Mixture ratio modeling of dynamic systems

Summary Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a decision‐making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black‐box modeling deals w...

Full description

Saved in:
Bibliographic Details
Published in:International journal of adaptive control and signal processing Vol. 35; no. 5; pp. 660 - 675
Main Authors: Kárný, Miroslav, Ruman, Marko
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01-05-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a decision‐making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black‐box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high‐dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto‐regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data‐independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential.
AbstractList Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a decision‐making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black‐box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high‐dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto‐regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data‐independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential.
Summary Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a decision‐making (DM). DM always faces uncertainty and this makes probabilistic modelling adequate. The inspected black‐box modeling deals with “universal” approximators of the relevant probabilistic model. Finite mixtures with components in the exponential family are often exploited. Their attractiveness stems from their flexibility, the cluster interpretability of components and the existence of algorithms for processing high‐dimensional data streams. They are even used in dynamic cases with mutually dependent data records while regression and auto‐regression mixture components serve to the dependence modeling. These dynamic models, however, mostly assume data‐independent component weights, that is, memoryless transitions between dynamic mixture components. Such mixtures are not universal approximators of dynamic probabilistic models. Formally, this follows from the fact that the set of finite probabilistic mixtures is not closed with respect to the conditioning, which is the key estimation and predictive operation. The paper overcomes this drawback by using ratios of finite mixtures as universally approximating dynamic parametric models. The paper motivates them, elaborates their approximate Bayesian recursive estimation and reveals their application potential.
Author Ruman, Marko
Kárný, Miroslav
Author_xml – sequence: 1
  givenname: Miroslav
  orcidid: 0000-0002-7440-6041
  surname: Kárný
  fullname: Kárný, Miroslav
  email: school@utia.cas.cz
  organization: The Czech Academy of Sciences
– sequence: 2
  givenname: Marko
  surname: Ruman
  fullname: Ruman, Marko
  organization: The Czech Academy of Sciences
BookMark eNp1kE1LxDAURYOMYKcK_oSCG110fGmapFkOg18w4kJdh0yaSIa2GZMW7b-3Y916N29xD-_CWaJF5zuD0CWGFQYobpWOK1JgcYISDELkGGO6QAlUAnJGCn6GljHuAaYOkwTdPLvvfggmC6p3Pmt9bRrXfWTeZvXYqdbpLI6xN208R6dWNdFc_N0Uvd_fvW0e8-3Lw9Nmvc11QUuRF6VmtjRKKKit5oTSaYgD21HgWJfWUBCWkUqIkqgdrirOq5oxAmC1oJSTFF3Nfw_Bfw4m9nLvh9BNk7KguOIlI1NSdD1TOvgYg7HyEFyrwigxyKMIOYmQRxETms_ol2vM-C8n15vXX_4HP-FdzA
Cites_doi 10.23919/ECC51009.2020.9143856
10.1214/aoms/1177729694
10.1111/1467-9868.00196
10.1007/s10618-013-0337-7
10.1111/1467-8489.00077
10.1023/A:1024072610684
10.1007/978-0-387-45528-0
10.1016/j.ins.2015.07.038
10.1109/ICNSC.2004.1297040
10.5121/ijdkp.2013.3402
10.1016/B978-0-08-025683-2.50013-2
10.1109/TAC.2014.2301558
10.1109/TIT.1980.1056144
10.1109/21.467710
10.1007/978-1-4757-4286-2
10.1007/978-1-4757-3076-0
10.1016/j.ins.2011.09.018
10.1016/S0076-5392(09)60368-4
10.1007/978-1-4612-1996-5_10
10.1162/neco.1991.3.2.246
10.1007/s10115-014-0808-1
10.1016/B978-0-12-589320-6.50018-6
10.1145/2522968.2522981
10.1002/0471721182
10.1007/978-3-642-24647-0_2
10.1007/978-3-319-18032-8_10
10.1023/B:AIRE.0000045502.10941.a9
10.1007/s10994-013-5426-8
10.1109/SURV.2013.103013.00206
10.1109/COMST.2015.2494502
10.1090/S0002-9947-1936-1501854-3
10.1109/ICCAIRO47923.2019.00023
10.1007/978-3-642-27645-3
10.1016/j.ins.2014.01.048
10.1007/978-3-642-48618-0
10.1002/acs.1239
10.1109/MSP.2008.926683
10.1214/aos/1176344689
10.1002/acs.4480040404
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.3219
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1115
EndPage 675
ExternalDocumentID 10_1002_acs_3219
ACS3219
Genre article
GrantInformation_xml – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  funderid: LTC18075
– fundername: EU COST
  funderid: Action CA1622
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMNL
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2549-24c6f4ea9a0dfc7355991706b5071c4fe509f6389943ab188778d66300fc95573
IEDL.DBID 33P
ISSN 0890-6327
IngestDate Tue Nov 19 06:28:39 EST 2024
Fri Nov 22 02:29:25 EST 2024
Sat Aug 24 01:03:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2549-24c6f4ea9a0dfc7355991706b5071c4fe509f6389943ab188778d66300fc95573
Notes Funding information
http://www.utia.cas.cz/AS
EU COST, Action CA1622; Ministerstvo Školství, Mládeže a Tělovýchovy, LTC18075
ORCID 0000-0002-7440-6041
PQID 2518746333
PQPubID 996374
PageCount 16
ParticipantIDs proquest_journals_2518746333
crossref_primary_10_1002_acs_3219
wiley_primary_10_1002_acs_3219_ACS3219
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2004; 22
2013; 3
1936; 39
1951; 22
1999; 43
1971
1970
1978
2015; 45
2015; 9078
2001
2000
1957; 114
1995; 25
1961; B 23
2014; 16
1987
2014; 59
1985
1983
2012; 28
1981
2011; 25
2014; 96
2014; 289
1979; 7
1991; 3
1980; 26
2012; 186
2012
2002; 5
1954
2009
1997
2008; 57
2006
2014; 46
1995
1994
1950
2005
2016; 326
2004
1991
1999; 61
2016; 18
1999
2015; 29
2020
2019
2018
2017
2016
2015
1990; 4
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
Rao M (e_1_2_10_24_1) 1987
Wald A (e_1_2_10_22_1) 1950
Haykin S (e_1_2_10_17_1) 1994
Kushner H (e_1_2_10_60_1) 1971
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_51_1
Kerridge D (e_1_2_10_42_1) 1961; 23
McNicholas P (e_1_2_10_30_1) 2017
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_45_1
e_1_2_10_43_1
Mosca E (e_1_2_10_9_1) 1994
e_1_2_10_20_1
e_1_2_10_41_1
Kárný M (e_1_2_10_52_1) 2006
Barndorff‐Nielsen O (e_1_2_10_34_1) 1978
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
Mitchell T (e_1_2_10_2_1) 1997
e_1_2_10_5_1
e_1_2_10_38_1
Šmídl V (e_1_2_10_47_1) 2005
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Kolmogorov A (e_1_2_10_18_1) 1957; 114
Elliot R (e_1_2_10_26_1) 1995
Savage L (e_1_2_10_23_1) 1954
Guyon I (e_1_2_10_4_1) 2010; 11
e_1_2_10_28_1
e_1_2_10_49_1
References_xml – year: 1985
– volume: 9078
  start-page: 230
  year: 2015
  end-page: 237
– volume: 114
  start-page: 953
  year: 1957
  end-page: 956
  article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition
  publication-title: Doklady Akademii Nauk
– volume: B 23
  start-page: 284
  year: 1961
  end-page: 294
  article-title: Inaccuracy and inference
  publication-title: J Royal Stat Soc
– year: 2009
– year: 1981
– year: 2005
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  end-page: 1176
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun Surv Tutor
– year: 2001
– volume: 289
  start-page: 100
  year: 2014
  end-page: 111
  article-title: Approximate Bayesian recursive estimation
  publication-title: Inf Sci
– volume: 25
  start-page: 765
  issue: 9
  year: 2011
  end-page: 787
  article-title: Bayesian estimation of dynamic finite mixtures
  publication-title: Int J Adapt Control Signal Process
– year: 1971
– volume: 11
  start-page: 61
  year: 2010
  end-page: 87
  article-title: Model selection: beyond the Bayesian/frequentist divide
  publication-title: J Mach Learn Res
– volume: 45
  start-page: 535
  year: 2015
  end-page: 569
  article-title: A survey on data stream clustering and classification
  publication-title: Knowl Inf Syst
– year: 2018
– year: 1994
– volume: 29
  start-page: 84
  issue: 1
  year: 2015
  end-page: 136
  article-title: Summarizing numeric spatial data streams by trend cluster discovery
  publication-title: Data Mining Knowl Discov
– start-page: 92
  year: 2019
  end-page: 99
– volume: 39
  start-page: 399
  year: 1936
  article-title: On distributions admitting a sufficient statistic
  publication-title: Trans Am Math Soc
– volume: 4
  start-page: 271
  year: 1990
  end-page: 285
  article-title: A Bayes‐closed approximation of recursive nonlinear estimation
  publication-title: Int J Adapt Control Signal Process
– year: 2004
– year: 1997
– volume: 7
  start-page: 686
  year: 1979
  end-page: 690
  article-title: Expected information as expected utility
  publication-title: Ann Stat
– volume: 22
  start-page: 79
  year: 1951
  end-page: 87
  article-title: On information and sufficiency
  publication-title: Ann Math Stat
– year: 2015
– volume: 28
  start-page: 29
  year: 2012
  end-page: 56
– volume: 186
  start-page: 105
  issue: 1
  year: 2012
  end-page: 113
  article-title: Axiomatisation of fully probabilistic design
  publication-title: Inf Sci
– volume: 61
  start-page: 611
  year: 1999
  end-page: 622
  article-title: Probabilistic principal component analysis
  publication-title: J Royal Soc Ser B
– volume: 326
  start-page: 188
  year: 2016
  end-page: 201
  article-title: Recursive estimation of high‐order Markov chains: approx. by finite mixtures
  publication-title: Inf Sci
– volume: 3
  start-page: 246
  year: 1991
  end-page: 257
  article-title: Universal approximation using radial‐basis‐function networks
  publication-title: Neural Comput
– year: 1987
– volume: 25
  start-page: 1447
  issue: 11
  year: 1995
  end-page: 1458
  article-title: Automated fault detection and accommodation: a learning systems approach
  publication-title: IEEE Trans Syst Man Cybern
– year: 2000
– volume: 16
  start-page: 77
  issue: 1
  year: 2014
  end-page: 95
  article-title: Data mining for Internet of Things: a survey
  publication-title: IEEE Commun Surv Tutor
– start-page: 181
  year: 1997
  end-page: 193
– start-page: 287
  year: 1983
  end-page: 302
– year: 1950
– year: 1954
– year: 2016
– year: 2012
– volume: 96
  start-page: 257
  year: 2014
  end-page: 469
  article-title: Special issue: computational social science and social computing
  publication-title: Mach Learn
– volume: 22
  start-page: 85
  issue: 2
  year: 2004
  end-page: 126
  article-title: A survey of outlier detection methodologies
  publication-title: Artif Intell Rev
– volume: 3
  start-page: 15
  issue: 4
  year: 2013
  end-page: 33
  article-title: Imbalanced data learning approaches review
  publication-title: Int J Data Mining Knowl Manag Process
– volume: 5
  start-page: 219
  issue: 3
  year: 2002
  end-page: 235
  article-title: A dynamic mixture model for unsupervised tail estimation without threshold selection
  publication-title: Extremes
– volume: 43
  start-page: 209
  year: 1999
  end-page: 247
  article-title: Commodity future markets: a survey
  publication-title: Austr J Agric Resour Econom
– year: 2006
– year: 2020
– year: 1995
– year: 1970
– volume: 57
  start-page: 57
  year: 2008
  end-page: 80
  article-title: Finite‐state Markov modeling of fading channels
  publication-title: IEEE Signal Process Mag
– year: 2017
– year: 1978
– year: 1991
– volume: 26
  start-page: 26
  issue: 1
  year: 1980
  end-page: 37
  article-title: Axiomatic derivation of the principle of maximum entropy & the principle of minimum cross‐entropy
  publication-title: IEEE Trans Inf Theory
– volume: 59
  start-page: 1423
  issue: 6
  year: 2014
  end-page: 1438
  article-title: Online Markov decision processes with Kullback Leibler control cost
  publication-title: IEEE Trans AC
– volume: 46
  start-page: 1
  year: 2014
  end-page: 31
  article-title: Data stream clustering: a survey
  publication-title: ACM Comput Surv
– year: 1999
– ident: e_1_2_10_44_1
  doi: 10.23919/ECC51009.2020.9143856
– ident: e_1_2_10_45_1
  doi: 10.1214/aoms/1177729694
– ident: e_1_2_10_50_1
  doi: 10.1111/1467-9868.00196
– ident: e_1_2_10_15_1
  doi: 10.1007/s10618-013-0337-7
– ident: e_1_2_10_55_1
  doi: 10.1111/1467-8489.00077
– volume-title: Foundations of Statistics
  year: 1954
  ident: e_1_2_10_23_1
  contributor:
    fullname: Savage L
– volume-title: Measure Theory and Integration
  year: 1987
  ident: e_1_2_10_24_1
  contributor:
    fullname: Rao M
– ident: e_1_2_10_33_1
  doi: 10.1023/A:1024072610684
– ident: e_1_2_10_36_1
– volume-title: Optimized Bayesian Dynamic Advising: Theory and Algorithms
  year: 2006
  ident: e_1_2_10_52_1
  contributor:
    fullname: Kárný M
– ident: e_1_2_10_5_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_10_51_1
  doi: 10.1016/j.ins.2015.07.038
– ident: e_1_2_10_57_1
  doi: 10.1109/ICNSC.2004.1297040
– ident: e_1_2_10_59_1
  doi: 10.5121/ijdkp.2013.3402
– ident: e_1_2_10_21_1
– volume: 114
  start-page: 953
  year: 1957
  ident: e_1_2_10_18_1
  article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition
  publication-title: Doklady Akademii Nauk
  contributor:
    fullname: Kolmogorov A
– ident: e_1_2_10_39_1
  doi: 10.1016/B978-0-08-025683-2.50013-2
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1994
  ident: e_1_2_10_17_1
  contributor:
    fullname: Haykin S
– ident: e_1_2_10_8_1
  doi: 10.1109/TAC.2014.2301558
– ident: e_1_2_10_46_1
  doi: 10.1109/TIT.1980.1056144
– ident: e_1_2_10_56_1
  doi: 10.1109/21.467710
– ident: e_1_2_10_27_1
  doi: 10.1007/978-1-4757-4286-2
– volume: 11
  start-page: 61
  year: 2010
  ident: e_1_2_10_4_1
  article-title: Model selection: beyond the Bayesian/frequentist divide
  publication-title: J Mach Learn Res
  contributor:
    fullname: Guyon I
– ident: e_1_2_10_53_1
  doi: 10.1007/978-1-4757-3076-0
– ident: e_1_2_10_31_1
– ident: e_1_2_10_61_1
  doi: 10.1016/j.ins.2011.09.018
– ident: e_1_2_10_25_1
  doi: 10.1016/S0076-5392(09)60368-4
– ident: e_1_2_10_28_1
  doi: 10.1007/978-1-4612-1996-5_10
– volume-title: Introduction to Stochastic Control
  year: 1971
  ident: e_1_2_10_60_1
  contributor:
    fullname: Kushner H
– ident: e_1_2_10_29_1
  doi: 10.1162/neco.1991.3.2.246
– ident: e_1_2_10_13_1
  doi: 10.1007/s10115-014-0808-1
– volume-title: The Variational Bayes Method in Signal Processing
  year: 2005
  ident: e_1_2_10_47_1
  contributor:
    fullname: Šmídl V
– ident: e_1_2_10_48_1
– ident: e_1_2_10_19_1
  doi: 10.1016/B978-0-12-589320-6.50018-6
– ident: e_1_2_10_16_1
  doi: 10.1145/2522968.2522981
– ident: e_1_2_10_20_1
  doi: 10.1002/0471721182
– ident: e_1_2_10_41_1
  doi: 10.1007/978-3-642-24647-0_2
– ident: e_1_2_10_14_1
  doi: 10.1007/978-3-319-18032-8_10
– ident: e_1_2_10_58_1
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– volume-title: Mixture Model‐Based Classification
  year: 2017
  ident: e_1_2_10_30_1
  contributor:
    fullname: McNicholas P
– ident: e_1_2_10_10_1
– ident: e_1_2_10_6_1
  doi: 10.1007/s10994-013-5426-8
– ident: e_1_2_10_11_1
  doi: 10.1109/SURV.2013.103013.00206
– volume: 23
  start-page: 284
  year: 1961
  ident: e_1_2_10_42_1
  article-title: Inaccuracy and inference
  publication-title: J Royal Stat Soc
  contributor:
    fullname: Kerridge D
– ident: e_1_2_10_12_1
  doi: 10.1109/COMST.2015.2494502
– volume-title: Hidden Markov Models
  year: 1995
  ident: e_1_2_10_26_1
  contributor:
    fullname: Elliot R
– ident: e_1_2_10_49_1
  doi: 10.1090/S0002-9947-1936-1501854-3
– ident: e_1_2_10_37_1
  doi: 10.1109/ICCAIRO47923.2019.00023
– volume-title: Information and Exponential Families in Statistical Theory
  year: 1978
  ident: e_1_2_10_34_1
  contributor:
    fullname: Barndorff‐Nielsen O
– ident: e_1_2_10_7_1
  doi: 10.1007/978-3-642-27645-3
– ident: e_1_2_10_38_1
  doi: 10.1016/j.ins.2014.01.048
– ident: e_1_2_10_35_1
  doi: 10.1007/978-3-642-48618-0
– volume-title: Statistical Decision Functions
  year: 1950
  ident: e_1_2_10_22_1
  contributor:
    fullname: Wald A
– ident: e_1_2_10_54_1
– ident: e_1_2_10_32_1
  doi: 10.1002/acs.1239
– volume-title: Machine Learning
  year: 1997
  ident: e_1_2_10_2_1
  contributor:
    fullname: Mitchell T
– ident: e_1_2_10_3_1
  doi: 10.1109/MSP.2008.926683
– volume-title: Optimal, Predictive, and Adaptive Control
  year: 1994
  ident: e_1_2_10_9_1
  contributor:
    fullname: Mosca E
– ident: e_1_2_10_40_1
  doi: 10.1214/aos/1176344689
– ident: e_1_2_10_43_1
  doi: 10.1002/acs.4480040404
SSID ssj0009913
Score 2.324662
Snippet Summary Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to...
Any knowledge extraction relies (possibly implicitly) on a hypothesis about the modelled‐data dependence. The extracted knowledge ultimately serves to a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 660
SubjectTerms Algorithms
approximate Bayesian estimation
black‐box dynamic model
data stream processing
Data transmission
Dynamic models
forgetting
Kullback–Leibler divergence
mixture model
Modelling
Probabilistic models
Statistical analysis
universal approximation
Title Mixture ratio modeling of dynamic systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3219
https://www.proquest.com/docview/2518746333
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMcH7UkPvsVqlQgieFi7TdIk601qSy-KUAVvIU_w0oprwY9vHl1bD4LgKYfdwOYxmf9skt8AXPQsN4zrEKaWzBVUYFpoIlhRedMnpdDBS8VAcTzhDy_ibhgxOTfNXZjMh_j-4RYtI63X0cCVrrtLaKgy9TXBifgZgoR0e4M8Lnm7Vc6MLKoQHRHMG-5sibtNxZ-eaCkvV0Vq8jKj7f983w5sLbQlus2TYRfW3HQPNleIg_twdf_6GfcMUBp4lPLghAdo5pHNuelRZjvXB_A8Gj4NxsUiW0JhYpBXYGqYp05VqrTecBJRYpGNo6PiM9S7IA181CcVJUr3wuLChWWRuOVN1e9zcgit6WzqjgDp4OaV8r60FFNmRRVKbGwYv1I7YXttOG96Tr5lKIbM-GMsQ7NlbHYbOk2XyoVZ1DKIKcEpI4S04TJ13q_15e1gEsvjv754Ahs4njdJhxE70Pp4n7tTWK_t_CxNjS95F7g0
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOg_qwd_idGoFETzUdUmWpHgac2PiNoRN8Bba_IBdNrEO_PPNa1c3D4LgKYc20Px4ed-XJp8HcN0wQnOR-jA14jZkkrAwpZKHsdNNGsnUeykMFHsjMXyVDx3E5NyXd2EKPsT3hhtaRr5eo4HjhnR9SQ1NdHZHCSI_Nxj38xDvb9DnJXE3LnIjy9jHR5SIkjwbkXpZ86cvWgrMVZma-5nu7r--cA92FvIyaBXzYR_W7PQAtlegg4dwO5h84m-DIB_7IE-F4x8EMxeYIj19UOCdsyN46XbG7V64SJgQaozzQsI0d8wmcRIZpwVFmhjicVIUfZo569WBQ4kSM5qkDb--CGk4QrecjptNQY-hMp1N7QkEqff0SeJcZBhh3MjYl0QbP4RRaqVpVOGq7Dr1VnAxVEFAJso3W2Gzq1Ar-1QtLCNTXk9JwTiltAo3ee_9Wl-12iMsT__64iVs9saDvuo_Dp_OYIvg8ZP8bGINKh_vc3sO65mZX-Tz5As9ybxc
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOkH04G9xOrWCCB7quiRrUm9jP5ioYzAFb6FNGthlG9aBf755yermQRA85dAGmpe8vO9r088DuG5ormKe2TQ1ivOQCcLCjIo4TIxq0khkNkphotgf8cGb6HQRk3Nf_gvj-RDfL9zQM9x-jQ4-06a-hIamqrijBImfG8yqcOTmUzpcAncTXxpZJDY9ooSX4NmI1MueP0PRUl-uqlQXZnq7_3nAPdhZiMug5VfDPqzlkwPYXkEOHsLt8_gTPxoEbuYDVwjHXgimJtC-OH3g4c7FEbz2ui_tfrgolxAqzPJCwlRsWJ4maaSN4hRZYgjHyVDyKWZyqw0MCpSE0TRr2N2FCx0jcsuopNnk9Bgqk-kkP4Egs3E-TY2JNCMs1iKxLVHaTmCU5UI3qnBVWk7OPBVDev4xkXbYEoddhVppUrnwi0JaNSU4iymlVbhxxvu1v2y1R9ie_vXGS9gcdnry6WHweAZbBM-euIOJNah8vM_zc1gv9PzCrZIvJ9C7Ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixture+ratio+modeling+of+dynamic+systems&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=K%C3%A1rn%C3%BD%2C+Miroslav&rft.au=Ruman%2C+Marko&rft.date=2021-05-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=35&rft.issue=5&rft.spage=660&rft.epage=675&rft_id=info:doi/10.1002%2Facs.3219&rft.externalDBID=10.1002%252Facs.3219&rft.externalDocID=ACS3219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon