Retrieval of Ocean Wave Characteristics via Single Frequency Time-Differenced Carrier Phases from GNSS Buoys

To address challenges in large-scale deployments and real-time wave observations using GNSS buoys, we assessed the reliability and precision of the single-frequency L1 Time-Differenced Carrier Phases (TDCP) method for determining significant wave heights (SWH) and average wave periods. Utilizing sim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 62; p. 1
Main Authors: Yang, Lei, Xu, Yongsheng, Jiang, Yingming, Mertikas, Stelios P., Wang, Zhiyong, Zhu, Lin, Liu, Na, Lin, Lina
Format: Journal Article
Language:English
Published: New York IEEE 01-01-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To address challenges in large-scale deployments and real-time wave observations using GNSS buoys, we assessed the reliability and precision of the single-frequency L1 Time-Differenced Carrier Phases (TDCP) method for determining significant wave heights (SWH) and average wave periods. Utilizing simulated dynamic velocity measurements derived from International GNSS Service static observations, our study demonstrates that the L1 TDCP method exhibits superior performance compared to dual-frequency TDCP, Post-Processed Kinematic (PPK), and Doppler algorithms. Notably, L1 TDCP achieves approximately five times greater precision than the Doppler method in vertical direction assessments. In the offshore waters of Qingdao, China, we deployed two GNSS buoys for wave observation experiments, complemented by a nearby accelerometer-equipped wave buoy for external validation. By integrating the velocity measurements obtained from L1 TDCP, we derived the sea surface displacement, which, after applying a high-pass filter, isolated the wave components. The experimental results confirmed a strong correlation between L1 TDCP and PPK methods in capturing SWH and wave periods. The study found a negligible difference between L1 TDCP and PPK in SWH (0 ± 7.1mm, 99% correlation) and in average wave period (0 ± 0.13s, 97% correlation). The wave observations from two independent GNSS buoys at the same location also exhibited remarkable consistency, with a difference in SWH of 0.0 ± 2.5cm and in average wave period of 0.0 ± 0.1s. Compared to the independent wave buoy, the L1 TDCP method demonstrated a difference in SWH of -1.9 ± 5.8cm with a 93% correlation, and in average period of 0 ± 0.1s with a 94% correlation. Further, our analysis into GNSS data sampling frequencies highlighted the efficacy of 1Hz GNSS data in wave inversion, though certain spectral limitations were noted. Implementing the L1 TDCP method at 1Hz offers a substantial reduction in associated hardware costs, storage requirements, and computational demands. Notably, in contrast to PPK, it negates the need for delayed precise ephemeris, facilitating real-time computations. This study highlights the potential of L1 TDCP for broader, real-time GNSS buoy wave observations, harmonizing with the United Nations Decade of Ocean Science's aspirations for an augmented Global Ocean Observing System.
AbstractList To address challenges in large-scale deployments and real-time wave observations using Global Navigation Satellite System (GNSS) buoys, we assessed the reliability and precision of the single-frequency L1 time-differenced carrier phase (TDCP) method for determining significant wave heights (SWHs) and average wave periods. Utilizing simulated dynamic velocity measurements derived from International GNSS Service static observations, this study demonstrates that the L1 TDCP method exhibits superior performance compared to dual-frequency TDCP, postprocessed kinematic (PPK), and Doppler algorithms. Notably, L1 TDCP achieves approximately five times greater precision than the Doppler method in vertical direction assessments. In the offshore waters of Qingdao, China, we deployed two GNSS buoys for wave observation experiments, complemented by a nearby accelerometer-equipped wave buoy (WB) for external validation. By integrating the velocity measurements obtained from L1 TDCP, we derived the sea surface displacement, which, after applying a high-pass filter, isolated the wave components. The experimental results confirmed a strong correlation between L1 TDCP and PPK methods in capturing SWH and wave periods. This study found a negligible difference between L1 TDCP and PPK in SWH (0 ± 7.1 mm, 99% correlation) and in average wave period (0 ± 0.13 s, 97% correlation). The wave observations from two independent GNSS buoys at the same location also exhibited remarkable consistency, with a difference in SWH of 0.0 ± 2.5 cm and in average wave period of 0.0 ± 0.1 s. Compared to the independent WB, the L1 TDCP method demonstrated a difference in SWH of [Formula Omitted] with a 93% correlation and in average period of 0 ± 0.1 s with a 94% correlation. Further, our analysis into GNSS data sampling frequencies highlighted the efficacy of 1-Hz GNSS data in wave inversion though certain spectral limitations were noted. Implementing the L1 TDCP method at 1 Hz offers a substantial reduction in associated hardware costs, storage requirements, and computational demands. Notably, in contrast to PPK, it negates the need for delayed precise ephemeris, facilitating real-time computations. This study highlights the potential of L1 TDCP for broader, real-time GNSS buoy wave observations, harmonizing with the United Nations Decade of Ocean Science’s aspirations for an augmented Global Ocean Observing System.
To address challenges in large-scale deployments and real-time wave observations using GNSS buoys, we assessed the reliability and precision of the single-frequency L1 Time-Differenced Carrier Phases (TDCP) method for determining significant wave heights (SWH) and average wave periods. Utilizing simulated dynamic velocity measurements derived from International GNSS Service static observations, our study demonstrates that the L1 TDCP method exhibits superior performance compared to dual-frequency TDCP, Post-Processed Kinematic (PPK), and Doppler algorithms. Notably, L1 TDCP achieves approximately five times greater precision than the Doppler method in vertical direction assessments. In the offshore waters of Qingdao, China, we deployed two GNSS buoys for wave observation experiments, complemented by a nearby accelerometer-equipped wave buoy for external validation. By integrating the velocity measurements obtained from L1 TDCP, we derived the sea surface displacement, which, after applying a high-pass filter, isolated the wave components. The experimental results confirmed a strong correlation between L1 TDCP and PPK methods in capturing SWH and wave periods. The study found a negligible difference between L1 TDCP and PPK in SWH (0 ± 7.1mm, 99% correlation) and in average wave period (0 ± 0.13s, 97% correlation). The wave observations from two independent GNSS buoys at the same location also exhibited remarkable consistency, with a difference in SWH of 0.0 ± 2.5cm and in average wave period of 0.0 ± 0.1s. Compared to the independent wave buoy, the L1 TDCP method demonstrated a difference in SWH of -1.9 ± 5.8cm with a 93% correlation, and in average period of 0 ± 0.1s with a 94% correlation. Further, our analysis into GNSS data sampling frequencies highlighted the efficacy of 1Hz GNSS data in wave inversion, though certain spectral limitations were noted. Implementing the L1 TDCP method at 1Hz offers a substantial reduction in associated hardware costs, storage requirements, and computational demands. Notably, in contrast to PPK, it negates the need for delayed precise ephemeris, facilitating real-time computations. This study highlights the potential of L1 TDCP for broader, real-time GNSS buoy wave observations, harmonizing with the United Nations Decade of Ocean Science's aspirations for an augmented Global Ocean Observing System.
Author Mertikas, Stelios P.
Zhu, Lin
Yang, Lei
Xu, Yongsheng
Lin, Lina
Liu, Na
Jiang, Yingming
Wang, Zhiyong
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-6503-0505
  surname: Yang
  fullname: Yang, Lei
  organization: Institute of Oceanology, CAS Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences, Qingdao, China
– sequence: 2
  givenname: Yongsheng
  orcidid: 0000-0001-9173-3354
  surname: Xu
  fullname: Xu, Yongsheng
  organization: Institute of Oceanology, CAS Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences, Qingdao, China
– sequence: 3
  givenname: Yingming
  surname: Jiang
  fullname: Jiang, Yingming
  organization: College of Land Resources and Surveying & Mapping Engineering, Shandong Agriculture and Engineering University, Ji'nan, China
– sequence: 4
  givenname: Stelios P.
  orcidid: 0000-0002-1037-7376
  surname: Mertikas
  fullname: Mertikas, Stelios P.
  organization: Geodesy and Geomatics Engineering Laboratory, Technical University of Crete, Chania, Crete, Greece
– sequence: 5
  givenname: Zhiyong
  orcidid: 0000-0002-1270-7439
  surname: Wang
  fullname: Wang, Zhiyong
  organization: North China Sea Marine Forecasting and Hazard Mitigation Center of Ministry of Natural Resources, Qingdao, China
– sequence: 6
  givenname: Lin
  orcidid: 0000-0002-1985-356X
  surname: Zhu
  fullname: Zhu, Lin
  organization: Institute of Oceanographic Instrumentation, Qilu University of Techonology (Shandong Academy of Sciences), Qingdao, China
– sequence: 7
  givenname: Na
  surname: Liu
  fullname: Liu, Na
  organization: First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
– sequence: 8
  givenname: Lina
  surname: Lin
  fullname: Lin, Lina
  organization: First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
BookMark eNpNkE9PAjEQxRuDiYB-ABMPTTwv9t92u0dFQRMihsV4bEp3KiXLLrYLCd_eJXjwNJnkvTfzfgPUq5saELqlZEQpyR-W00UxYoSJEeeZopJeoD5NU5UQKUQP9QnNZcJUzq7QIMYNIVSkNOujagFt8HAwFW4cnlswNf4yB8DjtQnGthB8bL2N-OANLnz9XQGeBPjZQ22PeOm3kDx75yB0O5R4bEKXFvDH2kSI2IVmi6fvRYGf9s0xXqNLZ6oIN39ziD4nL8vxazKbT9_Gj7PEMiHbxJalNJBRwUpFSraipXNGqBWjKyhJTh23POXOpLmD3EoBFpSyCqDMBXAn-RDdn3N3oek-ja3eNPtQdyc1JzQlvKuvOhU9q2xoYgzg9C74rQlHTYk-QdUnqPoEVf9B7Tx3Z48HgH96kfFMpvwXx5l2ew
CODEN IGRSD2
Cites_doi 10.1109/LGRS.2020.3041846
10.1007/s10872-016-0362-4
10.1016/j.csr.2016.07.002
10.1016/j.ocemod.2020.101738
10.1029/2022jc018786
10.1016/j.oceaneng.2016.04.014
10.1016/j.oceaneng.2020.107513
10.1017/S0373463310000482
10.1016/j.oceaneng.2020.107198
10.1016/j.oceaneng.2022.111576
10.1029/94jc00920
10.1007/s10712-023-09771-2
10.1007/s11806-008-0038-3
10.1175/2010jtecho761.1
10.1175/jtech-d-11-00128.1
10.1109/lgrs.2018.2886631
10.1007/s10236-014-0751-4
10.1109/JSTARS.2016.2584626
10.1002/j.2161-4296.2004.tb00359.x
10.1109/LGRS.2021.3088516
10.3389/fmars.2022.966855
10.3390/rs12183001
10.1016/j.oceaneng.2023.113683
10.1080/01490419.2011.584834
10.1002/2017gl072808
10.1109/plans.2006.1650587
10.1088/1755-1315/621/1/012008
10.1109/IGARSS.2015.7326616
10.3390/s110101043
10.5194/gi-5-17-2016
10.1109/LGRS.2022.3222497
10.1007/s10291-014-0425-1
10.3390/en16093841
10.3390/rs12101651
10.1175/JTECH-D-22-0123.1
10.1109/MAES.2002.1044515
10.3189/2015AoG69A600
10.1007/s00190-015-0802-8
10.1007/s10291-011-0249-1
10.1029/2018jc013791
10.3390/s19030541
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3378161
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2024_3378161
10473765
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41806214
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
Y6R
5VS
AAYOK
AAYXX
AETIX
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
M43
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c246t-cdd6ae7142d80d2b1dffa48b21bed091f3c353fa59fe9c64ece88c8eed94e3f63
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Oct 10 15:49:53 EDT 2024
Fri Aug 23 02:59:07 EDT 2024
Mon Nov 04 11:59:46 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-cdd6ae7142d80d2b1dffa48b21bed091f3c353fa59fe9c64ece88c8eed94e3f63
ORCID 0000-0002-6503-0505
0000-0002-1270-7439
0000-0002-1985-356X
0000-0001-9173-3354
0000-0002-1037-7376
0009-0009-8162-3050
PQID 3015030018
PQPubID 85465
PageCount 1
ParticipantIDs ieee_primary_10473765
proquest_journals_3015030018
crossref_primary_10_1109_TGRS_2024_3378161
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Cui (ref6) 2023; 16
ref13
ref12
ref34
ref37
ref14
ref36
ref31
Gu (ref16) 2023; 270
ref10
Kayton (ref44) 2002; 17
ref17
ref39
Kim (ref2) 2022; 257
ref38
ref19
Zhou (ref15) 2020; 12
Geng (ref43); 48
Liu (ref32) 2020; 39
de Vries (ref26) 2003; 44
Stal (ref18) 2016; 118
Björkqvist (ref27) 2016; 5
Lin (ref11) 2020; 209
ref24
ref46
ref23
Doong (ref25) 2011; 11
ref45
He (ref30) 2015
ref48
ref47
ref20
ref42
ref41
ref22
ref21
Liu (ref33) 2022; 115
Serrano (ref35)
ref29
Smit (ref5) 2021; 159
ref8
ref7
ref9
ref4
ref3
Qi (ref28) 2019; 19
Takasu (ref40)
Jangir (ref1) 2023; 40
References_xml – ident: ref22
  doi: 10.1109/LGRS.2020.3041846
– ident: ref48
  doi: 10.1007/s10872-016-0362-4
– ident: ref24
  doi: 10.1016/j.csr.2016.07.002
– volume: 159
  year: 2021
  ident: ref5
  article-title: Assimilation of significant wave height from distributed ocean wave sensors
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2020.101738
  contributor:
    fullname: Smit
– ident: ref3
  doi: 10.1029/2022jc018786
– volume: 118
  start-page: 165
  year: 2016
  ident: ref18
  article-title: Study of post-processed GNSS measurements for tidal analysis in the Belgian North Sea
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.04.014
  contributor:
    fullname: Stal
– volume: 209
  year: 2020
  ident: ref11
  article-title: Variations in directional wave parameters obtained from data measured using a GNSS buoy
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107513
  contributor:
    fullname: Lin
– ident: ref37
  doi: 10.1017/S0373463310000482
– volume: 48
  start-page: 206
  issue: 2
  volume-title: Geomatics Inf. Sci. Wuhan Univ.
  ident: ref43
  article-title: Accuracy assessment of multi-frequency and multi-GNSS velocity estimation with time differenced carrier phase method
  contributor:
    fullname: Geng
– start-page: 875
  volume-title: Proc. ION Nat. Tech. Meeting
  ident: ref35
  article-title: A GPS velocity sensor: How accurate can it be? A first look
  contributor:
    fullname: Serrano
– ident: ref20
  doi: 10.1016/j.oceaneng.2020.107198
– volume: 257
  year: 2022
  ident: ref2
  article-title: STG-OceanWaveNet: Spatio-temporal geographic information guided ocean wave prediction network
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111576
  contributor:
    fullname: Kim
– ident: ref13
  doi: 10.1029/94jc00920
– ident: ref9
  doi: 10.1007/s10712-023-09771-2
– ident: ref38
  doi: 10.1007/s11806-008-0038-3
– ident: ref21
  doi: 10.1175/2010jtecho761.1
– ident: ref41
  doi: 10.1175/jtech-d-11-00128.1
– ident: ref7
  doi: 10.1109/lgrs.2018.2886631
– ident: ref42
  doi: 10.1007/s10236-014-0751-4
– ident: ref12
  doi: 10.1109/JSTARS.2016.2584626
– ident: ref34
  doi: 10.1002/j.2161-4296.2004.tb00359.x
– ident: ref45
  doi: 10.1109/LGRS.2021.3088516
– ident: ref10
  doi: 10.3389/fmars.2022.966855
– volume: 12
  start-page: 3001
  issue: 18
  year: 2020
  ident: ref15
  article-title: GNSS/INS-equipped buoys for altimetry validation: Lessons learnt and new directions from the bass strait validation facility
  publication-title: Remote Sens.
  doi: 10.3390/rs12183001
  contributor:
    fullname: Zhou
– volume-title: Gnss kinematic position and velocity determination for airborne gravimetry
  year: 2015
  ident: ref30
  contributor:
    fullname: He
– volume: 115
  year: 2022
  ident: ref33
  article-title: Real-time precise measurements of ocean surface waves using GNSS variometric approach
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
  contributor:
    fullname: Liu
– volume: 270
  year: 2023
  ident: ref16
  article-title: Evaluation of a GNSS for wave measurement and directional wave spectrum analysis
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113683
  contributor:
    fullname: Gu
– ident: ref14
  doi: 10.1080/01490419.2011.584834
– ident: ref31
  doi: 10.1002/2017gl072808
– ident: ref36
  doi: 10.1109/plans.2006.1650587
– ident: ref47
  doi: 10.1088/1755-1315/621/1/012008
– ident: ref17
  doi: 10.1109/IGARSS.2015.7326616
– volume: 11
  start-page: 1043
  issue: 1
  year: 2011
  ident: ref25
  article-title: Wave measurements using GPS velocity signals
  publication-title: Sensors
  doi: 10.3390/s110101043
  contributor:
    fullname: Doong
– volume: 5
  start-page: 17
  issue: 1
  year: 2016
  ident: ref27
  article-title: Removing low-frequency artefacts from datawell DWR-G4 wave buoy measurements
  publication-title: Geosci. Instrum., Methods Data Syst.
  doi: 10.5194/gi-5-17-2016
  contributor:
    fullname: Björkqvist
– start-page: 1
  volume-title: Proc. Int. Symp. GPS/GNSS
  ident: ref40
  article-title: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB
  contributor:
    fullname: Takasu
– ident: ref46
  doi: 10.1109/LGRS.2022.3222497
– ident: ref29
  doi: 10.1007/s10291-014-0425-1
– volume: 16
  start-page: 3841
  issue: 9
  year: 2023
  ident: ref6
  article-title: Predication of ocean wave height for ocean wave energy conversion system
  publication-title: Energies
  doi: 10.3390/en16093841
  contributor:
    fullname: Cui
– volume: 39
  start-page: 36
  issue: 2
  year: 2020
  ident: ref32
  article-title: Wave measurement using GNSS buoy based on out Doppler velocity
  publication-title: J. Shandong Univ. Sci. Technol., Natural Sci.
  contributor:
    fullname: Liu
– ident: ref19
  doi: 10.3390/rs12101651
– volume: 44
  start-page: 50
  issue: 12
  year: 2003
  ident: ref26
  article-title: Field tests of the new Datawell DWR-G GPS wave buoy
  publication-title: Sea Technol.
  contributor:
    fullname: de Vries
– volume: 40
  start-page: 939
  issue: 8
  year: 2023
  ident: ref1
  article-title: Comparative performance of radar, laser, and Waverider buoy measurements of ocean waves. Part II: Time-domain analysis
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-22-0123.1
  contributor:
    fullname: Jangir
– volume: 17
  start-page: 36
  issue: 10
  year: 2002
  ident: ref44
  article-title: Global positioning system: Signals, measurements, and performance [book review]
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2002.1044515
  contributor:
    fullname: Kayton
– ident: ref8
  doi: 10.3189/2015AoG69A600
– ident: ref23
  doi: 10.1007/s00190-015-0802-8
– ident: ref39
  doi: 10.1007/s10291-011-0249-1
– ident: ref4
  doi: 10.1029/2018jc013791
– volume: 19
  start-page: 541
  issue: 3
  year: 2019
  ident: ref28
  article-title: Research on the algorithm model for measuring ocean waves based on satellite GPS signals in China
  publication-title: Sensors
  doi: 10.3390/s19030541
  contributor:
    fullname: Qi
SSID ssj0014517
Score 2.4817965
Snippet To address challenges in large-scale deployments and real-time wave observations using GNSS buoys, we assessed the reliability and precision of the...
To address challenges in large-scale deployments and real-time wave observations using Global Navigation Satellite System (GNSS) buoys, we assessed the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Accelerometers
Algorithms
Buoys
Correlation
Data sampling
Doppler sonar
Global navigation satellite system
GNSS buoy
High pass filters
International organizations
Kinematics
Nautical almanacs
Navigation
Navigational satellites
ocean wave
Ocean waves
Offshore
Real time
Real-time systems
Reliability analysis
Satellite broadcasting
Satellite observation
Sea measurements
Sea surface
significant wave height
Significant waves
Storage requirements
Surface waves
SWH
Time-differenced carrier phases
Velocity
Velocity measurement
Wave buoys
Wave height
Wave period
Title Retrieval of Ocean Wave Characteristics via Single Frequency Time-Differenced Carrier Phases from GNSS Buoys
URI https://ieeexplore.ieee.org/document/10473765
https://www.proquest.com/docview/3015030018
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4gaAHPyfOL3LwJGRrm7RLjjo3PalYRW8lTV5QkE3WbbD_3qStwyEevPXQtOX9XvL6Pn8A51z2pJBRQnOU2jkoMaPO6MVUSBNILaySJSXLbdq7exXXAz8mhy57YRCxLD7Djr8sc_lmrGc-VNb1YwXchogb0HBvqJq1likDHod1b3RCnRcR1SnMMJDdp5vH1LmCEe8w1hNhEq4YoZJV5ddRXNqX4fY_v2wHtuofSXJZIb8Lazjag80f4wX3YL0s79TFPjgv0xNnOa0iY0vuNaoReVFzJP3Vec1k_q5I6hZ_IBlOqirrBfFtIvS6ZlLRaEhfTTzRHXl4czawIL5FhdzcpSm5mo0XRQueh4On_i2teRaojngypdqYRGEv5JERgYny0FiruMijMEeHWGiZZjGzKpbWAZpw1CiEFs66So7MJuwAmqPxCA-B-GnueS4s5zzm7nhQTkNYEKCJlbGJxTZcfAs--6zGaWSlGxLIzKOUeZSyGqU2tLykf9xYCbkNJ99YZfWOKzLmQzfMcwwe_bHsGDb806v4yQk0p5MZnkKjMLOzUpO-APSZxrs
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8aTBPswDZgooNtPuyEZEjij9jHUSidxrqJFMEtcuxnMQm1qKGV-t_PTgICIQ675RDL0fs9--V9_gC-cZ1rpTNJK9Q2OCiC0WD0BFXaJdoqb3RDyTIs8tGVOj6JY3LoQy8MIjbFZ3gQH5tcvpvaeQyVHcaxAuFAiBV4LXgu87Zd6yFpwEXadUdLGvyIrEtipok-HJ-eF8EZzPgBY7lKZfrEDDW8Ks8u48bCDN7957e9h43uV5J8b7H_AK9wsglvHw0Y3IQ3TYGnrbcg-JmROivoFZl68tuimZBLs0DSfzqxmSz-GlKExTdIBrO2znpJYqMIPe64VCw60jezSHVH_lwHK1iT2KRCTkdFQY7m02W9DReDk3F_SDumBWozLu-odU4azFOeOZW4rEqd94arKksrDJilnlkmmDdC-wCp5GhRKauCfdUcmZfsI6xOphPcARLnuVeV8pxzwcMFYYKOsCRBJ4zz0mMP9u8FX962AzXKxhFJdBlRKiNKZYdSD7ajpB-92Aq5B3v3WJXdmatLFoM3LLIMfnph2VdYG45_nZVnP0Y_d2E97tRGU_Zg9W42x8-wUrv5l0ar_gGSkMoM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieval+of+Ocean+Wave+Characteristics+via+Single+Frequency+Time-Differenced+Carrier+Phases+from+GNSS+Buoys&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yang%2C+Lei&rft.au=Xu%2C+Yongsheng&rft.au=Jiang%2C+Yingming&rft.au=Mertikas%2C+Stelios+P.&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2024.3378161&rft.externalDocID=10473765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon