A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality

The turfgrass industry supports golf courses, sports fields, and the landscaping and lawn care industries worldwide. Identifying the problem spots in turfgrass is crucial for targeted remediation for turfgrass treatment. There have been attempts to create vehicle- or drone-based scanners to predict...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 16; no. 12; p. 2215
Main Authors: Rosenfield, Arthur, Ficht, Alexandra, Lyons, Eric M., Gharabaghi, Bahram
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The turfgrass industry supports golf courses, sports fields, and the landscaping and lawn care industries worldwide. Identifying the problem spots in turfgrass is crucial for targeted remediation for turfgrass treatment. There have been attempts to create vehicle- or drone-based scanners to predict turfgrass quality; however, these methods often have issues associated with high costs and/or a lack of accuracy due to using colour rather than grass height (R2 = 0.30 to 0.90). The new vehicle-mounted turfgrass scanner system developed in this study allows for faster data collection and a more accurate representation of turfgrass quality compared to currently available methods while being affordable and reliable. The Gryphon Turf Canopy Scanner (GTCS), a low-cost one-dimensional LiDAR array, was used to scan turfgrass and provide information about grass height, density, and homogeneity. Tests were carried out over three months in 2021, with ground-truthing taken during the same period. When utilizing non-linear regression, the system could predict the percent bare of a field (R2 = 0.47, root mean square error < 0.5 mm) with an increase in accuracy of 8% compared to the random forest metric. The potential environmental impact of this technology is vast, as a more targeted approach to remediation would reduce water, fertilizer, and herbicide usage.
AbstractList The turfgrass industry supports golf courses, sports fields, and the landscaping and lawn care industries worldwide. Identifying the problem spots in turfgrass is crucial for targeted remediation for turfgrass treatment. There have been attempts to create vehicle- or drone-based scanners to predict turfgrass quality; however, these methods often have issues associated with high costs and/or a lack of accuracy due to using colour rather than grass height (R2 = 0.30 to 0.90). The new vehicle-mounted turfgrass scanner system developed in this study allows for faster data collection and a more accurate representation of turfgrass quality compared to currently available methods while being affordable and reliable. The Gryphon Turf Canopy Scanner (GTCS), a low-cost one-dimensional LiDAR array, was used to scan turfgrass and provide information about grass height, density, and homogeneity. Tests were carried out over three months in 2021, with ground-truthing taken during the same period. When utilizing non-linear regression, the system could predict the percent bare of a field (R2 = 0.47, root mean square error < 0.5 mm) with an increase in accuracy of 8% compared to the random forest metric. The potential environmental impact of this technology is vast, as a more targeted approach to remediation would reduce water, fertilizer, and herbicide usage.
Author Gharabaghi, Bahram
Ficht, Alexandra
Rosenfield, Arthur
Lyons, Eric M.
Author_xml – sequence: 1
  givenname: Arthur
  orcidid: 0009-0001-6250-4605
  surname: Rosenfield
  fullname: Rosenfield, Arthur
– sequence: 2
  givenname: Alexandra
  orcidid: 0000-0002-1358-3757
  surname: Ficht
  fullname: Ficht, Alexandra
– sequence: 3
  givenname: Eric M.
  orcidid: 0000-0003-4769-5957
  surname: Lyons
  fullname: Lyons, Eric M.
– sequence: 4
  givenname: Bahram
  orcidid: 0000-0003-0454-2811
  surname: Gharabaghi
  fullname: Gharabaghi, Bahram
BookMark eNpNUctOwzAQtFCRgMKFL7DEDSngV-L4WFFeUlHF68DJ2jibkKrYxU4P_XtSioC97Gp2dlaaOSIjHzwScsrZhZSGXcbECy6E4PkeORRMi0wJI0b_5gNyktKCDSUlN0wdkrcJnXvMpt0H-tQFD0s669r3nk6xR9cPCAVf0yfwbedbOokRNvTZgfcYaRMifYDVart5WcemjZASfVzDsus3x2S_gWXCk58-Jq831y9Xd9lsfnt_NZllTuSsz1TNmlJVxgHKojLMoFOlck42RZVXCM5wwKrQDHNe1UI7ZYzJVWPKajjQQo7J_U63DrCwq9h9QNzYAJ39BkJsLcS-c0u06EreSCw1d6BUoU0pUReFkqzWotR60Drbaa1i-Fxj6u0irONgSrJy8FBznqst63zHcjGkFLH5_cqZ3SZh_5KQXzoae18
Cites_doi 10.1088/1742-6596/1361/1/012089
10.1109/TAES.2024.3351110
10.1007/s11104-006-0037-9
10.3390/rs13010020
10.3390/agriculture13081532
10.1016/j.ecolind.2017.09.034
10.3390/rs16040699
10.3390/rs16030591
10.1109/JSTARS.2009.2037523
10.1007/s11749-016-0481-7
10.3390/s20174809
10.3390/rs12172823
10.1186/s13007-020-00613-5
10.3390/s18113731
10.13031/trans.14492
10.1002/rob.21866
10.3390/rs8020109
10.3390/rs13030352
10.1109/ICUFN.2017.7993890
10.1007/s12065-022-00736-9
10.3390/rs12193136
10.1080/01431161.2019.1584929
10.3390/rs3030416
10.1016/j.compag.2020.105880
10.3390/s19091996
10.3390/s21113758
10.1016/j.ecolind.2019.105747
10.2134/agronmonogr56
10.1016/j.rse.2011.04.001
10.3390/rs12010017
10.3390/s22020601
10.1016/j.agrformet.2017.07.007
10.1016/j.compag.2011.09.005
10.1016/j.compag.2021.106005
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs16122215
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ec81f3e871ca4467983e766430d72877
10_3390_rs16122215
GeographicLocations Canada
United States--US
GeographicLocations_xml – name: Canada
– name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c250t-4d0f84b9cae36b909ec484cc3f6b5beac91aeb670e51bd27c499954f98be36723
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:12:13 EDT 2024
Mon Nov 04 14:28:42 EST 2024
Fri Nov 22 03:16:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c250t-4d0f84b9cae36b909ec484cc3f6b5beac91aeb670e51bd27c499954f98be36723
ORCID 0009-0001-6250-4605
0000-0003-4769-5957
0000-0002-1358-3757
0000-0003-0454-2811
OpenAccessLink https://doaj.org/article/ec81f3e871ca4467983e766430d72877
PQID 3072711547
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ec81f3e871ca4467983e766430d72877
proquest_journals_3072711547
crossref_primary_10_3390_rs16122215
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rennie (ref_16) 2009; 71
Franco (ref_18) 2023; 16
ref_14
Kragh (ref_23) 2019; 37
ref_13
ref_35
ref_34
ref_10
Jin (ref_12) 2020; 16
ref_31
Tang (ref_38) 2024; 60
Zhao (ref_3) 2011; 115
Segarra (ref_21) 2022; 107
Dalponte (ref_32) 2009; 2
ref_37
Wu (ref_5) 2019; 40
Barton (ref_2) 2006; 284
Anderson (ref_26) 2018; 84
ref_25
ref_24
Prayudani (ref_22) 2019; 1361
ref_20
ref_1
Ussyshkin (ref_33) 2011; 3
Fricke (ref_15) 2011; 79
Luo (ref_36) 2021; 182
ref_28
ref_27
Liu (ref_11) 2017; 247
Basso (ref_17) 2021; 180
ref_9
Xu (ref_30) 2020; 108
ref_8
ref_4
ref_7
Biau (ref_19) 2016; 25
ref_6
Sheffield (ref_29) 2021; 64
References_xml – volume: 1361
  start-page: 012089
  year: 2019
  ident: ref_22
  article-title: Analysis accuracy of forecasting measurement technique on random k-nearest neighbor (RKNN) using MAPE and MSE
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1361/1/012089
  contributor:
    fullname: Prayudani
– volume: 60
  start-page: 2292
  year: 2024
  ident: ref_38
  article-title: An improved artificial electric field algorithm for robot path planning
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2024.3351110
  contributor:
    fullname: Tang
– volume: 284
  start-page: 129
  year: 2006
  ident: ref_2
  article-title: Turfgrass (Cynodon dactylon L.) sod production on sandy soils: I. Effects of irrigation and fertilizer regimes on growth and quality
  publication-title: Plant Soil.
  doi: 10.1007/s11104-006-0037-9
  contributor:
    fullname: Barton
– ident: ref_27
  doi: 10.3390/rs13010020
– ident: ref_6
  doi: 10.3390/agriculture13081532
– volume: 84
  start-page: 793
  year: 2018
  ident: ref_26
  article-title: Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial LiDAR and machine learning
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.09.034
  contributor:
    fullname: Anderson
– ident: ref_13
  doi: 10.3390/rs16040699
– ident: ref_14
  doi: 10.3390/rs16030591
– volume: 2
  start-page: 310
  year: 2009
  ident: ref_32
  article-title: Analysis on the use of multiple returns LiDAR data for the estimation of tree stems volume
  publication-title: J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2009.2037523
  contributor:
    fullname: Dalponte
– volume: 25
  start-page: 197
  year: 2016
  ident: ref_19
  article-title: A random forest guided tour
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
  contributor:
    fullname: Biau
– volume: 107
  start-page: 102697
  year: 2022
  ident: ref_21
  article-title: Farming and earth observation: Sentinel-2 data to estimate within-field wheat grain yield
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Segarra
– ident: ref_1
– ident: ref_25
  doi: 10.3390/s20174809
– ident: ref_7
  doi: 10.3390/rs12172823
– volume: 16
  start-page: 69
  year: 2020
  ident: ref_12
  article-title: Non-destructive estimation of field maize biomass using terrestrial lidar: An evaluation from plot level to individual leaf level
  publication-title: Plant Methods
  doi: 10.1186/s13007-020-00613-5
  contributor:
    fullname: Jin
– ident: ref_34
  doi: 10.3390/s18113731
– volume: 64
  start-page: 1755
  year: 2021
  ident: ref_29
  article-title: Using LiDAR to measure alfalfa canopy height
  publication-title: Trans. ASABE
  doi: 10.13031/trans.14492
  contributor:
    fullname: Sheffield
– volume: 37
  start-page: 53
  year: 2019
  ident: ref_23
  article-title: Multimodal obstacle detection in unstructured environments with conditional random fields
  publication-title: J. Field Robot
  doi: 10.1002/rob.21866
  contributor:
    fullname: Kragh
– ident: ref_4
  doi: 10.3390/rs8020109
– ident: ref_35
  doi: 10.3390/rs13030352
– ident: ref_8
  doi: 10.1109/ICUFN.2017.7993890
– ident: ref_31
– volume: 16
  start-page: 1271
  year: 2023
  ident: ref_18
  article-title: Hybrid machine learning methods combined with computer vision approaches to estimate biophysical parameters of pastures
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-022-00736-9
  contributor:
    fullname: Franco
– ident: ref_24
  doi: 10.3390/rs12193136
– volume: 40
  start-page: 5973
  year: 2019
  ident: ref_5
  article-title: Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1584929
  contributor:
    fullname: Wu
– volume: 3
  start-page: 416
  year: 2011
  ident: ref_33
  article-title: Airborne Lidar: Advances in discrete return technology for 3D vegetation mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs3030416
  contributor:
    fullname: Ussyshkin
– volume: 180
  start-page: 105880
  year: 2021
  ident: ref_17
  article-title: Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105880
  contributor:
    fullname: Basso
– ident: ref_10
  doi: 10.3390/s19091996
– ident: ref_20
  doi: 10.3390/s21113758
– volume: 108
  start-page: 105747
  year: 2020
  ident: ref_30
  article-title: Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.105747
  contributor:
    fullname: Xu
– ident: ref_37
  doi: 10.2134/agronmonogr56
– volume: 115
  start-page: 1978
  year: 2011
  ident: ref_3
  article-title: Characterizing forest canopy structure with LiDAR composite metrics and machine learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.04.001
  contributor:
    fullname: Zhao
– ident: ref_9
  doi: 10.3390/rs12010017
– volume: 71
  start-page: 49
  year: 2009
  ident: ref_16
  article-title: Calibration of the C-DAX rapid pasturemeter and the rising plater meter for kikuyu-based Northland dairy pastures
  publication-title: NZ Grassl. Assoc.
  contributor:
    fullname: Rennie
– ident: ref_28
  doi: 10.3390/s22020601
– volume: 247
  start-page: 12
  year: 2017
  ident: ref_11
  article-title: Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.07.007
  contributor:
    fullname: Liu
– volume: 79
  start-page: 142
  year: 2011
  ident: ref_15
  article-title: Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.09.005
  contributor:
    fullname: Fricke
– volume: 182
  start-page: 106005
  year: 2021
  ident: ref_36
  article-title: Maize and soybean heights estimation from unmanned aerial vehicle (UAV) LiDAR data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106005
  contributor:
    fullname: Luo
SSID ssj0000331904
Score 2.4160144
Snippet The turfgrass industry supports golf courses, sports fields, and the landscaping and lawn care industries worldwide. Identifying the problem spots in turfgrass...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2215
SubjectTerms Accuracy
Arrays
Data collection
Data processing
Environmental impact
Golf courses
Grasses
Herbicides
Homogeneity
Kinematics
Landscaping
LiDAR
Machine learning
non-linear regression
precision agriculture
random forest
Remediation
Remote sensing
Scanners
Sensors
sod
Turf
turfgrass
Turfgrasses
Title A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality
URI https://www.proquest.com/docview/3072711547
https://doaj.org/article/ec81f3e871ca4467983e766430d72877
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyyIpygvWYI1ahKncTwCbdWBh0SLBFPkx6VMASXt0H_PXZyWSgwsbFGUONF3zt33Wc53jN0YyBw4Qb6t2gVJ5ERgIq0CqzNpacJAQUsD44l8essGQ7LJWbf6oj1h3h7YA9cDm0WFAOT1VqN0kSoTIFOso6GTyPb9f-RhuiGmmhwscGqFifcjFajre1WN3AaLIfW_3ahAjVH_rzzcFJfRPttrWSG_9W9zwLagPGQ7bYPyj-URe7_lzyUEA_Li9z4a_IFkNR_AvNlMVXJdOv6iyV5whgNVesknCFsJFUdeyh81GTHM-HRRFThoXXPvnrE8Zq-j4fR-HLRdEQKLdGUeJC4sssQoq0GkRoUKENPEWlGkpm8wj6pIg0llCP3IuBgRV-T5VqjM4A0yFiesU36WcMo4qNhaSBDJBAs5ChHAI2cgRhVjpHBddr1CKv_y5hc5igbCM__Bs8vuCMT1FWRY3ZzAMOZtGPO_wthlF6sQ5O1XVOeYf2JJfkHy7D-ecc52Y6QkfqPXBevMqwVcsu3aLa6a2fMNNibIIg
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+One-Dimensional+Light+Detection+and+Ranging+Array+Scanner+for+Mapping+Turfgrass+Quality&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rosenfield%2C+Arthur&rft.au=Ficht%2C+Alexandra&rft.au=Lyons%2C+Eric+M&rft.au=Gharabaghi%2C+Bahram&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=12&rft.spage=2215&rft_id=info:doi/10.3390%2Frs16122215&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon