM6mMYOpCbAz9HyyJ2i3qp9cjudDipqp_5-xLRROlWDHhSTIx-ATX0FC8ZpXxsxaMfWdNWBbivr85G1T_HXDLmobR0xVPuKk6GnjIu2q6ovR5VJMecE9n9XStTrStXblfI_W3qWuA
Cites_doi 10.3390/rs10111760
10.1080/2150704X.2017.1335904
10.1016/j.measurement.2022.111772
10.3390/rs14010129
10.3390/rs14071566
10.1080/2150704X.2019.1682708
10.3390/s23218752
10.3390/rs11040403
10.3390/rs11040471
10.5194/isprsannals-I-3-293-2012
10.1016/j.rse.2018.11.036
10.1016/j.landurbplan.2021.104187
10.1016/j.isprsjprs.2023.09.013
10.1088/2634-4505/abf820
10.1016/j.rse.2021.112590
10.1007/978-981-19-8202-6
10.1016/j.jag.2023.103213
10.1080/01431161.2014.939780
10.3390/rs15153786
10.1016/j.isprsjprs.2010.06.001
10.1016/j.landurbplan.2010.12.009
10.1145/3177102.3177104
10.3390/rs15163953
10.3390/rs12040608
10.1109/JSTARS.2021.3090792
10.1007/s40808-022-01648-4
10.1109/LGRS.2022.3192067
10.3390/rs13224532
10.3390/rs13071367
10.1109/IGARSS52108.2023.10281520
10.1109/JSTARS.2022.3221146
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SN
7ST
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PYCSY
SOI
DOA
DOI 10.3390/land13081120
DatabaseName CrossRef
Ecology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Ecology Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2073-445X
ExternalDocumentID oai_doaj_org_article_25b39e2d82444231837c2e6b6c7653a6
10_3390_land13081120
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
PATMY
PIMPY
PROAC
PYCSY
7SN
7ST
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
SOI
ID FETCH-LOGICAL-c254t-bfc3e653fd54c0025cfb37c4e300244d16986f4764953a80f3f5c27edb7e5a0e3
IEDL.DBID DOA
ISSN 2073-445X
IngestDate Tue Oct 22 14:42:44 EDT 2024
Mon Nov 04 15:35:49 EST 2024
Thu Sep 26 21:01:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-bfc3e653fd54c0025cfb37c4e300244d16986f4764953a80f3f5c27edb7e5a0e3
ORCID 0000-0003-1449-7671
0009-0002-6129-3129
OpenAccessLink https://doaj.org/article/25b39e2d82444231837c2e6b6c7653a6
PQID 3098123467
PQPubID 2032374
ParticipantIDs doaj_primary_oai_doaj_org_article_25b39e2d82444231837c2e6b6c7653a6
proquest_journals_3098123467
crossref_primary_10_3390_land13081120
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Land (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pham (ref_3) 2011; 100
Xu (ref_26) 2021; 14
Liu (ref_41) 2021; 214
Cao (ref_15) 2021; 264
ref_14
ref_36
ref_13
Dandabathula (ref_27) 2023; 9
ref_35
Lao (ref_31) 2021; 104
ref_33
Chen (ref_25) 2020; 11
Xie (ref_6) 2023; 205
Zhao (ref_30) 2021; 19
ref_19
ref_18
ref_17
ref_16
Zhao (ref_37) 2023; 117
ref_38
Zhang (ref_21) 2023; 48
Puniach (ref_12) 2022; 202
Tang (ref_34) 2022; 19
ref_23
Li (ref_9) 2014; 39
ref_22
ref_20
Awrangjeb (ref_10) 2010; 65
ref_40
ref_1
ref_2
ref_29
ref_28
Dandabathula (ref_32) 2021; 1
Qi (ref_5) 2019; 221
Liu (ref_11) 2017; 8
Rottensteiner (ref_8) 2012; I-3
Moussavi (ref_24) 2014; 35
Zhou (ref_39) 2022; 16
ref_4
ref_7
References_xml – ident: ref_1
  doi: 10.3390/rs10111760
– volume: 48
  start-page: 1029
  year: 2023
  ident: ref_21
  article-title: Compensation model of GF-7 panchromatic and multispectral image registration error
  publication-title: Geomat. Inform. Sci. Wuhan Univ.
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 907
  year: 2017
  ident: ref_11
  article-title: Assessing the quality of building height extraction from ZiYuan-3 multi-view imagery
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1335904
  contributor:
    fullname: Liu
– volume: 202
  start-page: 111772
  year: 2022
  ident: ref_12
  article-title: Determining changes in building tilts based on UAV photogrammetry
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111772
  contributor:
    fullname: Puniach
– ident: ref_33
  doi: 10.3390/rs14010129
– ident: ref_13
  doi: 10.3390/rs14071566
– volume: 11
  start-page: 37
  year: 2020
  ident: ref_25
  article-title: Forest signal detection for photon counting LiDAR using random forest
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2019.1682708
  contributor:
    fullname: Chen
– ident: ref_28
  doi: 10.3390/s23218752
– ident: ref_7
  doi: 10.3390/rs11040403
– ident: ref_29
  doi: 10.3390/rs11040471
– volume: I-3
  start-page: 293
  year: 2012
  ident: ref_8
  article-title: The ISPRS benchmark on urban object classification and 3D building reconstruction
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci.
  doi: 10.5194/isprsannals-I-3-293-2012
  contributor:
    fullname: Rottensteiner
– volume: 221
  start-page: 695
  year: 2019
  ident: ref_5
  article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.036
  contributor:
    fullname: Qi
– ident: ref_40
– volume: 214
  start-page: 104187
  year: 2021
  ident: ref_41
  article-title: High-resolution mapping of mainland China’s urban floor area
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2021.104187
  contributor:
    fullname: Liu
– volume: 19
  start-page: 7002905
  year: 2021
  ident: ref_30
  article-title: Evaluation of ICESat-2 ATL03/08 surface heights in urban environments using airborne LiDAR point cloud data
  publication-title: IEEE Geosci Remote Sens. Lett.
  contributor:
    fullname: Zhao
– ident: ref_14
– ident: ref_23
– volume: 205
  start-page: 74
  year: 2023
  ident: ref_6
  article-title: A 2D/3D multimodal data simulation approach with applications on urban semantic segmentation, building extraction and change detection
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.09.013
  contributor:
    fullname: Xie
– volume: 1
  start-page: 011003
  year: 2021
  ident: ref_32
  article-title: Retrieval of building heights from ICESat-2 photon data and evaluation with field measurements
  publication-title: Environ. Res. Infrastruct. Sustain.
  doi: 10.1088/2634-4505/abf820
  contributor:
    fullname: Dandabathula
– volume: 264
  start-page: 112590
  year: 2021
  ident: ref_15
  article-title: A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112590
  contributor:
    fullname: Cao
– volume: 39
  start-page: 631
  year: 2014
  ident: ref_9
  article-title: Big data in smart city
  publication-title: Geomat. Inf. Sci Wuhan Univ.
  contributor:
    fullname: Li
– ident: ref_35
  doi: 10.1007/978-981-19-8202-6
– volume: 117
  start-page: 103213
  year: 2023
  ident: ref_37
  article-title: Combining ICESat-2 photons and Google Earth Satellite images for building height extraction
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2023.103213
  contributor:
    fullname: Zhao
– volume: 35
  start-page: 5263
  year: 2014
  ident: ref_24
  article-title: Applicability of an automatic surface detection approach to micro-pulse photon-counting lidar altimetry data: Implications for canopy height retrieval from future ICESat-2 data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.939780
  contributor:
    fullname: Moussavi
– ident: ref_38
  doi: 10.3390/rs15153786
– volume: 65
  start-page: 457
  year: 2010
  ident: ref_10
  article-title: Automatic detection of residential buildings using LIDAR data and multispectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.06.001
  contributor:
    fullname: Awrangjeb
– volume: 100
  start-page: 223
  year: 2011
  ident: ref_3
  article-title: A case study on the relation between city planning and urban growth using remote sensing and spatial metrics
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2010.12.009
  contributor:
    fullname: Pham
– volume: 104
  start-page: 102596
  year: 2021
  ident: ref_31
  article-title: Retrieving building height in urban areas using ICESat-2 photon-counting LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Lao
– ident: ref_2
  doi: 10.1145/3177102.3177104
– ident: ref_19
  doi: 10.3390/rs15163953
– ident: ref_16
  doi: 10.3390/rs12040608
– volume: 14
  start-page: 6677
  year: 2021
  ident: ref_26
  article-title: Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multitemporal stacking method
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3090792
  contributor:
    fullname: Xu
– volume: 9
  start-page: 2677
  year: 2023
  ident: ref_27
  article-title: Accuracy assessment of digital bare-earth model using ICESat-2 photons: Analysis of the FABDEM
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-022-01648-4
  contributor:
    fullname: Dandabathula
– volume: 19
  start-page: 6513905
  year: 2022
  ident: ref_34
  article-title: Multimodel fusion method for cloud detection in satellite laser footprint images
  publication-title: IEEE Geosci Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3192067
  contributor:
    fullname: Tang
– ident: ref_17
  doi: 10.3390/rs13224532
– ident: ref_36
– ident: ref_4
  doi: 10.3390/rs13071367
– ident: ref_22
– ident: ref_20
– ident: ref_18
  doi: 10.1109/IGARSS52108.2023.10281520
– volume: 16
  start-page: 180
  year: 2022
  ident: ref_39
  article-title: Shadow pattern-enhanced building height extraction using very-high-resolution image
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3221146
  contributor:
    fullname: Zhou
SSID ssj0000913845
Score 2.3151505
Snippet Building height is a crucial indicator when studying urban environments and human activities, necessitating accurate, large-scale, and fine-resolution...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 1120
SubjectTerms Accuracy
Altimetry
Body height
building height
Dynamic inversion
ICESat-2
Lasers
Machine learning
Photogrammetry
Photons
random forest
Remote sensing
satellite laser altimetry
Satellite orbits
Satellites
Sentinel-1
Sentinel-2
Unmanned aerial vehicles
Urban areas
Urban environments
Urban planning
Title Dynamic Inversion Method of Calculating Large-Scale Urban Building Height Based on Cooperative Satellite Laser Altimetry and Multi-Source Optical Remote Sensing
URI https://www.proquest.com/docview/3098123467
https://doaj.org/article/25b39e2d82444231837c2e6b6c7653a6
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaaLOkSpE2COo_ihmYkLIsPUWP8CDL0AcQNkE0gqaOXQDZsZ8i_6U_tkZSDBBm6dBVEPe6O98Lx-xj7Jp0LxQhHXLRBc4noeK1qy71E3XphnMFEYjuvfj6Y6SzC5LxQfcWZsAwPnAU3LJUTNZatoThEoZ8ssPIlaqd9pZWwGWy70K-KqeSD65EwUuVJd0F1_TDOCZK_NpRfFG9iUILqf-eJU3i5OWKHfV4I1_l7PrEP2H1mB7tjw5tj9meaueMhImOkHhf8SOzPsAwwsY8-8XB1C_geZ7v5nGSPcL92toNxT30Nt6kPCmOKXLSsg8lyucIM_Q1zm7A5t0gPILOE68dIO79dPwP9EqRzunyeOv3wa5Ua4HCHpGdaGWfgu8UJu7-Z_Z7c8p5egXuqCrfcBS-QZBhaJX3MfXxwJFyJIgZu2Y50bXSQlY4jqNYUQQTlywojILOyBYpTtt8tO_zCQNDOl8oULdpCeqGNrXWrSqcNWhTWD9jVTuDNKqNoNFR9RMU0rxUzYOOojZd7IvZ1ukAW0fQW0fzLIgbsYqfLpt-Qm0YUNaUygsLC2f94xzn7WJKQ8iTgBdvfrp_wku1t2qevyRD_AnSX41s
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Inversion+Method+of+Calculating+Large-Scale+Urban+Building+Height+Based+on+Cooperative+Satellite+Laser+Altimetry+and+Multi-Source+Optical+Remote+Sensing&rft.jtitle=Land+%28Basel%29&rft.au=Xia%2C+Haobin&rft.au=Wu%2C+Jianjun&rft.au=Yao%2C+Jiaqi&rft.au=Xu%2C+Nan&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2073-445X&rft.volume=13&rft.issue=8&rft.spage=1120&rft_id=info:doi/10.3390%2Fland13081120&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-445X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-445X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-445X&client=summon