Mixture ratio modeling of dynamic systems
Summary Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a decision‐making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black‐box modeling deals w...
Saved in:
Published in: | International journal of adaptive control and signal processing Vol. 35; no. 5; pp. 660 - 675 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Bognor Regis
Wiley Subscription Services, Inc
01-05-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Summary
Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a decision‐making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black‐box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high‐dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto‐regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data‐independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential. |
---|---|
AbstractList | Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a decision‐making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black‐box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high‐dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto‐regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data‐independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential. Summary Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a decision‐making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black‐box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high‐dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto‐regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data‐independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential. |
Author | Ruman, Marko Kárný, Miroslav |
Author_xml | – sequence: 1 givenname: Miroslav orcidid: 0000-0002-7440-6041 surname: Kárný fullname: Kárný, Miroslav email: school@utia.cas.cz organization: The Czech Academy of Sciences – sequence: 2 givenname: Marko surname: Ruman fullname: Ruman, Marko organization: The Czech Academy of Sciences |
BookMark | eNp1kE1LxDAURYOMYKcK_oSCG110fGmapFkOg18w4kJdh0yaSIa2GZMW7b-3Y916N29xD-_CWaJF5zuD0CWGFQYobpWOK1JgcYISDELkGGO6QAlUAnJGCn6GljHuAaYOkwTdPLvvfggmC6p3Pmt9bRrXfWTeZvXYqdbpLI6xN208R6dWNdFc_N0Uvd_fvW0e8-3Lw9Nmvc11QUuRF6VmtjRKKKit5oTSaYgD21HgWJfWUBCWkUqIkqgdrirOq5oxAmC1oJSTFF3Nfw_Bfw4m9nLvh9BNk7KguOIlI1NSdD1TOvgYg7HyEFyrwigxyKMIOYmQRxETms_ol2vM-C8n15vXX_4HP-FdzA |
Cites_doi | 10.23919/ECC51009.2020.9143856 10.1214/aoms/1177729694 10.1111/1467-9868.00196 10.1007/s10618-013-0337-7 10.1111/1467-8489.00077 10.1023/A:1024072610684 10.1007/978-0-387-45528-0 10.1016/j.ins.2015.07.038 10.1109/ICNSC.2004.1297040 10.5121/ijdkp.2013.3402 10.1016/B978-0-08-025683-2.50013-2 10.1109/TAC.2014.2301558 10.1109/TIT.1980.1056144 10.1109/21.467710 10.1007/978-1-4757-4286-2 10.1007/978-1-4757-3076-0 10.1016/j.ins.2011.09.018 10.1016/S0076-5392(09)60368-4 10.1007/978-1-4612-1996-5_10 10.1162/neco.1991.3.2.246 10.1007/s10115-014-0808-1 10.1016/B978-0-12-589320-6.50018-6 10.1145/2522968.2522981 10.1002/0471721182 10.1007/978-3-642-24647-0_2 10.1007/978-3-319-18032-8_10 10.1023/B:AIRE.0000045502.10941.a9 10.1007/s10994-013-5426-8 10.1109/SURV.2013.103013.00206 10.1109/COMST.2015.2494502 10.1090/S0002-9947-1936-1501854-3 10.1109/ICCAIRO47923.2019.00023 10.1007/978-3-642-27645-3 10.1016/j.ins.2014.01.048 10.1007/978-3-642-48618-0 10.1002/acs.1239 10.1109/MSP.2008.926683 10.1214/aos/1176344689 10.1002/acs.4480040404 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/acs.3219 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1115 |
EndPage | 675 |
ExternalDocumentID | 10_1002_acs_3219 ACS3219 |
Genre | article |
GrantInformation_xml | – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy funderid: LTC18075 – fundername: EU COST funderid: Action CA1622 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMNL AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2549-24c6f4ea9a0dfc7355991706b5071c4fe509f6389943ab188778d66300fc95573 |
IEDL.DBID | 33P |
ISSN | 0890-6327 |
IngestDate | Tue Nov 19 06:28:39 EST 2024 Fri Nov 22 02:29:25 EST 2024 Sat Aug 24 01:03:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2549-24c6f4ea9a0dfc7355991706b5071c4fe509f6389943ab188778d66300fc95573 |
Notes | Funding information http://www.utia.cas.cz/AS EU COST, Action CA1622; Ministerstvo Školství, Mládeže a Tělovýchovy, LTC18075 |
ORCID | 0000-0002-7440-6041 |
PQID | 2518746333 |
PQPubID | 996374 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2518746333 crossref_primary_10_1002_acs_3219 wiley_primary_10_1002_acs_3219_ACS3219 |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of adaptive control and signal processing |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2004; 22 2013; 3 1936; 39 1951; 22 1999; 43 1971 1970 1978 2015; 45 2015; 9078 2001 2000 1957; 114 1995; 25 1961; B 23 2014; 16 1987 2014; 59 1985 1983 2012; 28 1981 2011; 25 2014; 96 2014; 289 1979; 7 1991; 3 1980; 26 2012; 186 2012 2002; 5 1954 2009 1997 2008; 57 2006 2014; 46 1995 1994 1950 2005 2016; 326 2004 1991 1999; 61 2016; 18 1999 2015; 29 2020 2019 2018 2017 2016 2015 1990; 4 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 Rao M (e_1_2_10_24_1) 1987 Wald A (e_1_2_10_22_1) 1950 Haykin S (e_1_2_10_17_1) 1994 Kushner H (e_1_2_10_60_1) 1971 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 Kerridge D (e_1_2_10_42_1) 1961; 23 McNicholas P (e_1_2_10_30_1) 2017 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_45_1 e_1_2_10_43_1 Mosca E (e_1_2_10_9_1) 1994 e_1_2_10_20_1 e_1_2_10_41_1 Kárný M (e_1_2_10_52_1) 2006 Barndorff‐Nielsen O (e_1_2_10_34_1) 1978 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 Mitchell T (e_1_2_10_2_1) 1997 e_1_2_10_5_1 e_1_2_10_38_1 Šmídl V (e_1_2_10_47_1) 2005 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Kolmogorov A (e_1_2_10_18_1) 1957; 114 Elliot R (e_1_2_10_26_1) 1995 Savage L (e_1_2_10_23_1) 1954 Guyon I (e_1_2_10_4_1) 2010; 11 e_1_2_10_28_1 e_1_2_10_49_1 |
References_xml | – year: 1985 – volume: 9078 start-page: 230 year: 2015 end-page: 237 – volume: 114 start-page: 953 year: 1957 end-page: 956 article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition publication-title: Doklady Akademii Nauk – volume: B 23 start-page: 284 year: 1961 end-page: 294 article-title: Inaccuracy and inference publication-title: J Royal Stat Soc – year: 2009 – year: 1981 – year: 2005 – volume: 18 start-page: 1153 issue: 2 year: 2016 end-page: 1176 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun Surv Tutor – year: 2001 – volume: 289 start-page: 100 year: 2014 end-page: 111 article-title: Approximate Bayesian recursive estimation publication-title: Inf Sci – volume: 25 start-page: 765 issue: 9 year: 2011 end-page: 787 article-title: Bayesian estimation of dynamic finite mixtures publication-title: Int J Adapt Control Signal Process – year: 1971 – volume: 11 start-page: 61 year: 2010 end-page: 87 article-title: Model selection: beyond the Bayesian/frequentist divide publication-title: J Mach Learn Res – volume: 45 start-page: 535 year: 2015 end-page: 569 article-title: A survey on data stream clustering and classification publication-title: Knowl Inf Syst – year: 2018 – year: 1994 – volume: 29 start-page: 84 issue: 1 year: 2015 end-page: 136 article-title: Summarizing numeric spatial data streams by trend cluster discovery publication-title: Data Mining Knowl Discov – start-page: 92 year: 2019 end-page: 99 – volume: 39 start-page: 399 year: 1936 article-title: On distributions admitting a sufficient statistic publication-title: Trans Am Math Soc – volume: 4 start-page: 271 year: 1990 end-page: 285 article-title: A Bayes‐closed approximation of recursive nonlinear estimation publication-title: Int J Adapt Control Signal Process – year: 2004 – year: 1997 – volume: 7 start-page: 686 year: 1979 end-page: 690 article-title: Expected information as expected utility publication-title: Ann Stat – volume: 22 start-page: 79 year: 1951 end-page: 87 article-title: On information and sufficiency publication-title: Ann Math Stat – year: 2015 – volume: 28 start-page: 29 year: 2012 end-page: 56 – volume: 186 start-page: 105 issue: 1 year: 2012 end-page: 113 article-title: Axiomatisation of fully probabilistic design publication-title: Inf Sci – volume: 61 start-page: 611 year: 1999 end-page: 622 article-title: Probabilistic principal component analysis publication-title: J Royal Soc Ser B – volume: 326 start-page: 188 year: 2016 end-page: 201 article-title: Recursive estimation of high‐order Markov chains: approx. by finite mixtures publication-title: Inf Sci – volume: 3 start-page: 246 year: 1991 end-page: 257 article-title: Universal approximation using radial‐basis‐function networks publication-title: Neural Comput – year: 1987 – volume: 25 start-page: 1447 issue: 11 year: 1995 end-page: 1458 article-title: Automated fault detection and accommodation: a learning systems approach publication-title: IEEE Trans Syst Man Cybern – year: 2000 – volume: 16 start-page: 77 issue: 1 year: 2014 end-page: 95 article-title: Data mining for Internet of Things: a survey publication-title: IEEE Commun Surv Tutor – start-page: 181 year: 1997 end-page: 193 – start-page: 287 year: 1983 end-page: 302 – year: 1950 – year: 1954 – year: 2016 – year: 2012 – volume: 96 start-page: 257 year: 2014 end-page: 469 article-title: Special issue: computational social science and social computing publication-title: Mach Learn – volume: 22 start-page: 85 issue: 2 year: 2004 end-page: 126 article-title: A survey of outlier detection methodologies publication-title: Artif Intell Rev – volume: 3 start-page: 15 issue: 4 year: 2013 end-page: 33 article-title: Imbalanced data learning approaches review publication-title: Int J Data Mining Knowl Manag Process – volume: 5 start-page: 219 issue: 3 year: 2002 end-page: 235 article-title: A dynamic mixture model for unsupervised tail estimation without threshold selection publication-title: Extremes – volume: 43 start-page: 209 year: 1999 end-page: 247 article-title: Commodity future markets: a survey publication-title: Austr J Agric Resour Econom – year: 2006 – year: 2020 – year: 1995 – year: 1970 – volume: 57 start-page: 57 year: 2008 end-page: 80 article-title: Finite‐state Markov modeling of fading channels publication-title: IEEE Signal Process Mag – year: 2017 – year: 1978 – year: 1991 – volume: 26 start-page: 26 issue: 1 year: 1980 end-page: 37 article-title: Axiomatic derivation of the principle of maximum entropy & the principle of minimum cross‐entropy publication-title: IEEE Trans Inf Theory – volume: 59 start-page: 1423 issue: 6 year: 2014 end-page: 1438 article-title: Online Markov decision processes with Kullback Leibler control cost publication-title: IEEE Trans AC – volume: 46 start-page: 1 year: 2014 end-page: 31 article-title: Data stream clustering: a survey publication-title: ACM Comput Surv – year: 1999 – ident: e_1_2_10_44_1 doi: 10.23919/ECC51009.2020.9143856 – ident: e_1_2_10_45_1 doi: 10.1214/aoms/1177729694 – ident: e_1_2_10_50_1 doi: 10.1111/1467-9868.00196 – ident: e_1_2_10_15_1 doi: 10.1007/s10618-013-0337-7 – ident: e_1_2_10_55_1 doi: 10.1111/1467-8489.00077 – volume-title: Foundations of Statistics year: 1954 ident: e_1_2_10_23_1 contributor: fullname: Savage L – volume-title: Measure Theory and Integration year: 1987 ident: e_1_2_10_24_1 contributor: fullname: Rao M – ident: e_1_2_10_33_1 doi: 10.1023/A:1024072610684 – ident: e_1_2_10_36_1 – volume-title: Optimized Bayesian Dynamic Advising: Theory and Algorithms year: 2006 ident: e_1_2_10_52_1 contributor: fullname: Kárný M – ident: e_1_2_10_5_1 doi: 10.1007/978-0-387-45528-0 – ident: e_1_2_10_51_1 doi: 10.1016/j.ins.2015.07.038 – ident: e_1_2_10_57_1 doi: 10.1109/ICNSC.2004.1297040 – ident: e_1_2_10_59_1 doi: 10.5121/ijdkp.2013.3402 – ident: e_1_2_10_21_1 – volume: 114 start-page: 953 year: 1957 ident: e_1_2_10_18_1 article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition publication-title: Doklady Akademii Nauk contributor: fullname: Kolmogorov A – ident: e_1_2_10_39_1 doi: 10.1016/B978-0-08-025683-2.50013-2 – volume-title: Neural Networks: A Comprehensive Foundation year: 1994 ident: e_1_2_10_17_1 contributor: fullname: Haykin S – ident: e_1_2_10_8_1 doi: 10.1109/TAC.2014.2301558 – ident: e_1_2_10_46_1 doi: 10.1109/TIT.1980.1056144 – ident: e_1_2_10_56_1 doi: 10.1109/21.467710 – ident: e_1_2_10_27_1 doi: 10.1007/978-1-4757-4286-2 – volume: 11 start-page: 61 year: 2010 ident: e_1_2_10_4_1 article-title: Model selection: beyond the Bayesian/frequentist divide publication-title: J Mach Learn Res contributor: fullname: Guyon I – ident: e_1_2_10_53_1 doi: 10.1007/978-1-4757-3076-0 – ident: e_1_2_10_31_1 – ident: e_1_2_10_61_1 doi: 10.1016/j.ins.2011.09.018 – ident: e_1_2_10_25_1 doi: 10.1016/S0076-5392(09)60368-4 – ident: e_1_2_10_28_1 doi: 10.1007/978-1-4612-1996-5_10 – volume-title: Introduction to Stochastic Control year: 1971 ident: e_1_2_10_60_1 contributor: fullname: Kushner H – ident: e_1_2_10_29_1 doi: 10.1162/neco.1991.3.2.246 – ident: e_1_2_10_13_1 doi: 10.1007/s10115-014-0808-1 – volume-title: The Variational Bayes Method in Signal Processing year: 2005 ident: e_1_2_10_47_1 contributor: fullname: Šmídl V – ident: e_1_2_10_48_1 – ident: e_1_2_10_19_1 doi: 10.1016/B978-0-12-589320-6.50018-6 – ident: e_1_2_10_16_1 doi: 10.1145/2522968.2522981 – ident: e_1_2_10_20_1 doi: 10.1002/0471721182 – ident: e_1_2_10_41_1 doi: 10.1007/978-3-642-24647-0_2 – ident: e_1_2_10_14_1 doi: 10.1007/978-3-319-18032-8_10 – ident: e_1_2_10_58_1 doi: 10.1023/B:AIRE.0000045502.10941.a9 – volume-title: Mixture Model‐Based Classification year: 2017 ident: e_1_2_10_30_1 contributor: fullname: McNicholas P – ident: e_1_2_10_10_1 – ident: e_1_2_10_6_1 doi: 10.1007/s10994-013-5426-8 – ident: e_1_2_10_11_1 doi: 10.1109/SURV.2013.103013.00206 – volume: 23 start-page: 284 year: 1961 ident: e_1_2_10_42_1 article-title: Inaccuracy and inference publication-title: J Royal Stat Soc contributor: fullname: Kerridge D – ident: e_1_2_10_12_1 doi: 10.1109/COMST.2015.2494502 – volume-title: Hidden Markov Models year: 1995 ident: e_1_2_10_26_1 contributor: fullname: Elliot R – ident: e_1_2_10_49_1 doi: 10.1090/S0002-9947-1936-1501854-3 – ident: e_1_2_10_37_1 doi: 10.1109/ICCAIRO47923.2019.00023 – volume-title: Information and Exponential Families in Statistical Theory year: 1978 ident: e_1_2_10_34_1 contributor: fullname: Barndorff‐Nielsen O – ident: e_1_2_10_7_1 doi: 10.1007/978-3-642-27645-3 – ident: e_1_2_10_38_1 doi: 10.1016/j.ins.2014.01.048 – ident: e_1_2_10_35_1 doi: 10.1007/978-3-642-48618-0 – volume-title: Statistical Decision Functions year: 1950 ident: e_1_2_10_22_1 contributor: fullname: Wald A – ident: e_1_2_10_54_1 – ident: e_1_2_10_32_1 doi: 10.1002/acs.1239 – volume-title: Machine Learning year: 1997 ident: e_1_2_10_2_1 contributor: fullname: Mitchell T – ident: e_1_2_10_3_1 doi: 10.1109/MSP.2008.926683 – volume-title: Optimal, Predictive, and Adaptive Control year: 1994 ident: e_1_2_10_9_1 contributor: fullname: Mosca E – ident: e_1_2_10_40_1 doi: 10.1214/aos/1176344689 – ident: e_1_2_10_43_1 doi: 10.1002/acs.4480040404 |
SSID | ssj0009913 |
Score | 2.324662 |
Snippet | Summary
Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to... Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 660 |
SubjectTerms | Algorithms approximate Bayesian estimation black‐box dynamic model data stream processing Data transmission Dynamic models forgetting Kullback–Leibler divergence mixture model Modelling Probabilistic models Statistical analysis universal approximation |
Title | Mixture ratio modeling of dynamic systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3219 https://www.proquest.com/docview/2518746333 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMcH7UkPvsVqlQgieFi7TdIk601qSy-KUAVvIU_w0oprwY9vHl1bD4LgKYfdwOYxmf9skt8AXPQsN4zrEKaWzBVUYFpoIlhRedMnpdDBS8VAcTzhDy_ibhgxOTfNXZjMh_j-4RYtI63X0cCVrrtLaKgy9TXBifgZgoR0e4M8Lnm7Vc6MLKoQHRHMG-5sibtNxZ-eaCkvV0Vq8jKj7f983w5sLbQlus2TYRfW3HQPNleIg_twdf_6GfcMUBp4lPLghAdo5pHNuelRZjvXB_A8Gj4NxsUiW0JhYpBXYGqYp05VqrTecBJRYpGNo6PiM9S7IA181CcVJUr3wuLChWWRuOVN1e9zcgit6WzqjgDp4OaV8r60FFNmRRVKbGwYv1I7YXttOG96Tr5lKIbM-GMsQ7NlbHYbOk2XyoVZ1DKIKcEpI4S04TJ13q_15e1gEsvjv754Ahs4njdJhxE70Pp4n7tTWK_t_CxNjS95F7g0 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOg_qwd_idGoFETzUdUmWpHgac2PiNoRN8Bba_IBdNrEO_PPNa1c3D4LgKYc20Px4ed-XJp8HcN0wQnOR-jA14jZkkrAwpZKHsdNNGsnUeykMFHsjMXyVDx3E5NyXd2EKPsT3hhtaRr5eo4HjhnR9SQ1NdHZHCSI_Nxj38xDvb9DnJXE3LnIjy9jHR5SIkjwbkXpZ86cvWgrMVZma-5nu7r--cA92FvIyaBXzYR_W7PQAtlegg4dwO5h84m-DIB_7IE-F4x8EMxeYIj19UOCdsyN46XbG7V64SJgQaozzQsI0d8wmcRIZpwVFmhjicVIUfZo569WBQ4kSM5qkDb--CGk4QrecjptNQY-hMp1N7QkEqff0SeJcZBhh3MjYl0QbP4RRaqVpVOGq7Dr1VnAxVEFAJso3W2Gzq1Ar-1QtLCNTXk9JwTiltAo3ee_9Wl-12iMsT__64iVs9saDvuo_Dp_OYIvg8ZP8bGINKh_vc3sO65mZX-Tz5As9ybxc |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOkH04G9xOrWCCB7quiRrUm9jP5ioYzAFb6FNGthlG9aBf755yermQRA85dAGmpe8vO9r088DuG5ormKe2TQ1ivOQCcLCjIo4TIxq0khkNkphotgf8cGb6HQRk3Nf_gvj-RDfL9zQM9x-jQ4-06a-hIamqrijBImfG8yqcOTmUzpcAncTXxpZJDY9ooSX4NmI1MueP0PRUl-uqlQXZnq7_3nAPdhZiMug5VfDPqzlkwPYXkEOHsLt8_gTPxoEbuYDVwjHXgimJtC-OH3g4c7FEbz2ui_tfrgolxAqzPJCwlRsWJ4maaSN4hRZYgjHyVDyKWZyqw0MCpSE0TRr2N2FCx0jcsuopNnk9Bgqk-kkP4Egs3E-TY2JNCMs1iKxLVHaTmCU5UI3qnBVWk7OPBVDev4xkXbYEoddhVppUrnwi0JaNSU4iymlVbhxxvu1v2y1R9ie_vXGS9gcdnry6WHweAZbBM-euIOJNah8vM_zc1gv9PzCrZIvJ9C7Ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixture+ratio+modeling+of+dynamic+systems&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=K%C3%A1rn%C3%BD%2C+Miroslav&rft.au=Ruman%2C+Marko&rft.date=2021-05-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=35&rft.issue=5&rft.spage=660&rft.epage=675&rft_id=info:doi/10.1002%2Facs.3219&rft.externalDBID=10.1002%252Facs.3219&rft.externalDocID=ACS3219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon |