Ship Lock Extraction from High-Resolution Remote Sensing Images Based on Fuzzy Theory and Prior Knowledge
As crucial water conservancy projects, ship locks play a key role in flood control, shipping, water resource allocation, and promoting regional economic development, making them an indispensable part of the modern water transportation system. Utilizing satellite remote sensing for lock extraction ca...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 16; no. 17; p. 3181 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-09-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As crucial water conservancy projects, ship locks play a key role in flood control, shipping, water resource allocation, and promoting regional economic development, making them an indispensable part of the modern water transportation system. Utilizing satellite remote sensing for lock extraction can significantly reduce manual workload and costs, assist in the daily dynamic maintenance of lock hubs, and provide more comprehensive data support for the construction and management of water transport infrastructure. In this context, this paper proposes a new method for ship lock object extraction. Leveraging fuzzy theory and prior knowledge of locks, the extraction of lock objects is achieved from Gaofen-1 (GF-1) high-resolution remote sensing images. The experimental results demonstrate that the proposed algorithm can effectively extract small lock objects in remote sensing images, achieving an average extraction accuracy of 80.9% in the study area. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16173181 |