Regularization-Based Super-Resolution Sparse Channel Estimation for MmWave Massive MIMO Systems
Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Accurate channel estimation poses significant technique challenges for designing the mmWave MIMO systems....
Saved in:
Published in: | IEEE access Vol. 7; pp. 75837 - 75844 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Accurate channel estimation poses significant technique challenges for designing the mmWave MIMO systems. Considering the channel sparsity in mmWave massive MIMO systems with hybrid precoding, this paper proposes an <inline-formula> <tex-math notation="LaTeX">\ell _{1/2} </tex-math></inline-formula>-regularization-based sparse channel estimation method. The basic idea of the proposed method is to formulate the sparse channel estimation problem as a compressed sensing problem. Specifically, the method firstly constructs an objective function, which is a weighted sum of the <inline-formula> <tex-math notation="LaTeX">\ell _{1/2} </tex-math></inline-formula>-regularization and error constraint term. It is then optimized via the gradient descent method iteratively and the weight parameter in the function is also updated in each iteration. In contrast to conventional algorithms, our proposed method can avoid the quantization error and finally realize super-resolution performance. The simulation experiments verified that the proposed method can achieve better performance than traditional ones. |
---|---|
AbstractList | Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Accurate channel estimation poses significant technique challenges for designing the mmWave MIMO systems. Considering the channel sparsity in mmWave massive MIMO systems with hybrid precoding, this paper proposes an ℓ1/2-regularization-based sparse channel estimation method. The basic idea of the proposed method is to formulate the sparse channel estimation problem as a compressed sensing problem. Specifically, the method firstly constructs an objective function, which is a weighted sum of the ℓ1/2-regularization and error constraint term. It is then optimized via the gradient descent method iteratively and the weight parameter in the function is also updated in each iteration. In contrast to conventional algorithms, our proposed method can avoid the quantization error and finally realize super-resolution performance. The simulation experiments verified that the proposed method can achieve better performance than traditional ones. Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. Accurate channel estimation poses significant technique challenges for designing the mmWave MIMO systems. Considering the channel sparsity in mmWave massive MIMO systems with hybrid precoding, this paper proposes an <inline-formula> <tex-math notation="LaTeX">\ell _{1/2} </tex-math></inline-formula>-regularization-based sparse channel estimation method. The basic idea of the proposed method is to formulate the sparse channel estimation problem as a compressed sensing problem. Specifically, the method firstly constructs an objective function, which is a weighted sum of the <inline-formula> <tex-math notation="LaTeX">\ell _{1/2} </tex-math></inline-formula>-regularization and error constraint term. It is then optimized via the gradient descent method iteratively and the weight parameter in the function is also updated in each iteration. In contrast to conventional algorithms, our proposed method can avoid the quantization error and finally realize super-resolution performance. The simulation experiments verified that the proposed method can achieve better performance than traditional ones. |
Author | Shi, Wenjuan Liang, Yan Yuan, Lianjun Zhang, Zhenyue Gui, Guan |
Author_xml | – sequence: 1 givenname: Zhenyue surname: Zhang fullname: Zhang, Zhenyue organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 2 givenname: Yan surname: Liang fullname: Liang, Yan email: liangyan@njupt.edu.cn organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 3 givenname: Wenjuan orcidid: 0000-0002-5232-7836 surname: Shi fullname: Shi, Wenjuan organization: School of New Energy and Electronical Engineering, Yancheng Teachers University, Yancheng, China – sequence: 4 givenname: Lianjun surname: Yuan fullname: Yuan, Lianjun organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 5 givenname: Guan orcidid: 0000-0003-3888-2881 surname: Gui fullname: Gui, Guan email: guiguan@njupt.edu.cn organization: College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China |
BookMark | eNpNUU1LxDAQDbKCuvoLvBQ8d81HkzZHLasuuAhW8RjSdKJdus2atML6623tIs5hXnjMezPhnaFZ61pA6JLgBSFYXt_k-bIoFhQTuaCSEiGzI3Q6Ysw4E7N_7xN0EcIGD5UNFE9PkXqG977Rvv7WXe3a-FYHqKKi34GPnyG4ph_pqNhpHyDKP3TbQhMtQ1dvfwWRdT5ab9_0F0RrHUI94mr9FBX70ME2nKNjq5sAFweco9e75Uv-ED8-3a_ym8fYUM6ymAM2AkzFSyFwwofGCCmpYSkQzY3Q0pJs-JiwUpqU84ySsrTMpkQKa0CwOVpNvpXTG7Xzw3l-r5yu1S_h_LvSvqtNA0pQnliRlphKmZjKZpnUtjRASqGrhOHB62ry2nn32UPo1Mb1vh3OVzThXLA0xeMUm6aMdyF4sH9bCVZjMGoKRo3BqEMwg-pyUtUA8KfIUkZlgtkPhGWK1w |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2947533 crossref_primary_10_1109_JSAC_2020_3019724 crossref_primary_10_1007_s40860_022_00174_5 crossref_primary_10_1109_ACCESS_2020_2976727 crossref_primary_10_1109_ACCESS_2020_2970190 crossref_primary_10_1088_1742_6596_2031_1_012029 crossref_primary_10_1016_j_jfranklin_2023_12_050 crossref_primary_10_1109_TITS_2022_3145363 |
Cites_doi | 10.1109/TCOMM.2016.2520945 10.1109/TSP.2014.2324991 10.1109/ACCESS.2016.2596704 10.1109/JIOT.2018.2876152 10.1109/MWC.2017.1700147 10.1109/TNNLS.2012.2197412 10.1016/j.matcom.2011.01.016 10.1109/ACCESS.2018.2830771 10.1109/TVT.2018.2883669 10.1109/TVT.2019.2893928 10.1137/080716542 10.1109/TSP.2016.2572041 10.1109/TWC.2015.2396058 10.1109/MCOM.2014.6894453 10.1109/TVT.2018.2851783 10.1109/MWC.2018.1700193 10.1109/LCOMM.2017.2769657 10.1109/TVT.2018.2842724 10.1109/LCOMM.2015.2492960 10.1109/ICASSP.2015.7178503 10.1109/ICASSP.2008.4518498 10.1109/MNET.2017.1600248 10.1109/JSTSP.2014.2313020 10.1016/j.jfranklin.2015.07.006 10.1109/TWC.2017.2718502 10.1109/78.738251 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2921698 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ESBDL name: IEEE Xplore Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 75844 |
ExternalDocumentID | oai_doaj_org_article_6254f67b02994cdf889afbce1b6ad430 10_1109_ACCESS_2019_2921698 8732940 |
Genre | orig-research |
GrantInformation_xml | – fundername: Program for High-Level Entrepreneurial and Innovative Talents Introduction grantid: CZ0010617002 – fundername: Nanjing University of Posts and Telecommunications funderid: 10.13039/501100005374 – fundername: Jiangsu Specially Appointed Professor Program grantid: RK002STP16001 – fundername: Summit of the Six Top Talents Program of Jiangsu grantid: XYDXX-010 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2538-5e0c6ecd5b66045660311b2c37e1a5c6a9f186986f99c755821bbf3f7196fce63 |
IEDL.DBID | ESBDL |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:10:48 EDT 2024 Thu Oct 10 18:18:23 EDT 2024 Fri Aug 23 00:50:56 EDT 2024 Wed Jun 26 19:28:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2538-5e0c6ecd5b66045660311b2c37e1a5c6a9f186986f99c755821bbf3f7196fce63 |
ORCID | 0000-0002-5232-7836 0000-0003-3888-2881 |
OpenAccessLink | https://ieeexplore.ieee.org/document/8732940 |
PQID | 2455637700 |
PQPubID | 4845423 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2921698 ieee_primary_8732940 proquest_journals_2455637700 doaj_primary_oai_doaj_org_article_6254f67b02994cdf889afbce1b6ad430 |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref16 ref18 xu (ref17) 2012; 23 ref24 ref23 ref26 ref25 zhang (ref20) 2018 ref22 ref21 rao (ref13) 2014; 62 ref28 ref27 ref8 ref7 yang (ref19) 2015 ref9 ref4 ref3 ref6 ref5 |
References_xml | – start-page: 1 year: 2018 ident: ref20 article-title: $\ell_{1/2}$ -regularization based sparse channel estimation for MmWave massive MIMO Systems publication-title: Proc IEEE Int Conf Digit Signal Process (DSP) contributor: fullname: zhang – ident: ref15 doi: 10.1109/TCOMM.2016.2520945 – volume: 62 start-page: 3261 year: 2014 ident: ref13 article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2324991 contributor: fullname: rao – ident: ref18 doi: 10.1109/ACCESS.2016.2596704 – ident: ref3 doi: 10.1109/JIOT.2018.2876152 – ident: ref12 doi: 10.1109/MWC.2017.1700147 – volume: 23 start-page: 1013 year: 2012 ident: ref17 article-title: $L_{1/2}$ regularization: A thresholding representation theory and a fast solver publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2197412 contributor: fullname: xu – ident: ref26 doi: 10.1016/j.matcom.2011.01.016 – ident: ref16 doi: 10.1109/ACCESS.2018.2830771 – start-page: 1 year: 2015 ident: ref19 article-title: $\ell_{1}/2$ -regularization based distributed channel estimation for industrial wireless sensor network publication-title: Proc IEEE/CIC Int Conf Commun China (ICCC) contributor: fullname: yang – ident: ref21 doi: 10.1109/TVT.2018.2883669 – ident: ref2 doi: 10.1109/TVT.2019.2893928 – ident: ref28 doi: 10.1137/080716542 – ident: ref25 doi: 10.1109/TSP.2016.2572041 – ident: ref9 doi: 10.1109/TWC.2015.2396058 – ident: ref1 doi: 10.1109/MCOM.2014.6894453 – ident: ref7 doi: 10.1109/TVT.2018.2851783 – ident: ref4 doi: 10.1109/MWC.2018.1700193 – ident: ref14 doi: 10.1109/LCOMM.2017.2769657 – ident: ref22 doi: 10.1109/TVT.2018.2842724 – ident: ref10 doi: 10.1109/LCOMM.2015.2492960 – ident: ref27 doi: 10.1109/ICASSP.2015.7178503 – ident: ref24 doi: 10.1109/ICASSP.2008.4518498 – ident: ref5 doi: 10.1109/MNET.2017.1600248 – ident: ref8 doi: 10.1109/JSTSP.2014.2313020 – ident: ref6 doi: 10.1016/j.jfranklin.2015.07.006 – ident: ref11 doi: 10.1109/TWC.2017.2718502 – ident: ref23 doi: 10.1109/78.738251 |
SSID | ssj0000816957 |
Score | 2.168139 |
Snippet | Channel state information (CSI) is required for both precoding at the transmitter and detection at the receiver in millimeter-wave (mmWave) massive... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 75837 |
SubjectTerms | Algorithms Channel estimation Downlink Estimation Hybrid systems Iterative methods iterative reweighted methods massive MIMO Millimeter waves millimeter-wave (mmWave) MIMO (control systems) MIMO communication Precoding Radio frequency Regularization Sparse channel estimation Transmitting antennas ℓ₁/₂-regularization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoJ3qoCrTqUlr5wJF0bcfx4wjLIjhsK7Gt2gOS5adUaQmrpdsL4r_XE5sVqIdeeorkREk84xnPWDPfh9CRdk5zHnROcmRsuCWxca0KjeCUJMVpEB56hy_m8vMPdTYFmJwN1RfUhBV44CK4cY7PeRLSkew3uQ9JKW2T85E6YQNvS7ZOxJNkavDBigrdyQozRIken0wmeUZQy6U_Mc3ybfVsKxoQ-yvFyl9-edhszl-jVzVKxCfl73bRVuz30Msn2IH7qL-_jovFg7mnY_ZwhJurgVR-Vdsqm9O8OwU8Xy_jqoEj-rLA8HyZE9mIoaegjws8zQZeehdxDl7x7Oa7_R3xLAfUP-F6OfuCK6T5G_TtfPp1ctFU8oTGM3BiXSReRB86JwSEbcAmTR3zrYzUdl5YnYCNSomktZcd9Ms6l9oks0kmH0X7Fm33t318h7Ag1tLgvYKqf6KSZZ611pHQyiCodyN0_ChHsywYGWbILYg2RewGxG6q2EfoFGS9eRQAroeBrHZT1W7-pfYR2gdNbV6iZMs0z8OHj5oz1RjvDOOAgiYlIQf_49Pv0Q5Mp5zDHKLtX6t1_IBe3IX1x2ER_gGQ4d6Y priority: 102 providerName: Directory of Open Access Journals |
Title | Regularization-Based Super-Resolution Sparse Channel Estimation for MmWave Massive MIMO Systems |
URI | https://ieeexplore.ieee.org/document/8732940 https://www.proquest.com/docview/2455637700 https://doaj.org/article/6254f67b02994cdf889afbce1b6ad430 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgvcCBV0GkLZEPHLut1-v149ikqYpEQCIguFl-jCUkSKOU9PfX43UjULn0tKt9yevPs56Z9fcNIe-N90aIaHKQo6ARjkHjOx0bKVqWtGijDMgdvlyqTz_0-Rxlco53XBgAKIvP4AR3y7_8eBW2mCo71arjRuQAfY-r7DePyN58OT3_uMupYBEJ06sqLtQyc3o2m-X3wBVc5oQbnk_rfyagotNfC6vc-xqXKebi-cMa94I8q64kPRuwf0keweoVefqXwOA-sV9KqflNJVs20zxnRbrcrmHTYOJ-GHZ0uc7hLVBkGqzgF51nsx8YjTS7tHTx-7u7AbrIbvZP3H5YfKZV6Pw1-XYx_zq7bGpJhSZw_LT1wIKEEHsvJTpzWGO69Tx0ClrXB-lMwhpVWiZjguqRRet96pLKhpoCyO4NGa2uVvCWUMmca2MIGrkATCfHA--cZ7FTUbbBj8nxXT_b9aCcYUvEwYwdYLEIi62wjMkUsdhdirLX5UDuZFutyOZgTSSpPMuTqAgxaW1c8gFaL10UHRuTfQRm95CKyZgc3SFrq4leWy5QG00pxg7-f9cheYINHPItR2T0Z7OFd-TxddxOSuQ-qcNvUkiDtzFf2ac |
link.rule.ids | 315,782,786,798,866,2106,4028,27642,27932,27933,27934,54767,54942 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgPZQeeBXUQAEfeuy2Xq_Xj2OTpkpF0kqkFdwsP8YSEqRRSvj9eHbdCAQXTrval7z-PJ6HPd8QcmS8N0JEk50cBZVwDCrf6FhJUbOkRR1lwNzh6UJdfdHnE6TJOd7mwgBAt_kMTvC0W8uPd2GDobJTrRpuRHbQd7JXI_iA7EwWo_PZNqaCRSRMqwq5UM3M6dl4nP8Dd3CZE254vq3_UEAdT38prPLXbNypmItn_9e45-RpMSXpWY_9C_IIli_J3m8Eg_vEfupKza9LsmU1yjor0sVmBesKA_f9sKOLVXZvgWKmwRK-0UkW-z6jkWaTls6_f3Y_gc6zmf0Vj5fza1qIzl-R24vJzXhalZIKVeA4tbXAgoQQWy8lGnNYY7r2PDQKatcG6UzCGlVaJmOCajGL1vvUJJUFNQWQzWsyWN4t4YBQyZyrYwgacwGYTo4H3jjPYqOirIMfkuOHfrarnjnDdh4HM7aHxSIstsAyJCPEYvso0l53F3In2yJFNjtrIknlWVaiIsSktXHJB6i9dFE0bEj2EZjtRwomQ3L4gKwtInpvuUBuNKUYe_Pvtz6Q3enNfGZnl1cf35In2Ng-9nJIBj_WG3hHHt_HzfsyCH8BT_Tang |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularization-Based+Super-Resolution+Sparse+Channel+Estimation+for+MmWave+Massive+MIMO+Systems&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Zhenyue&rft.au=Liang%2C+Yan&rft.au=Shi%2C+Wenjuan&rft.au=Yuan%2C+Lianjun&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=75837&rft.epage=75844&rft_id=info:doi/10.1109%2FACCESS.2019.2921698&rft.externalDocID=8732940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |