Regularization-Based Super-Resolution Sparse Channel Estimation for MmWave Massive MIMO Systems

Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Accurate channel estimation poses significant technique challenges for designing the mmWave MIMO systems....

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 7; pp. 75837 - 75844
Main Authors: Zhang, Zhenyue, Liang, Yan, Shi, Wenjuan, Yuan, Lianjun, Gui, Guan
Format: Journal Article
Language:English
Published: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Accurate channel estimation poses significant technique challenges for designing the mmWave MIMO systems. Considering the channel sparsity in mmWave massive MIMO systems with hybrid precoding, this paper proposes an <inline-formula> <tex-math notation="LaTeX">\ell _{1/2} </tex-math></inline-formula>-regularization-based sparse channel estimation method. The basic idea of the proposed method is to formulate the sparse channel estimation problem as a compressed sensing problem. Specifically, the method firstly constructs an objective function, which is a weighted sum of the <inline-formula> <tex-math notation="LaTeX">\ell _{1/2} </tex-math></inline-formula>-regularization and error constraint term. It is then optimized via the gradient descent method iteratively and the weight parameter in the function is also updated in each iteration. In contrast to conventional algorithms, our proposed method can avoid the quantization error and finally realize super-resolution performance. The simulation experiments verified that the proposed method can achieve better performance than traditional ones.
AbstractList Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Accurate channel estimation poses significant technique challenges for designing the mmWave MIMO systems. Considering the channel sparsity in mmWave massive MIMO systems with hybrid precoding, this paper proposes an ℓ1/2-regularization-based sparse channel estimation method. The basic idea of the proposed method is to formulate the sparse channel estimation problem as a compressed sensing problem. Specifically, the method firstly constructs an objective function, which is a weighted sum of the ℓ1/2-regularization and error constraint term. It is then optimized via the gradient descent method iteratively and the weight parameter in the function is also updated in each iteration. In contrast to conventional algorithms, our proposed method can avoid the quantization error and finally realize super-resolution performance. The simulation experiments verified that the proposed method can achieve better performance than traditional ones.
Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Accurate channel estimation poses significant technique challenges for designing the mmWave MIMO systems. Considering the channel sparsity in mmWave massive MIMO systems with hybrid precoding, this paper proposes an <inline-formula> <tex-math notation="LaTeX">\ell _{1/2} </tex-math></inline-formula>-regularization-based sparse channel estimation method. The basic idea of the proposed method is to formulate the sparse channel estimation problem as a compressed sensing problem. Specifically, the method firstly constructs an objective function, which is a weighted sum of the <inline-formula> <tex-math notation="LaTeX">\ell _{1/2} </tex-math></inline-formula>-regularization and error constraint term. It is then optimized via the gradient descent method iteratively and the weight parameter in the function is also updated in each iteration. In contrast to conventional algorithms, our proposed method can avoid the quantization error and finally realize super-resolution performance. The simulation experiments verified that the proposed method can achieve better performance than traditional ones.
Author Shi, Wenjuan
Liang, Yan
Yuan, Lianjun
Zhang, Zhenyue
Gui, Guan
Author_xml – sequence: 1
  givenname: Zhenyue
  surname: Zhang
  fullname: Zhang, Zhenyue
  organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Yan
  surname: Liang
  fullname: Liang, Yan
  email: liangyan@njupt.edu.cn
  organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 3
  givenname: Wenjuan
  orcidid: 0000-0002-5232-7836
  surname: Shi
  fullname: Shi, Wenjuan
  organization: School of New Energy and Electronical Engineering, Yancheng Teachers University, Yancheng, China
– sequence: 4
  givenname: Lianjun
  surname: Yuan
  fullname: Yuan, Lianjun
  organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 5
  givenname: Guan
  orcidid: 0000-0003-3888-2881
  surname: Gui
  fullname: Gui, Guan
  email: guiguan@njupt.edu.cn
  organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNpNUU1LxDAQDbKCuvoLvBQ8d81HkzZHLasuuAhW8RjSdKJdus2atML6623tIs5hXnjMezPhnaFZ61pA6JLgBSFYXt_k-bIoFhQTuaCSEiGzI3Q6Ysw4E7N_7xN0EcIGD5UNFE9PkXqG977Rvv7WXe3a-FYHqKKi34GPnyG4ph_pqNhpHyDKP3TbQhMtQ1dvfwWRdT5ab9_0F0RrHUI94mr9FBX70ME2nKNjq5sAFweco9e75Uv-ED8-3a_ym8fYUM6ymAM2AkzFSyFwwofGCCmpYSkQzY3Q0pJs-JiwUpqU84ySsrTMpkQKa0CwOVpNvpXTG7Xzw3l-r5yu1S_h_LvSvqtNA0pQnliRlphKmZjKZpnUtjRASqGrhOHB62ry2nn32UPo1Mb1vh3OVzThXLA0xeMUm6aMdyF4sH9bCVZjMGoKRo3BqEMwg-pyUtUA8KfIUkZlgtkPhGWK1w
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2947533
crossref_primary_10_1109_JSAC_2020_3019724
crossref_primary_10_1007_s40860_022_00174_5
crossref_primary_10_1109_ACCESS_2020_2976727
crossref_primary_10_1109_ACCESS_2020_2970190
crossref_primary_10_1088_1742_6596_2031_1_012029
crossref_primary_10_1016_j_jfranklin_2023_12_050
crossref_primary_10_1109_TITS_2022_3145363
Cites_doi 10.1109/TCOMM.2016.2520945
10.1109/TSP.2014.2324991
10.1109/ACCESS.2016.2596704
10.1109/JIOT.2018.2876152
10.1109/MWC.2017.1700147
10.1109/TNNLS.2012.2197412
10.1016/j.matcom.2011.01.016
10.1109/ACCESS.2018.2830771
10.1109/TVT.2018.2883669
10.1109/TVT.2019.2893928
10.1137/080716542
10.1109/TSP.2016.2572041
10.1109/TWC.2015.2396058
10.1109/MCOM.2014.6894453
10.1109/TVT.2018.2851783
10.1109/MWC.2018.1700193
10.1109/LCOMM.2017.2769657
10.1109/TVT.2018.2842724
10.1109/LCOMM.2015.2492960
10.1109/ICASSP.2015.7178503
10.1109/ICASSP.2008.4518498
10.1109/MNET.2017.1600248
10.1109/JSTSP.2014.2313020
10.1016/j.jfranklin.2015.07.006
10.1109/TWC.2017.2718502
10.1109/78.738251
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2921698
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 75844
ExternalDocumentID oai_doaj_org_article_6254f67b02994cdf889afbce1b6ad430
10_1109_ACCESS_2019_2921698
8732940
Genre orig-research
GrantInformation_xml – fundername: Program for High-Level Entrepreneurial and Innovative Talents Introduction
  grantid: CZ0010617002
– fundername: Nanjing University of Posts and Telecommunications
  funderid: 10.13039/501100005374
– fundername: Jiangsu Specially Appointed Professor Program
  grantid: RK002STP16001
– fundername: Summit of the Six Top Talents Program of Jiangsu
  grantid: XYDXX-010
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2538-5e0c6ecd5b66045660311b2c37e1a5c6a9f186986f99c755821bbf3f7196fce63
IEDL.DBID ESBDL
ISSN 2169-3536
IngestDate Tue Oct 22 15:10:48 EDT 2024
Thu Oct 10 18:18:23 EDT 2024
Fri Aug 23 00:50:56 EDT 2024
Wed Jun 26 19:28:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2538-5e0c6ecd5b66045660311b2c37e1a5c6a9f186986f99c755821bbf3f7196fce63
ORCID 0000-0002-5232-7836
0000-0003-3888-2881
OpenAccessLink https://ieeexplore.ieee.org/document/8732940
PQID 2455637700
PQPubID 4845423
PageCount 8
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2921698
ieee_primary_8732940
proquest_journals_2455637700
doaj_primary_oai_doaj_org_article_6254f67b02994cdf889afbce1b6ad430
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref16
ref18
xu (ref17) 2012; 23
ref24
ref23
ref26
ref25
zhang (ref20) 2018
ref22
ref21
rao (ref13) 2014; 62
ref28
ref27
ref8
ref7
yang (ref19) 2015
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 1
  year: 2018
  ident: ref20
  article-title: $\ell_{1/2}$ -regularization based sparse channel estimation for MmWave massive MIMO Systems
  publication-title: Proc IEEE Int Conf Digit Signal Process (DSP)
  contributor:
    fullname: zhang
– ident: ref15
  doi: 10.1109/TCOMM.2016.2520945
– volume: 62
  start-page: 3261
  year: 2014
  ident: ref13
  article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2324991
  contributor:
    fullname: rao
– ident: ref18
  doi: 10.1109/ACCESS.2016.2596704
– ident: ref3
  doi: 10.1109/JIOT.2018.2876152
– ident: ref12
  doi: 10.1109/MWC.2017.1700147
– volume: 23
  start-page: 1013
  year: 2012
  ident: ref17
  article-title: $L_{1/2}$ regularization: A thresholding representation theory and a fast solver
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2197412
  contributor:
    fullname: xu
– ident: ref26
  doi: 10.1016/j.matcom.2011.01.016
– ident: ref16
  doi: 10.1109/ACCESS.2018.2830771
– start-page: 1
  year: 2015
  ident: ref19
  article-title: $\ell_{1}/2$ -regularization based distributed channel estimation for industrial wireless sensor network
  publication-title: Proc IEEE/CIC Int Conf Commun China (ICCC)
  contributor:
    fullname: yang
– ident: ref21
  doi: 10.1109/TVT.2018.2883669
– ident: ref2
  doi: 10.1109/TVT.2019.2893928
– ident: ref28
  doi: 10.1137/080716542
– ident: ref25
  doi: 10.1109/TSP.2016.2572041
– ident: ref9
  doi: 10.1109/TWC.2015.2396058
– ident: ref1
  doi: 10.1109/MCOM.2014.6894453
– ident: ref7
  doi: 10.1109/TVT.2018.2851783
– ident: ref4
  doi: 10.1109/MWC.2018.1700193
– ident: ref14
  doi: 10.1109/LCOMM.2017.2769657
– ident: ref22
  doi: 10.1109/TVT.2018.2842724
– ident: ref10
  doi: 10.1109/LCOMM.2015.2492960
– ident: ref27
  doi: 10.1109/ICASSP.2015.7178503
– ident: ref24
  doi: 10.1109/ICASSP.2008.4518498
– ident: ref5
  doi: 10.1109/MNET.2017.1600248
– ident: ref8
  doi: 10.1109/JSTSP.2014.2313020
– ident: ref6
  doi: 10.1016/j.jfranklin.2015.07.006
– ident: ref11
  doi: 10.1109/TWC.2017.2718502
– ident: ref23
  doi: 10.1109/78.738251
SSID ssj0000816957
Score 2.168139
Snippet Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 75837
SubjectTerms Algorithms
Channel estimation
Downlink
Estimation
Hybrid systems
Iterative methods
iterative reweighted methods
massive MIMO
Millimeter waves
millimeter-wave (mmWave)
MIMO (control systems)
MIMO communication
Precoding
Radio frequency
Regularization
Sparse channel estimation
Transmitting antennas
ℓ₁/₂-regularization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoJ3qoCrTqUlr5wJF0bcfx4wjLIjhsK7Gt2gOS5adUaQmrpdsL4r_XE5sVqIdeeorkREk84xnPWDPfh9CRdk5zHnROcmRsuCWxca0KjeCUJMVpEB56hy_m8vMPdTYFmJwN1RfUhBV44CK4cY7PeRLSkew3uQ9JKW2T85E6YQNvS7ZOxJNkavDBigrdyQozRIken0wmeUZQy6U_Mc3ybfVsKxoQ-yvFyl9-edhszl-jVzVKxCfl73bRVuz30Msn2IH7qL-_jovFg7mnY_ZwhJurgVR-Vdsqm9O8OwU8Xy_jqoEj-rLA8HyZE9mIoaegjws8zQZeehdxDl7x7Oa7_R3xLAfUP-F6OfuCK6T5G_TtfPp1ctFU8oTGM3BiXSReRB86JwSEbcAmTR3zrYzUdl5YnYCNSomktZcd9Ms6l9oks0kmH0X7Fm33t318h7Ag1tLgvYKqf6KSZZ611pHQyiCodyN0_ChHsywYGWbILYg2RewGxG6q2EfoFGS9eRQAroeBrHZT1W7-pfYR2gdNbV6iZMs0z8OHj5oz1RjvDOOAgiYlIQf_49Pv0Q5Mp5zDHKLtX6t1_IBe3IX1x2ER_gGQ4d6Y
  priority: 102
  providerName: Directory of Open Access Journals
Title Regularization-Based Super-Resolution Sparse Channel Estimation for MmWave Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/8732940
https://www.proquest.com/docview/2455637700
https://doaj.org/article/6254f67b02994cdf889afbce1b6ad430
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgvcCBV0GkLZEPHLut1-v149ikqYpEQCIguFl-jCUkSKOU9PfX43UjULn0tKt9yevPs56Z9fcNIe-N90aIaHKQo6ARjkHjOx0bKVqWtGijDMgdvlyqTz_0-Rxlco53XBgAKIvP4AR3y7_8eBW2mCo71arjRuQAfY-r7DePyN58OT3_uMupYBEJ06sqLtQyc3o2m-X3wBVc5oQbnk_rfyagotNfC6vc-xqXKebi-cMa94I8q64kPRuwf0keweoVefqXwOA-sV9KqflNJVs20zxnRbrcrmHTYOJ-GHZ0uc7hLVBkGqzgF51nsx8YjTS7tHTx-7u7AbrIbvZP3H5YfKZV6Pw1-XYx_zq7bGpJhSZw_LT1wIKEEHsvJTpzWGO69Tx0ClrXB-lMwhpVWiZjguqRRet96pLKhpoCyO4NGa2uVvCWUMmca2MIGrkATCfHA--cZ7FTUbbBj8nxXT_b9aCcYUvEwYwdYLEIi62wjMkUsdhdirLX5UDuZFutyOZgTSSpPMuTqAgxaW1c8gFaL10UHRuTfQRm95CKyZgc3SFrq4leWy5QG00pxg7-f9cheYINHPItR2T0Z7OFd-TxddxOSuQ-qcNvUkiDtzFf2ac
link.rule.ids 315,782,786,798,866,2106,4028,27642,27932,27933,27934,54767,54942
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgPZQeeBXUQAEfeuy2Xq_Xj2OTpkpF0kqkFdwsP8YSEqRRSvj9eHbdCAQXTrval7z-PJ6HPd8QcmS8N0JEk50cBZVwDCrf6FhJUbOkRR1lwNzh6UJdfdHnE6TJOd7mwgBAt_kMTvC0W8uPd2GDobJTrRpuRHbQd7JXI_iA7EwWo_PZNqaCRSRMqwq5UM3M6dl4nP8Dd3CZE254vq3_UEAdT38prPLXbNypmItn_9e45-RpMSXpWY_9C_IIli_J3m8Eg_vEfupKza9LsmU1yjor0sVmBesKA_f9sKOLVXZvgWKmwRK-0UkW-z6jkWaTls6_f3Y_gc6zmf0Vj5fza1qIzl-R24vJzXhalZIKVeA4tbXAgoQQWy8lGnNYY7r2PDQKatcG6UzCGlVaJmOCajGL1vvUJJUFNQWQzWsyWN4t4YBQyZyrYwgacwGYTo4H3jjPYqOirIMfkuOHfrarnjnDdh4HM7aHxSIstsAyJCPEYvso0l53F3In2yJFNjtrIknlWVaiIsSktXHJB6i9dFE0bEj2EZjtRwomQ3L4gKwtInpvuUBuNKUYe_Pvtz6Q3enNfGZnl1cf35In2Ng-9nJIBj_WG3hHHt_HzfsyCH8BT_Tang
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularization-Based+Super-Resolution+Sparse+Channel+Estimation+for+MmWave+Massive+MIMO+Systems&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Zhenyue&rft.au=Liang%2C+Yan&rft.au=Shi%2C+Wenjuan&rft.au=Yuan%2C+Lianjun&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=75837&rft.epage=75844&rft_id=info:doi/10.1109%2FACCESS.2019.2921698&rft.externalDocID=8732940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon