Automated decision making in Barrett’s oesophagus: development and deployment of a natural language processing tool
Manual decisions regarding the timing of surveillance endoscopy for premalignant Barrett’s oesophagus (BO) is error-prone. This leads to inefficient resource usage and safety risks. To automate decision-making, we fine-tuned Bidirectional Encoder Representations from Transformers (BERT) models to ca...
Saved in:
Published in: | NPJ digital medicine Vol. 7; no. 1; pp. 312 - 9 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
07-11-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Manual decisions regarding the timing of surveillance endoscopy for premalignant Barrett’s oesophagus (BO) is error-prone. This leads to inefficient resource usage and safety risks. To automate decision-making, we fine-tuned Bidirectional Encoder Representations from Transformers (BERT) models to categorize BO length (EndoBERT) and worst histopathological grade (PathBERT) on 4,831 endoscopy and 4,581 pathology reports from Guy’s and St Thomas’ Hospital (GSTT). The accuracies for EndoBERT test sets from GSTT, King’s College Hospital (KCH), and Sandwell and West Birmingham Hospitals (SWB) were 0.95, 0.86, and 0.99, respectively. Average accuracies for PathBERT were 0.93, 0.91, and 0.92, respectively. A retrospective analysis of 1640 GSTT reports revealed a 27% discrepancy between endoscopists’ decisions and model recommendations. This study underscores the development and deployment of NLP-based software in BO surveillance, demonstrating high performance at multiple sites. The analysis emphasizes the potential efficiency of automation in enhancing precision and guideline adherence in clinical decision-making. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2398-6352 2398-6352 |
DOI: | 10.1038/s41746-024-01302-6 |