The low-affinity nerve growth factor receptor p75NGFR mediates death of PC12 cells after nerve growth factor withdrawal
We have investigated the role of the low‐affinity nerve growth factor (NGF) receptor p75NGFR in determining the death of neuronally differentiated PC12 cells after withdrawal of NGF. A range of high and low p75NGFR‐expressing cells were obtained by a combination of fluorescence activated cell sortin...
Saved in:
Published in: | Journal of neuroscience research Vol. 45; no. 2; pp. 117 - 128 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
John Wiley & Sons, Inc
15-07-1996
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have investigated the role of the low‐affinity nerve growth factor (NGF) receptor p75NGFR in determining the death of neuronally differentiated PC12 cells after withdrawal of NGF. A range of high and low p75NGFR‐expressing cells were obtained by a combination of fluorescence activated cell sorting (FACS) and stable transfection with a p75NGFR expression vector. Cells were readily differentiated to a neuronal phenotype irrespective of the level of p75NGFR expression. However, the rate and extent of neuronal death following NGF deprivation were extremely sensitive to the level of p75NGFR expression. The highest expressing cells died most rapidly. Cells selected for very low levels of p75NGFR expression exhibited resistance to NGF withdrawal, and remained as viable, differentiated neurons, with minimal cell death, for at least 5 days in the absence of NGF. Antisense oligonucleotides against p75NGFR were shown to down‐regulate p75NGFR in PC12 cells and, further, to significantly enhance survival in the absence of NGF. These results consolidate and generalize our previous findings that p75NGFR induces cell death in postnatal sensory neurons in the absence of NGF. The ability to induce cell death in the absence of NGF appears to be a more general role of p75NGFR in differentiated neurons, and an important new paradigm for the mechanism of NGF‐dependent survival. © 1996 Wiley‐Liss, Inc. |
---|---|
Bibliography: | NH & MRC, Australia MH & MRC, Australia ArticleID:JNR4 istex:5D8622FD0DDB972CBE43016FC6928511F8B390F3 ark:/67375/WNG-PKH3ZF60-T ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0360-4012 1097-4547 |
DOI: | 10.1002/(SICI)1097-4547(19960715)45:2<117::AID-JNR4>3.0.CO;2-D |