VT-MCNet: High-Accuracy Automatic Modulation Classification Model based on Vision Transformer

Cognitive radio networks' evolution hinges significantly on the use of automatic modulation classification (AMC). However, existing research reveals limitations in attaining high AMC accuracy due to ineffective feature extraction from signals. To counter this, we propose a vision-centric approa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters Vol. 28; no. 1; p. 1
Main Authors: Dao, Thien-Thanh, Noh, Dae-Il, Hasegawa, Mikio, Sekiya, Hiroo, Pham, Quoc-Viet, Hwang, Won-Joo
Format: Journal Article
Language:English
Published: New York IEEE 01-01-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cognitive radio networks' evolution hinges significantly on the use of automatic modulation classification (AMC). However, existing research reveals limitations in attaining high AMC accuracy due to ineffective feature extraction from signals. To counter this, we propose a vision-centric approach employing diverse kernel sizes to augment signal extraction. In addition, we refine the transformer architecture by incorporating a dual-branch multi-layer perceptron network, enabling diverse pattern learning and enhancing the model's running speed. Specifically, our architecture allows the system to focus on relevant portions of the input sequence, thus, it improves classification accuracy for both high and low signal-to-noise regimes. By utilizing the widely recognized DeepSig dataset, our pioneering deep model, termed as VT-MCNet, outshines prior leading-edge deep networks in terms of classification accuracy and computational costs. Notably, VT-MCNet reaches an exceptional cumulative classification rate of up to 99.24%, while the state-of-the-art method, even with higher computational complexity, can only achieve 99.06%.
AbstractList Cognitive radio networks’ evolution hinges significantly on the use of automatic modulation classification (AMC). However, existing research reveals limitations in attaining high AMC accuracy due to ineffective feature extraction from signals. To counter this, we propose a vision-centric approach employing diverse kernel sizes to augment signal extraction. In addition, we refine the transformer architecture by incorporating a dual-branch multi-layer perceptron network, enabling diverse pattern learning and enhancing the model’s running speed. Specifically, our architecture allows the system to focus on relevant portions of the input sequence, thus, it improves classification accuracy for both high and low signal-to-noise regimes. By utilizing the widely recognized DeepSig dataset, our pioneering deep model, termed as VT-MCNet, outshines prior leading-edge deep networks in terms of classification accuracy and computational costs. Notably, VT-MCNet reaches an exceptional cumulative classification rate of up to 99.24%, while the state-of-the-art method, even with higher computational complexity, can only achieve 99.06%.
Author Pham, Quoc-Viet
Sekiya, Hiroo
Hwang, Won-Joo
Hasegawa, Mikio
Dao, Thien-Thanh
Noh, Dae-Il
Author_xml – sequence: 1
  givenname: Thien-Thanh
  orcidid: 0000-0003-1952-7067
  surname: Dao
  fullname: Dao, Thien-Thanh
  organization: Department of Information Convergence Engineering, Pusan National University, Busan, South Korea
– sequence: 2
  givenname: Dae-Il
  orcidid: 0000-0002-6586-5780
  surname: Noh
  fullname: Noh, Dae-Il
  organization: Department of Information Convergence Engineering, Center for Artificial Intelligence Research, Pusan National University, Busan, South Korea
– sequence: 3
  givenname: Mikio
  orcidid: 0000-0001-5638-8022
  surname: Hasegawa
  fullname: Hasegawa, Mikio
  organization: Department of Electrical Engineering, Tokyo University of Science, Tokyo, Japan
– sequence: 4
  givenname: Hiroo
  orcidid: 0000-0003-3557-1463
  surname: Sekiya
  fullname: Sekiya, Hiroo
  organization: Graduate School of Engineering, Chiba University, Chiba, Japan
– sequence: 5
  givenname: Quoc-Viet
  orcidid: 0000-0002-9485-9216
  surname: Pham
  fullname: Pham, Quoc-Viet
  organization: School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland
– sequence: 6
  givenname: Won-Joo
  orcidid: 0000-0001-8398-564X
  surname: Hwang
  fullname: Hwang, Won-Joo
  organization: Department of Information Convergence Engineering, Center for Artificial Intelligence Research, Pusan National University, Busan, South Korea
BookMark eNpNUE1PwzAMjdCQ2AZ_AHGoxLkjH-2acJsqxpBWdhm7oShNHejUNSNpD_v3ZHQHJMt-tt-zpTdBo9a2gNA9wTNCsHha55uimFFM2YwxNhc8vUJjkqY8piGNAsZcxFkm-A2aeL_HGHOakjH63G3jIn-H7jla1V_f8ULr3il9ihZ9Zw-qq3VU2KpvArJtlDfK-9rUemjDBpqoVB6qKLS72p-nW6dab6w7gLtF10Y1Hu4udYo-li_bfBWvN69v-WIda5pkXVxqDVSx1GBWwpyFlJhEi4pXpMo0SThPweDK8FSUikKWEA3zUvHElBjTrGRT9DjcPTr704Pv5N72rg0vJRWECsZCBBYdWNpZ7x0YeXT1QbmTJFiebZR_NsqzjfJiYxA9DKIaAP4JGOU8E-wXnhZxZg
CODEN ICLEF6
Cites_doi 10.1109/TCCN.2018.2835460
10.1109/JSTSP.2018.2797022
10.1109/LWC.2020.2999453
10.1109/LCOMM.2023.3261423
10.1109/TCCN.2022.3176640
10.1016/j.aej.2022.08.019
10.1109/LCOMM.2022.3213523
10.1063/1.4902458
10.1109/TVT.2020.3030018
10.1109/LWC.2022.3162422
10.1109/LCOMM.2020.2968030
10.1109/TVT.2020.3042638
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2023.3336985
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 1
ExternalDocumentID 10_1109_LCOMM_2023_3336985
10328879
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
5VS
AAYOK
AAYXX
AETIX
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
VH1
7SP
8FD
L7M
ID FETCH-LOGICAL-c247t-bcce2a35f03be633be4f4c9d8d1d7c14885ef0df859ba2e741ce6ba84fb0027b3
IEDL.DBID RIE
ISSN 1089-7798
IngestDate Wed Oct 16 12:53:39 EDT 2024
Fri Aug 23 00:25:17 EDT 2024
Wed Jun 26 19:24:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-bcce2a35f03be633be4f4c9d8d1d7c14885ef0df859ba2e741ce6ba84fb0027b3
ORCID 0000-0002-6586-5780
0000-0002-9485-9216
0000-0003-1952-7067
0000-0003-3557-1463
0000-0001-5638-8022
0000-0001-8398-564X
PQID 2912933933
PQPubID 85419
PageCount 1
ParticipantIDs crossref_primary_10_1109_LCOMM_2023_3336985
ieee_primary_10328879
proquest_journals_2912933933
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev LCOMM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
Dosovitskiy (ref9)
ref7
ref4
ref3
ref6
Vaswani (ref8)
ref5
References_xml – start-page: 1
  volume-title: Proc. ICLR
  ident: ref9
  article-title: An image is worth 16 × 16 words: Transformers for image recognition at scale
  contributor:
    fullname: Dosovitskiy
– ident: ref2
  doi: 10.1109/TCCN.2018.2835460
– start-page: 6000
  volume-title: Proc. NIPS
  ident: ref8
  article-title: Attention is all you need
  contributor:
    fullname: Vaswani
– ident: ref1
  doi: 10.1109/JSTSP.2018.2797022
– ident: ref14
  doi: 10.1109/LWC.2020.2999453
– ident: ref7
  doi: 10.1109/LCOMM.2023.3261423
– ident: ref11
  doi: 10.1109/TCCN.2022.3176640
– ident: ref3
  doi: 10.1016/j.aej.2022.08.019
– ident: ref10
  doi: 10.1109/LCOMM.2022.3213523
– ident: ref12
  doi: 10.1063/1.4902458
– ident: ref4
  doi: 10.1109/TVT.2020.3030018
– ident: ref6
  doi: 10.1109/LWC.2022.3162422
– ident: ref5
  doi: 10.1109/LCOMM.2020.2968030
– ident: ref13
  doi: 10.1109/TVT.2020.3042638
SSID ssj0008251
Score 2.4736164
Snippet Cognitive radio networks' evolution hinges significantly on the use of automatic modulation classification (AMC). However, existing research reveals...
Cognitive radio networks’ evolution hinges significantly on the use of automatic modulation classification (AMC). However, existing research reveals...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Accuracy
Classification
Cognitive radio
Computer architecture
Computing costs
Convolution
convolutional neural network
Feature extraction
Kernel
Modulation
Modulation classification
Multilayer perceptrons
Multilayers
Tensors
Transformers
vision transformers
wireless communications
Title VT-MCNet: High-Accuracy Automatic Modulation Classification Model based on Vision Transformer
URI https://ieeexplore.ieee.org/document/10328879
https://www.proquest.com/docview/2912933933
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxh4FlEoyAMbcpvWTmKzVaVVB1IGSsWCovg1oQa1ycC_x-ckVSXEgBRFsZRE1l1y9_l8dx9C99ZQGzItSEB1RJjUQ8JDGxHKmHNOig6lgTjk_DVevPOnKbTJIbtaGGOMTz4zfbj0e_k6VyWEyga--RuPRQu1YsGrYq2d2YUazCqbXjjIKHhTIROIwfPkJUn6QBTep5RGAoiT97yQp1X5ZYu9g5md_HNqp-i4RpJ4XKn-DB2Y9Tk62usveIE-VkuSTBameMSQz0HGSpWbTH3jcVnkvlcrTnJdE3hhz48JmUPVEFjSPjF4OY3dcOWL0PGyAbpm00Fvs-lyMic1nwJRIxYXRCpg_6KhDag0EXUnZpkSmuuhjpVbF_HQ2EBbHgqZjYzDGspEMuPMgiuPJb1E7XW-NlcIsyzOHDYSMZVDpv3moHRmVSkFmFKpLnpo5Jt-VW0zUr_cCETqtZGCNtJaG13UAYnu3VkJs4t6jU7S-tfapiMBEIW64_qPx27QoXs7qwIlPdQuNqW5Ra2tLu_8J_MDtUi-fQ
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGICBZxGFAh7YkEtaO3HMVpVWRTRloFQsKIofmVCLSjPw7_E5aVUJMSBFUSwlinWX3H0-390HcJNblofcSBowE1GuTIvGYR5RxrlzTpq1lMU45OBFjN7ihx62yaGrWhhrrU8-s0289Hv5ZqYLDJXd-eZvsZCbsB1yEYmyXGtleLEKs8ynlw40ynhZIxPIu2H3OUmaSBXeZIxFEqmT1_yQJ1b5ZY29i-kf_HNyh7BfYUnSKZV_BBt2egx7ax0GT-B9MqZJd2QX9wQzOmhH62Ke6W_SKRYz362VJDNTUXgRz5CJuUPlEHnSPgj6OUPccOLL0Ml4CXXtvAav_d64O6AVowLVbS4WVGnk_2JhHjBlI-ZOPOdamti0jNBuZRSHNg9MHodSZW3r0Ia2kcpinqMzF4qdwtZ0NrVnQHgmMoeOpGCqxY3fHlTOsGqtEVVqXYfbpXzTz7JxRuoXHIFMvTZS1EZaaaMONZTo2p2lMOvQWOokrX6ur7QtEaQwd5z_8dg17AzGyTAdPo6eLmDXvYmXYZMGbC3mhb2EzS9TXPnP5wfoK8HO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VT-MCNet%3A+High-Accuracy+Automatic+Modulation+Classification+Model+based+on+Vision+Transformer&rft.jtitle=IEEE+communications+letters&rft.au=Dao%2C+Thien-Thanh&rft.au=Noh%2C+Dae-Il&rft.au=Hasegawa%2C+Mikio&rft.au=Sekiya%2C+Hiroo&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=1089-7798&rft.eissn=1558-2558&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FLCOMM.2023.3336985&rft.externalDocID=10328879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon