A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality
The turfgrass industry supports golf courses, sports fields, and the landscaping and lawn care industries worldwide. Identifying the problem spots in turfgrass is crucial for targeted remediation for turfgrass treatment. There have been attempts to create vehicle- or drone-based scanners to predict...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 16; no. 12; p. 2215 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The turfgrass industry supports golf courses, sports fields, and the landscaping and lawn care industries worldwide. Identifying the problem spots in turfgrass is crucial for targeted remediation for turfgrass treatment. There have been attempts to create vehicle- or drone-based scanners to predict turfgrass quality; however, these methods often have issues associated with high costs and/or a lack of accuracy due to using colour rather than grass height (R2 = 0.30 to 0.90). The new vehicle-mounted turfgrass scanner system developed in this study allows for faster data collection and a more accurate representation of turfgrass quality compared to currently available methods while being affordable and reliable. The Gryphon Turf Canopy Scanner (GTCS), a low-cost one-dimensional LiDAR array, was used to scan turfgrass and provide information about grass height, density, and homogeneity. Tests were carried out over three months in 2021, with ground-truthing taken during the same period. When utilizing non-linear regression, the system could predict the percent bare of a field (R2 = 0.47, root mean square error < 0.5 mm) with an increase in accuracy of 8% compared to the random forest metric. The potential environmental impact of this technology is vast, as a more targeted approach to remediation would reduce water, fertilizer, and herbicide usage. |
---|---|
AbstractList | The turfgrass industry supports golf courses, sports fields, and the landscaping and lawn care industries worldwide. Identifying the problem spots in turfgrass is crucial for targeted remediation for turfgrass treatment. There have been attempts to create vehicle- or drone-based scanners to predict turfgrass quality; however, these methods often have issues associated with high costs and/or a lack of accuracy due to using colour rather than grass height (R2 = 0.30 to 0.90). The new vehicle-mounted turfgrass scanner system developed in this study allows for faster data collection and a more accurate representation of turfgrass quality compared to currently available methods while being affordable and reliable. The Gryphon Turf Canopy Scanner (GTCS), a low-cost one-dimensional LiDAR array, was used to scan turfgrass and provide information about grass height, density, and homogeneity. Tests were carried out over three months in 2021, with ground-truthing taken during the same period. When utilizing non-linear regression, the system could predict the percent bare of a field (R2 = 0.47, root mean square error < 0.5 mm) with an increase in accuracy of 8% compared to the random forest metric. The potential environmental impact of this technology is vast, as a more targeted approach to remediation would reduce water, fertilizer, and herbicide usage. |
Author | Gharabaghi, Bahram Ficht, Alexandra Rosenfield, Arthur Lyons, Eric M. |
Author_xml | – sequence: 1 givenname: Arthur orcidid: 0009-0001-6250-4605 surname: Rosenfield fullname: Rosenfield, Arthur – sequence: 2 givenname: Alexandra orcidid: 0000-0002-1358-3757 surname: Ficht fullname: Ficht, Alexandra – sequence: 3 givenname: Eric M. orcidid: 0000-0003-4769-5957 surname: Lyons fullname: Lyons, Eric M. – sequence: 4 givenname: Bahram orcidid: 0000-0003-0454-2811 surname: Gharabaghi fullname: Gharabaghi, Bahram |
BookMark | eNpNUctOwzAQtFCRgMKFL7DEDSngV-L4WFFeUlHF68DJ2jibkKrYxU4P_XtSioC97Gp2dlaaOSIjHzwScsrZhZSGXcbECy6E4PkeORRMi0wJI0b_5gNyktKCDSUlN0wdkrcJnXvMpt0H-tQFD0s669r3nk6xR9cPCAVf0yfwbedbOokRNvTZgfcYaRMifYDVart5WcemjZASfVzDsus3x2S_gWXCk58-Jq831y9Xd9lsfnt_NZllTuSsz1TNmlJVxgHKojLMoFOlck42RZVXCM5wwKrQDHNe1UI7ZYzJVWPKajjQQo7J_U63DrCwq9h9QNzYAJ39BkJsLcS-c0u06EreSCw1d6BUoU0pUReFkqzWotR60Drbaa1i-Fxj6u0irONgSrJy8FBznqst63zHcjGkFLH5_cqZ3SZh_5KQXzoae18 |
