Dynamic Inversion Method of Calculating Large-Scale Urban Building Height Based on Cooperative Satellite Laser Altimetry and Multi-Source Optical Remote Sensing
Building height is a crucial indicator when studying urban environments and human activities, necessitating accurate, large-scale, and fine-resolution calculations. However, mainstream machine learning-based methods for inferring building heights face numerous challenges, including limited sample da...
Saved in:
Published in: | Land (Basel) Vol. 13; no. 8; p. 1120 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Building height is a crucial indicator when studying urban environments and human activities, necessitating accurate, large-scale, and fine-resolution calculations. However, mainstream machine learning-based methods for inferring building heights face numerous challenges, including limited sample data and slow update frequencies. Alternatively, satellite laser altimetry technology offers a reliable means of calculating building heights with high precision. Here, we initially calculated building heights along satellite orbits based on building-rooftop contour vector datasets and ICESat-2 ATL03 photon data from 2019 to 2022. By integrating multi-source passive remote sensing observation data, we used the inferred building height results as reference data to train a random forest model, regressing building heights at a 10 m scale. Compared with ground-measured heights, building height samples constructed from ICESat-2 photon data outperformed methods that indirectly infer building heights using total building floor number. Moreover, the simulated building heights strongly correlated with actual observations at a single-city scale. Finally, using several years of inferred results, we analyzed building height changes in Tianjin from 2019 to 2022. Combined with the random forest model, the proposed model enables large-scale, high-precision inference of building heights with frequent updates, which has significant implications for global dynamic observation of urban three-dimensional features. |
---|---|
AbstractList | Building height is a crucial indicator when studying urban environments and human activities, necessitating accurate, large-scale, and fine-resolution calculations. However, mainstream machine learning-based methods for inferring building heights face numerous challenges, including limited sample data and slow update frequencies. Alternatively, satellite laser altimetry technology offers a reliable means of calculating building heights with high precision. Here, we initially calculated building heights along satellite orbits based on building-rooftop contour vector datasets and ICESat-2 ATL03 photon data from 2019 to 2022. By integrating multi-source passive remote sensing observation data, we used the inferred building height results as reference data to train a random forest model, regressing building heights at a 10 m scale. Compared with ground-measured heights, building height samples constructed from ICESat-2 photon data outperformed methods that indirectly infer building heights using total building floor number. Moreover, the simulated building heights strongly correlated with actual observations at a single-city scale. Finally, using several years of inferred results, we analyzed building height changes in Tianjin from 2019 to 2022. Combined with the random forest model, the proposed model enables large-scale, high-precision inference of building heights with frequent updates, which has significant implications for global dynamic observation of urban three-dimensional features. |
Author | Wu, Jianjun Liang, Yubin Jin, Weiqi Yao, Jiaqi Gao, Xiaoming Xia, Haobin Yang, Jianhua Gao, Liang Ni, Bowen Xu, Nan Zhang, Jianhang |
Author_xml | – sequence: 1 givenname: Haobin surname: Xia fullname: Xia, Haobin – sequence: 2 givenname: Jianjun surname: Wu fullname: Wu, Jianjun – sequence: 3 givenname: Jiaqi orcidid: 0000-0003-1449-7671 surname: Yao fullname: Yao, Jiaqi – sequence: 4 givenname: Nan orcidid: 0009-0002-6129-3129 surname: Xu fullname: Xu, Nan – sequence: 5 givenname: Xiaoming surname: Gao fullname: Gao, Xiaoming – sequence: 6 givenname: Yubin surname: Liang fullname: Liang, Yubin – sequence: 7 givenname: Jianhua surname: Yang fullname: Yang, Jianhua – sequence: 8 givenname: Jianhang surname: Zhang fullname: Zhang, Jianhang – sequence: 9 givenname: Liang surname: Gao fullname: Gao, Liang – sequence: 10 givenname: Weiqi surname: Jin fullname: Jin, Weiqi – sequence: 11 givenname: Bowen surname: Ni fullname: Ni, Bowen |
BookMark | eNpNkctqWzEQhkVJoGmaXR9A0G1Pq-u5LBM3bQwOgTiB7ISOzsiRkSVX0gn4bfqoVepSoo00mn---Yf5gE5CDIDQJ0q-cj6Qb16HiXLSU8rIO3TGSMcbIeTTyZv3e3SR85bUM1DeC3mGfn8_BL1zBi_DC6TsYsC3UJ7jhKPFC-3N7HVxYYNXOm2gWRvtAT-mUQd8NTs_vaZuwG2eC77SGWpZwIsY95Bq2QvgtS7gvStQARkSvvTF7aCkA6528e1cw2Yd52QA3-2Lq3h8D7tY9WsIudI_olOrfYaLf_c5evxx_bC4aVZ3P5eLy1VjmBSlGa3h0EpuJykMIUwaO_LOCOA1EGKi7dC3VnStGCTXPbHcSsM6mMYOpCbAz9HyyJ2i3qp9cjudDipqp_5-xLRROlWDHhSTIx-ATX0FC8ZpXxsxaMfWdNWBbivr85G1T_HXDLmobR0xVPuKk6GnjIu2q6ovR5VJMecE9n9XStTrStXblfI_W3qWuA |
Cites_doi | 10.3390/rs10111760 10.1080/2150704X.2017.1335904 10.1016/j.measurement.2022.111772 10.3390/rs14010129 10.3390/rs14071566 10.1080/2150704X.2019.1682708 10.3390/s23218752 10.3390/rs11040403 10.3390/rs11040471 10.5194/isprsannals-I-3-293-2012 10.1016/j.rse.2018.11.036 10.1016/j.landurbplan.2021.104187 10.1016/j.isprsjprs.2023.09.013 10.1088/2634-4505/abf820 10.1016/j.rse.2021.112590 10.1007/978-981-19-8202-6 10.1016/j.jag.2023.103213 10.1080/01431161.2014.939780 10.3390/rs15153786 10.1016/j.isprsjprs.2010.06.001 10.1016/j.landurbplan.2010.12.009 10.1145/3177102.3177104 10.3390/rs15163953 10.3390/rs12040608 10.1109/JSTARS.2021.3090792 10.1007/s40808-022-01648-4 10.1109/LGRS.2022.3192067 10.3390/rs13224532 10.3390/rs13071367 10.1109/IGARSS52108.2023.10281520 10.1109/JSTARS.2022.3221146 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SN 7ST ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO GNUQQ HCIFZ PATMY PIMPY PQEST PQQKQ PQUKI PYCSY SOI DOA |
DOI | 10.3390/land13081120 |
DatabaseName | CrossRef Ecology Abstracts Environment Abstracts ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Ecology Abstracts Environmental Sciences and Pollution Management ProQuest Central Environmental Science Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest One Academic Environment Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 2073-445X |
ExternalDocumentID | oai_doaj_org_article_25b39e2d82444231837c2e6b6c7653a6 10_3390_land13081120 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 MODMG M~E OK1 PATMY PIMPY PROAC PYCSY 7SN 7ST ABUWG AZQEC C1K DWQXO GNUQQ PQEST PQQKQ PQUKI SOI |
ID | FETCH-LOGICAL-c254t-bfc3e653fd54c0025cfb37c4e300244d16986f4764953a80f3f5c27edb7e5a0e3 |
IEDL.DBID | DOA |
ISSN | 2073-445X |
IngestDate | Tue Oct 22 14:42:44 EDT 2024 Mon Nov 04 15:35:49 EST 2024 Thu Sep 26 21:01:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c254t-bfc3e653fd54c0025cfb37c4e300244d16986f4764953a80f3f5c27edb7e5a0e3 |
ORCID | 0000-0003-1449-7671 0009-0002-6129-3129 |
OpenAccessLink | https://doaj.org/article/25b39e2d82444231837c2e6b6c7653a6 |
PQID | 3098123467 |
PQPubID | 2032374 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25b39e2d82444231837c2e6b6c7653a6 proquest_journals_3098123467 crossref_primary_10_3390_land13081120 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Land (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Pham (ref_3) 2011; 100 Xu (ref_26) 2021; 14 Liu (ref_41) 2021; 214 Cao (ref_15) 2021; 264 ref_14 ref_36 ref_13 Dandabathula (ref_27) 2023; 9 ref_35 Lao (ref_31) 2021; 104 ref_33 Chen (ref_25) 2020; 11 Xie (ref_6) 2023; 205 Zhao (ref_30) 2021; 19 ref_19 ref_18 ref_17 ref_16 Zhao (ref_37) 2023; 117 ref_38 Zhang (ref_21) 2023; 48 Puniach (ref_12) 2022; 202 Tang (ref_34) 2022; 19 ref_23 Li (ref_9) 2014; 39 ref_22 ref_20 Awrangjeb (ref_10) 2010; 65 ref_40 ref_1 ref_2 ref_29 ref_28 Dandabathula (ref_32) 2021; 1 Qi (ref_5) 2019; 221 Liu (ref_11) 2017; 8 Rottensteiner (ref_8) 2012; I-3 Moussavi (ref_24) 2014; 35 Zhou (ref_39) 2022; 16 ref_4 ref_7 |
References_xml | – ident: ref_1 doi: 10.3390/rs10111760 – volume: 48 start-page: 1029 year: 2023 ident: ref_21 article-title: Compensation model of GF-7 panchromatic and multispectral image registration error publication-title: Geomat. Inform. Sci. Wuhan Univ. contributor: fullname: Zhang – volume: 8 start-page: 907 year: 2017 ident: ref_11 article-title: Assessing the quality of building height extraction from ZiYuan-3 multi-view imagery publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1335904 contributor: fullname: Liu – volume: 202 start-page: 111772 year: 2022 ident: ref_12 article-title: Determining changes in building tilts based on UAV photogrammetry publication-title: Measurement doi: 10.1016/j.measurement.2022.111772 contributor: fullname: Puniach – ident: ref_33 doi: 10.3390/rs14010129 – ident: ref_13 doi: 10.3390/rs14071566 – volume: 11 start-page: 37 year: 2020 ident: ref_25 article-title: Forest signal detection for photon counting LiDAR using random forest publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2019.1682708 contributor: fullname: Chen – ident: ref_28 doi: 10.3390/s23218752 – ident: ref_7 doi: 10.3390/rs11040403 – ident: ref_29 doi: 10.3390/rs11040471 – volume: I-3 start-page: 293 year: 2012 ident: ref_8 article-title: The ISPRS benchmark on urban object classification and 3D building reconstruction publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci. doi: 10.5194/isprsannals-I-3-293-2012 contributor: fullname: Rottensteiner – volume: 221 start-page: 695 year: 2019 ident: ref_5 article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.036 contributor: fullname: Qi – ident: ref_40 – volume: 214 start-page: 104187 year: 2021 ident: ref_41 article-title: High-resolution mapping of mainland China’s urban floor area publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2021.104187 contributor: fullname: Liu – volume: 19 start-page: 7002905 year: 2021 ident: ref_30 article-title: Evaluation of ICESat-2 ATL03/08 surface heights in urban environments using airborne LiDAR point cloud data publication-title: IEEE Geosci Remote Sens. Lett. contributor: fullname: Zhao – ident: ref_14 – ident: ref_23 – volume: 205 start-page: 74 year: 2023 ident: ref_6 article-title: A 2D/3D multimodal data simulation approach with applications on urban semantic segmentation, building extraction and change detection publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2023.09.013 contributor: fullname: Xie – volume: 1 start-page: 011003 year: 2021 ident: ref_32 article-title: Retrieval of building heights from ICESat-2 photon data and evaluation with field measurements publication-title: Environ. Res. Infrastruct. Sustain. doi: 10.1088/2634-4505/abf820 contributor: fullname: Dandabathula – volume: 264 start-page: 112590 year: 2021 ident: ref_15 article-title: A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112590 contributor: fullname: Cao – volume: 39 start-page: 631 year: 2014 ident: ref_9 article-title: Big data in smart city publication-title: Geomat. Inf. Sci Wuhan Univ. contributor: fullname: Li – ident: ref_35 doi: 10.1007/978-981-19-8202-6 – volume: 117 start-page: 103213 year: 2023 ident: ref_37 article-title: Combining ICESat-2 photons and Google Earth Satellite images for building height extraction publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2023.103213 contributor: fullname: Zhao – volume: 35 start-page: 5263 year: 2014 ident: ref_24 article-title: Applicability of an automatic surface detection approach to micro-pulse photon-counting lidar altimetry data: Implications for canopy height retrieval from future ICESat-2 data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.939780 contributor: fullname: Moussavi – ident: ref_38 doi: 10.3390/rs15153786 – volume: 65 start-page: 457 year: 2010 ident: ref_10 article-title: Automatic detection of residential buildings using LIDAR data and multispectral imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.06.001 contributor: fullname: Awrangjeb – volume: 100 start-page: 223 year: 2011 ident: ref_3 article-title: A case study on the relation between city planning and urban growth using remote sensing and spatial metrics publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2010.12.009 contributor: fullname: Pham – volume: 104 start-page: 102596 year: 2021 ident: ref_31 article-title: Retrieving building height in urban areas using ICESat-2 photon-counting LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Lao – ident: ref_2 doi: 10.1145/3177102.3177104 – ident: ref_19 doi: 10.3390/rs15163953 – ident: ref_16 doi: 10.3390/rs12040608 – volume: 14 start-page: 6677 year: 2021 ident: ref_26 article-title: Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multitemporal stacking method publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3090792 contributor: fullname: Xu – volume: 9 start-page: 2677 year: 2023 ident: ref_27 article-title: Accuracy assessment of digital bare-earth model using ICESat-2 photons: Analysis of the FABDEM publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-022-01648-4 contributor: fullname: Dandabathula – volume: 19 start-page: 6513905 year: 2022 ident: ref_34 article-title: Multimodel fusion method for cloud detection in satellite laser footprint images publication-title: IEEE Geosci Remote Sens. Lett. doi: 10.1109/LGRS.2022.3192067 contributor: fullname: Tang – ident: ref_17 doi: 10.3390/rs13224532 – ident: ref_36 – ident: ref_4 doi: 10.3390/rs13071367 – ident: ref_22 – ident: ref_20 – ident: ref_18 doi: 10.1109/IGARSS52108.2023.10281520 – volume: 16 start-page: 180 year: 2022 ident: ref_39 article-title: Shadow pattern-enhanced building height extraction using very-high-resolution image publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3221146 contributor: fullname: Zhou |
SSID | ssj0000913845 |
Score | 2.3151505 |
Snippet | Building height is a crucial indicator when studying urban environments and human activities, necessitating accurate, large-scale, and fine-resolution... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1120 |
SubjectTerms | Accuracy Altimetry Body height building height Dynamic inversion ICESat-2 Lasers Machine learning Photogrammetry Photons random forest Remote sensing satellite laser altimetry Satellite orbits Satellites Sentinel-1 Sentinel-2 Unmanned aerial vehicles Urban areas Urban environments Urban planning |
Title | Dynamic Inversion Method of Calculating Large-Scale Urban Building Height Based on Cooperative Satellite Laser Altimetry and Multi-Source Optical Remote Sensing |
URI | https://www.proquest.com/docview/3098123467 https://doaj.org/article/25b39e2d82444231837c2e6b6c7653a6 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaaLOkSpE2COo_ihmYkLIsPUWP8CDL0AcQNkE0gqaOXQDZsZ8i_6U_tkZSDBBm6dBVEPe6O98Lx-xj7Jp0LxQhHXLRBc4noeK1qy71E3XphnMFEYjuvfj6Y6SzC5LxQfcWZsAwPnAU3LJUTNZatoThEoZ8ssPIlaqd9pZWwGWy70K-KqeSD65EwUuVJd0F1_TDOCZK_NpRfFG9iUILqf-eJU3i5OWKHfV4I1_l7PrEP2H1mB7tjw5tj9meaueMhImOkHhf8SOzPsAwwsY8-8XB1C_geZ7v5nGSPcL92toNxT30Nt6kPCmOKXLSsg8lyucIM_Q1zm7A5t0gPILOE68dIO79dPwP9EqRzunyeOv3wa5Ua4HCHpGdaGWfgu8UJu7-Z_Z7c8p5egXuqCrfcBS-QZBhaJX3MfXxwJFyJIgZu2Y50bXSQlY4jqNYUQQTlywojILOyBYpTtt8tO_zCQNDOl8oULdpCeqGNrXWrSqcNWhTWD9jVTuDNKqNoNFR9RMU0rxUzYOOojZd7IvZ1ukAW0fQW0fzLIgbsYqfLpt-Qm0YUNaUygsLC2f94xzn7WJKQ8iTgBdvfrp_wku1t2qevyRD_AnSX41s |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Inversion+Method+of+Calculating+Large-Scale+Urban+Building+Height+Based+on+Cooperative+Satellite+Laser+Altimetry+and+Multi-Source+Optical+Remote+Sensing&rft.jtitle=Land+%28Basel%29&rft.au=Xia%2C+Haobin&rft.au=Wu%2C+Jianjun&rft.au=Yao%2C+Jiaqi&rft.au=Xu%2C+Nan&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2073-445X&rft.volume=13&rft.issue=8&rft.spage=1120&rft_id=info:doi/10.3390%2Fland13081120&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-445X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-445X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-445X&client=summon |