Cites_doi | 10.1088/1742-6596/1361/1/012089 10.1109/TAES.2024.3351110 10.1007/s11104-006-0037-9 10.3390/rs13010020 10.3390/agriculture13081532 10.1016/j.ecolind.2017.09.034 10.3390/rs16040699 10.3390/rs16030591 10.1109/JSTARS.2009.2037523 10.1007/s11749-016-0481-7 10.3390/s20174809 10.3390/rs12172823 10.1186/s13007-020-00613-5 10.3390/s18113731 10.13031/trans.14492 10.1002/rob.21866 10.3390/rs8020109 10.3390/rs13030352 10.1109/ICUFN.2017.7993890 10.1007/s12065-022-00736-9 10.3390/rs12193136 10.1080/01431161.2019.1584929 10.3390/rs3030416 10.1016/j.compag.2020.105880 10.3390/s19091996 10.3390/s21113758 10.1016/j.ecolind.2019.105747 10.2134/agronmonogr56 10.1016/j.rse.2011.04.001 10.3390/rs12010017 10.3390/s22020601 10.1016/j.agrformet.2017.07.007 10.1016/j.compag.2011.09.005 10.1016/j.compag.2021.106005 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs16122215 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ec81f3e871ca4467983e766430d72877 10_3390_rs16122215 |
GeographicLocations | Canada United States--US |
GeographicLocations_xml | – name: Canada – name: United States--US |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c250t-4d0f84b9cae36b909ec484cc3f6b5beac91aeb670e51bd27c499954f98be36723 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:12:13 EDT 2024 Mon Nov 04 14:28:42 EST 2024 Fri Nov 22 03:16:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c250t-4d0f84b9cae36b909ec484cc3f6b5beac91aeb670e51bd27c499954f98be36723 |
ORCID | 0009-0001-6250-4605 0000-0003-4769-5957 0000-0002-1358-3757 0000-0003-0454-2811 |
OpenAccessLink | https://doaj.org/article/ec81f3e871ca4467983e766430d72877 |
PQID | 3072711547 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ec81f3e871ca4467983e766430d72877 proquest_journals_3072711547 crossref_primary_10_3390_rs16122215 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Rennie (ref_16) 2009; 71 Franco (ref_18) 2023; 16 ref_14 Kragh (ref_23) 2019; 37 ref_13 ref_35 ref_34 ref_10 Jin (ref_12) 2020; 16 ref_31 Tang (ref_38) 2024; 60 Zhao (ref_3) 2011; 115 Segarra (ref_21) 2022; 107 Dalponte (ref_32) 2009; 2 ref_37 Wu (ref_5) 2019; 40 Barton (ref_2) 2006; 284 Anderson (ref_26) 2018; 84 ref_25 ref_24 Prayudani (ref_22) 2019; 1361 ref_20 ref_1 Ussyshkin (ref_33) 2011; 3 Fricke (ref_15) 2011; 79 Luo (ref_36) 2021; 182 ref_28 ref_27 Liu (ref_11) 2017; 247 Basso (ref_17) 2021; 180 ref_9 Xu (ref_30) 2020; 108 ref_8 ref_4 ref_7 Biau (ref_19) 2016; 25 ref_6 Sheffield (ref_29) 2021; 64 |
References_xml | – volume: 1361 start-page: 012089 year: 2019 ident: ref_22 article-title: Analysis accuracy of forecasting measurement technique on random k-nearest neighbor (RKNN) using MAPE and MSE publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1361/1/012089 contributor: fullname: Prayudani – volume: 60 start-page: 2292 year: 2024 ident: ref_38 article-title: An improved artificial electric field algorithm for robot path planning publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2024.3351110 contributor: fullname: Tang – volume: 284 start-page: 129 year: 2006 ident: ref_2 article-title: Turfgrass (Cynodon dactylon L.) sod production on sandy soils: I. Effects of irrigation and fertilizer regimes on growth and quality publication-title: Plant Soil. doi: 10.1007/s11104-006-0037-9 contributor: fullname: Barton – ident: ref_27 doi: 10.3390/rs13010020 – ident: ref_6 doi: 10.3390/agriculture13081532 – volume: 84 start-page: 793 year: 2018 ident: ref_26 article-title: Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial LiDAR and machine learning publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.09.034 contributor: fullname: Anderson – ident: ref_13 doi: 10.3390/rs16040699 – ident: ref_14 doi: 10.3390/rs16030591 – volume: 2 start-page: 310 year: 2009 ident: ref_32 article-title: Analysis on the use of multiple returns LiDAR data for the estimation of tree stems volume publication-title: J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2009.2037523 contributor: fullname: Dalponte – volume: 25 start-page: 197 year: 2016 ident: ref_19 article-title: A random forest guided tour publication-title: TEST doi: 10.1007/s11749-016-0481-7 contributor: fullname: Biau – volume: 107 start-page: 102697 year: 2022 ident: ref_21 article-title: Farming and earth observation: Sentinel-2 data to estimate within-field wheat grain yield publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Segarra – ident: ref_1 – ident: ref_25 doi: 10.3390/s20174809 – ident: ref_7 doi: 10.3390/rs12172823 – volume: 16 start-page: 69 year: 2020 ident: ref_12 article-title: Non-destructive estimation of field maize biomass using terrestrial lidar: An evaluation from plot level to individual leaf level publication-title: Plant Methods doi: 10.1186/s13007-020-00613-5 contributor: fullname: Jin – ident: ref_34 doi: 10.3390/s18113731 – volume: 64 start-page: 1755 year: 2021 ident: ref_29 article-title: Using LiDAR to measure alfalfa canopy height publication-title: Trans. ASABE doi: 10.13031/trans.14492 contributor: fullname: Sheffield – volume: 37 start-page: 53 year: 2019 ident: ref_23 article-title: Multimodal obstacle detection in unstructured environments with conditional random fields publication-title: J. Field Robot doi: 10.1002/rob.21866 contributor: fullname: Kragh – ident: ref_4 doi: 10.3390/rs8020109 – ident: ref_35 doi: 10.3390/rs13030352 – ident: ref_8 doi: 10.1109/ICUFN.2017.7993890 – ident: ref_31 – volume: 16 start-page: 1271 year: 2023 ident: ref_18 article-title: Hybrid machine learning methods combined with computer vision approaches to estimate biophysical parameters of pastures publication-title: Evol. Intell. doi: 10.1007/s12065-022-00736-9 contributor: fullname: Franco – ident: ref_24 doi: 10.3390/rs12193136 – volume: 40 start-page: 5973 year: 2019 ident: ref_5 article-title: Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1584929 contributor: fullname: Wu – volume: 3 start-page: 416 year: 2011 ident: ref_33 article-title: Airborne Lidar: Advances in discrete return technology for 3D vegetation mapping publication-title: Remote Sens. doi: 10.3390/rs3030416 contributor: fullname: Ussyshkin – volume: 180 start-page: 105880 year: 2021 ident: ref_17 article-title: Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105880 contributor: fullname: Basso – ident: ref_10 doi: 10.3390/s19091996 – ident: ref_20 doi: 10.3390/s21113758 – volume: 108 start-page: 105747 year: 2020 ident: ref_30 article-title: Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2019.105747 contributor: fullname: Xu – ident: ref_37 doi: 10.2134/agronmonogr56 – volume: 115 start-page: 1978 year: 2011 ident: ref_3 article-title: Characterizing forest canopy structure with LiDAR composite metrics and machine learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.04.001 contributor: fullname: Zhao – ident: ref_9 doi: 10.3390/rs12010017 – volume: 71 start-page: 49 year: 2009 ident: ref_16 article-title: Calibration of the C-DAX rapid pasturemeter and the rising plater meter for kikuyu-based Northland dairy pastures publication-title: NZ Grassl. Assoc. contributor: fullname: Rennie – ident: ref_28 doi: 10.3390/s22020601 – volume: 247 start-page: 12 year: 2017 ident: ref_11 article-title: Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.07.007 contributor: fullname: Liu – volume: 79 start-page: 142 year: 2011 ident: ref_15 article-title: Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2011.09.005 contributor: fullname: Fricke – volume: 182 start-page: 106005 year: 2021 ident: ref_36 article-title: Maize and soybean heights estimation from unmanned aerial vehicle (UAV) LiDAR data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106005 contributor: fullname: Luo |
SSID | ssj0000331904 |
Score | 2.4160144 |
Snippet | The turfgrass industry supports golf courses, sports fields, and the landscaping and lawn care industries worldwide. Identifying the problem spots in turfgrass... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2215 |
SubjectTerms | Accuracy Arrays Data collection Data processing Environmental impact Golf courses Grasses Herbicides Homogeneity Kinematics Landscaping LiDAR Machine learning non-linear regression precision agriculture random forest Remediation Remote sensing Scanners Sensors sod Turf turfgrass Turfgrasses |
Title | A One-Dimensional Light Detection and Ranging Array Scanner for Mapping Turfgrass Quality |
URI | https://www.proquest.com/docview/3072711547 https://doaj.org/article/ec81f3e871ca4467983e766430d72877 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyyIpygvWYI1ahKncTwCbdWBh0SLBFPkx6VMASXt0H_PXZyWSgwsbFGUONF3zt33Wc53jN0YyBw4Qb6t2gVJ5ERgIq0CqzNpacJAQUsD44l8essGQ7LJWbf6oj1h3h7YA9cDm0WFAOT1VqN0kSoTIFOso6GTyPb9f-RhuiGmmhwscGqFifcjFajre1WN3AaLIfW_3ahAjVH_rzzcFJfRPttrWSG_9W9zwLagPGQ7bYPyj-URe7_lzyUEA_Li9z4a_IFkNR_AvNlMVXJdOv6iyV5whgNVesknCFsJFUdeyh81GTHM-HRRFThoXXPvnrE8Zq-j4fR-HLRdEQKLdGUeJC4sssQoq0GkRoUKENPEWlGkpm8wj6pIg0llCP3IuBgRV-T5VqjM4A0yFiesU36WcMo4qNhaSBDJBAs5ChHAI2cgRhVjpHBddr1CKv_y5hc5igbCM__Bs8vuCMT1FWRY3ZzAMOZtGPO_wthlF6sQ5O1XVOeYf2JJfkHy7D-ecc52Y6QkfqPXBevMqwVcsu3aLa6a2fMNNibIIg |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+One-Dimensional+Light+Detection+and+Ranging+Array+Scanner+for+Mapping+Turfgrass+Quality&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rosenfield%2C+Arthur&rft.au=Ficht%2C+Alexandra&rft.au=Lyons%2C+Eric+M&rft.au=Gharabaghi%2C+Bahram&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=12&rft.spage=2215&rft_id=info:doi/10.3390%2Frs16122215&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |