Learning State Transition Rules from High-Dimensional Time Series Data with Recurrent Temporal Gaussian-Bernoulli Restricted Boltzmann Machines

Understanding the dynamics of a system is crucial in various scientific and engineering domains. Machine learning techniques have been employed to learn state transition rules from observed time-series data. However, these data often contain sequences of noisy and ambiguous continuous variables, whi...

Full description

Saved in:
Bibliographic Details
Published in:Human-Centric Intelligent Systems Vol. 3; no. 3; pp. 296 - 311
Main Authors: Watanabe, Koji, Inoue, Katsumi
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 20-06-2023
Springer Nature
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding the dynamics of a system is crucial in various scientific and engineering domains. Machine learning techniques have been employed to learn state transition rules from observed time-series data. However, these data often contain sequences of noisy and ambiguous continuous variables, while we typically seek simplified dynamics rules that capture essential variables. In this work, we propose a method to extract a small number of essential hidden variables from high-dimensional time-series data and learn state transition rules between hidden variables. Our approach is based on the Restricted Boltzmann Machine (RBM), which models observable data in the visible layer and latent features in the hidden layer. However, real-world data, such as video and audio, consist of both discrete and continuous variables with temporal relationships. To address this, we introduce the Recurrent Temporal Gaussian-Bernoulli Restricted Boltzmann Machine (RTGB-RBM), which combines the Gaussian-Bernoulli Restricted Boltzmann Machine (GB-RBM) to handle continuous visible variables and the Recurrent Temporal Restricted Boltzmann Machine (RT-RBM) to capture time dependencies among discrete hidden variables. Additionally, we propose a rule-based method to extract essential information as hidden variables and represent state transition rules in an interpretable form. We evaluate our proposed method on the Bouncing Ball, Moving MNIST, and dSprite datasets. Experimental results demonstrate that our approach effectively learns the dynamics of these physical systems by extracting state transition rules between hidden variables. Moreover, our method can predict unobserved future states based on observed state transitions.
AbstractList Abstract Understanding the dynamics of a system is crucial in various scientific and engineering domains. Machine learning techniques have been employed to learn state transition rules from observed time-series data. However, these data often contain sequences of noisy and ambiguous continuous variables, while we typically seek simplified dynamics rules that capture essential variables. In this work, we propose a method to extract a small number of essential hidden variables from high-dimensional time-series data and learn state transition rules between hidden variables. Our approach is based on the Restricted Boltzmann Machine (RBM), which models observable data in the visible layer and latent features in the hidden layer. However, real-world data, such as video and audio, consist of both discrete and continuous variables with temporal relationships. To address this, we introduce the Recurrent Temporal Gaussian-Bernoulli Restricted Boltzmann Machine (RTGB-RBM), which combines the Gaussian-Bernoulli Restricted Boltzmann Machine (GB-RBM) to handle continuous visible variables and the Recurrent Temporal Restricted Boltzmann Machine (RT-RBM) to capture time dependencies among discrete hidden variables. Additionally, we propose a rule-based method to extract essential information as hidden variables and represent state transition rules in an interpretable form. We evaluate our proposed method on the Bouncing Ball, Moving MNIST, and dSprite datasets. Experimental results demonstrate that our approach effectively learns the dynamics of these physical systems by extracting state transition rules between hidden variables. Moreover, our method can predict unobserved future states based on observed state transitions.
Abstract Understanding the dynamics of a system is crucial in various scientific and engineering domains. Machine learning techniques have been employed to learn state transition rules from observed time-series data. However, these data often contain sequences of noisy and ambiguous continuous variables, while we typically seek simplified dynamics rules that capture essential variables. In this work, we propose a method to extract a small number of essential hidden variables from high-dimensional time-series data and learn state transition rules between hidden variables. Our approach is based on the Restricted Boltzmann Machine (RBM), which models observable data in the visible layer and latent features in the hidden layer. However, real-world data, such as video and audio, consist of both discrete and continuous variables with temporal relationships. To address this, we introduce the Recurrent Temporal Gaussian-Bernoulli Restricted Boltzmann Machine (RTGB-RBM), which combines the Gaussian-Bernoulli Restricted Boltzmann Machine (GB-RBM) to handle continuous visible variables and the Recurrent Temporal Restricted Boltzmann Machine (RT-RBM) to capture time dependencies among discrete hidden variables. Additionally, we propose a rule-based method to extract essential information as hidden variables and represent state transition rules in an interpretable form. We evaluate our proposed method on the Bouncing Ball, Moving MNIST, and dSprite datasets. Experimental results demonstrate that our approach effectively learns the dynamics of these physical systems by extracting state transition rules between hidden variables. Moreover, our method can predict unobserved future states based on observed state transitions.
Understanding the dynamics of a system is crucial in various scientific and engineering domains. Machine learning techniques have been employed to learn state transition rules from observed time-series data. However, these data often contain sequences of noisy and ambiguous continuous variables, while we typically seek simplified dynamics rules that capture essential variables. In this work, we propose a method to extract a small number of essential hidden variables from high-dimensional time-series data and learn state transition rules between hidden variables. Our approach is based on the Restricted Boltzmann Machine (RBM), which models observable data in the visible layer and latent features in the hidden layer. However, real-world data, such as video and audio, consist of both discrete and continuous variables with temporal relationships. To address this, we introduce the Recurrent Temporal Gaussian-Bernoulli Restricted Boltzmann Machine (RTGB-RBM), which combines the Gaussian-Bernoulli Restricted Boltzmann Machine (GB-RBM) to handle continuous visible variables and the Recurrent Temporal Restricted Boltzmann Machine (RT-RBM) to capture time dependencies among discrete hidden variables. Additionally, we propose a rule-based method to extract essential information as hidden variables and represent state transition rules in an interpretable form. We evaluate our proposed method on the Bouncing Ball, Moving MNIST, and dSprite datasets. Experimental results demonstrate that our approach effectively learns the dynamics of these physical systems by extracting state transition rules between hidden variables. Moreover, our method can predict unobserved future states based on observed state transitions.
Author Watanabe, Koji
Inoue, Katsumi
Author_xml – sequence: 1
  givenname: Koji
  orcidid: 0000-0003-4603-5252
  surname: Watanabe
  fullname: Watanabe, Koji
  email: kojiwatanabe@nii.ac.jp
  organization: The Graduate University for Advanced Studies, SOKENDAI, National Institute of Informatics
– sequence: 2
  givenname: Katsumi
  surname: Inoue
  fullname: Inoue, Katsumi
  organization: The Graduate University for Advanced Studies, SOKENDAI, National Institute of Informatics
BookMark eNp9kcFO3DAQhiMEEhR4gZ78Am7tcTZOjgVaQNoKCbZna-JMdr1KbGQ7qspL9JVr2KrqidP8mvn-_zD_h-rYB09V9VGKT1II_TnVNSjBBSguhICGw1F1Bk2juVSqOf5Pn1aXKe1foQ6UBjirfq8Jo3d-y54yZmKbiD657IJnj8tEiY0xzOzObXf8xs1UbsHjxDZFsyeKrhA3mJH9dHnHHskuMZLPbEPzc4gFvMUlJYeeX1H0YZkmV6iUo7OZBnYVpvwyo_fsO9qd85QuqpMRp0SXf-d59ePb1831HV8_3N5ff1lzC3UDfCToNOiua_seFCqppG5UL6VaSZCdaGEYuw47LbTVZDWMemzrvu_UCvQKUZ1X94fcIeDePEc3Y_xlAjrztghxazBmZycy0K7aQStLMKh6sGNPI4iBWtEMrRJDU7LgkGVjSCnS-C9PCvPakDk0ZEpD5q0hA8WkDqZUYL-laPZhieW36T3XHxhpls4
CitedBy_id crossref_primary_10_3390_math11214461
Cites_doi 10.1126/science.1127647
10.1038/s42005-022-00987-z
10.1007/978-981-16-5036-9_30
10.1201/9780429494093
10.1162/089976602760128018
10.1007/s10994-013-5353-8
10.1007/s10994-021-06058-8
10.24963/kr.2022/44
10.1162/neco.2006.18.7.1527
10.1145/3422622
10.1109/ICCV.2015.320
10.1007/978-94-015-8054-0_8
10.1109/MASSP.1986.1165342
10.1073/pnas.79.8.2554
10.1126/sciadv.aay2631
10.1016/j.jcp.2018.10.045
10.1088/1742-5468/ac3ae5
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s44230-023-00026-2
DatabaseName SpringerOpen
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2667-1336
EndPage 311
ExternalDocumentID oai_doaj_org_article_2858d73ce2d34dcfbef20de806d830d6
10_1007_s44230_023_00026_2
GroupedDBID AAYZJ
ACACY
AFNRJ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
C6C
EBS
GROUPED_DOAJ
M~E
RSV
SOJ
0R~
AAKKN
AAYXX
ABEEZ
ACULB
AFGXO
C24
CITATION
ID FETCH-LOGICAL-c2462-fe29727998bb23a3131763b11351219082df99a9707c7ec72f7f84bb935275aa3
IEDL.DBID C24
ISSN 2667-1336
IngestDate Tue Oct 22 15:16:14 EDT 2024
Fri Aug 23 02:20:59 EDT 2024
Sat Dec 16 12:05:39 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Restricted Boltzmann Machine State Transition Rules Hidden Variables
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2462-fe29727998bb23a3131763b11351219082df99a9707c7ec72f7f84bb935275aa3
ORCID 0000-0003-4603-5252
OpenAccessLink http://link.springer.com/10.1007/s44230-023-00026-2
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2858d73ce2d34dcfbef20de806d830d6
crossref_primary_10_1007_s44230_023_00026_2
springer_journals_10_1007_s44230_023_00026_2
PublicationCentury 2000
PublicationDate 2023-06-20
PublicationDateYYYYMMDD 2023-06-20
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-20
  day: 20
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Human-Centric Intelligent Systems
PublicationTitleAbbrev Hum-Cent Intell Syst
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature
Publisher_xml – name: Springer Netherlands
– name: Springer Nature
References Wolfram S. Cellular automata and complexity: Collected papers. CRC Press. 2018.
Chang MB, Ullman T, Torralba A, Tenenbaum JB. A compositional object-based approach to learning physical dynamics. 2016; arXiv preprint arXiv:1612.00341.
HintonGESalakhutdinovRRReducing the dimensionality of data with neural networksScience20063135786504507224250910.1126/science.11276471226.68083
Liao R, Kornblith S, Ren M, Fleet DJ, Hinton G. Gaussian-Bernoulli RBMs without tears. 2022; arXiv preprint arXiv:2210.10318.
DupontELearning disentangled joint continuous and discrete representationsAdv Neural Inform Process Syst201831710720
Ayed I, de Bézenac E, Pajot A, Brajard J, Gallinari P. Learning dynamical systems from partial observations. 2019; arXiv preprint arXiv:1902.11136.
Lotter W, Kreiman G, Cox D. Deep predictive coding networks for video prediction and unsupervised learning. 2016; arXiv preprint arXiv:1605.08104.
Aspis Y, Broda K, Lobo J, Russo A. Embed2sym - scalable neuro-symbolic reasoning via clustered embeddings. In: Kern-Isberner, G, Lakemeyer G, Meyer T (Eds.) Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel. July 31–August 5, 2022. https://proceedings.kr.org/2022/44/.
Srivastava N, Mansimov E, Salakhudinov R. Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning, PMLR. 2015;pp. 843–852.
Kingma DP, Welling M. Auto-encoding variational bayes. International Conference on Learning Representations. 2013.
Kauffman SA. The origins of order: self-organization and selection in evolution. Oxford University Press. 1993.
Tran SN, d’Avila Garcez A. Knowledge extraction from deep belief networks for images. IJCAI-Workshop Neural-Symbolic Learn. Reason, 2013;1–6.
Tran SN. d’Avila Garcez, A.: logical Boltzmann machines. 2021;CoRR abs/2112.05841.
Hsu W-N, Zhang Y, Glass J. unsupervised learning of disentangled and interpretable representations from sequential data. Adv Neural Inform Process Syst 2017;30.
Inoue K. Logic programming for boolean networks. In: International Joint Conference on Artificial Intelligence. 2011.
InoueKRibeiroTSakamaCLearning from interpretation transitionMach Learn20149415179314440710.1007/s10994-013-5353-81319.68054
Wang X, Gupta A. Unsupervised learning of visual representations using videos. In: Proceedings of the IEEE International Conference on Computer Vision. 2015;2794–2802.
YinYLe GuenVDonaJde BézenacEAyedIThomeNGallinariPAugmenting physical models with deep networks for complex dynamics forecastingJ Stat Mech Theory Exper2021202112441284010.1088/1742-5468/ac3ae507451722
Yingzhen L, Mandt S. Disentangled sequential autoencoder. In: International Conference on Machine Learning, PMLR. 2018;pp. 5670–5679.
Ljung L. System identification (2nd Ed.): Theory for the user. Prentice Hall PTR, USA. 1999.
HintonGEOsinderoSTehY-WA fast learning algorithm for deep belief netsNeural Comput200618715271554222448510.1162/neco.2006.18.7.15271106.68094
Shi Y. Adv Big Data Anal. 2022.
Naeem M, Jamal T, Diaz-Martinez J, Butt SA, Montesano N, Tariq MI, De-la-Hoz-Franco E, De-La-Hoz-Valdiris E. Trends and Future Perspective Challenges in Big Data. In: Advances in Intelligent Data Analysis and Applications: Proceeding of the Sixth Euro-China Conference on Intelligent Data Analysis and Applications, 15–18 October 2019, Arad, Romania, 2022;pp. 309–325. Springer.
Enguerrand G, Sophie T, Katsumi I. Learning from interpretation transition using feed-forward neural networks. Proceedings of ILP 2016.
Tran SN. Propositional knowledge representation in restricted Boltzmann machines. 2017; CoRR abs/1705.10899.
GoodfellowIPouget-AbadieJMirzaMXuBWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial networksCommun ACM20206311139144417363310.1145/3422622
HintonGETraining products of experts by minimizing contrastive divergenceNeural Comput20021481771180010.1162/0899766027601280181010.68111
GaoKWangHCaoYInoueKLearning from interpretation transition using differentiable logic programming semanticsMach Learn20221111123145437584710.1007/s10994-021-06058-807510308
LuPYAriño BernadJSoljačićMDiscovering sparse interpretable dynamics from partial observationsCommun Phys20225120610.1038/s42005-022-00987-z
Mittelman R, Kuipers B, Savarese S, Lee H. Structured recurrent temporal restricted boltzmann machines. In: International Conference on Machine Learning ICML 2014; pp.1647–1655.
UdrescuS-MTegmarkMAI feynman: a physics-inspired method for symbolic regressionSci Adv2020616263110.1126/sciadv.aay2631
Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A. beta-VAE: learning basic visual concepts with a constrained fariational framework. Int Confer Learn Represent 2016.
ZhaoYBillingsSThe identification of cellular automataJ Cell Automata20062476523540921136.68441
SutskeverIHintonGETaylorGWThe recurrent temporal restricted Boltzmann machineAdv Neural Inform Process Syst20082116011608
CranmerMSanchez GonzalezABattagliaPXuRCranmerKSpergelDHoSDiscovering symbolic models from deep learning with inductive biasesAdv Neural Inform Process Syst2020331742917442
RabinerLJuangBAn introduction to Hidden Markov modelsIEEE ASAP Magaz19863141610.1109/MASSP.1986.1165342
Watanabe K, Inoue K. Learning state transition rules from hidden layers of restricted boltzmann machines. In: Principle and practice of data and knowledge acquisition workshop PKAW. 2022.
Berg J, Nyström K. Data-driven discovery of PDEs in complex datasets. 2018; ArXiv abs/1808.10788.
HopfieldJJNeural networks and physical systems with emergent collective computational abilitiesProc Natl Acad Sci19827982554255865203310.1073/pnas.79.8.25541369.92007
RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ Comput Phys2019378686707388169510.1016/j.jcp.2018.10.0451415.68175
Salakhutdinov R, Hinton GE. Deep Boltzmann machines. In: International Conference on Artificial Intelligence and Statistics. 2009.
26_CR19
26_CR18
I Goodfellow (26_CR28) 2020; 63
Y Yin (26_CR2) 2021; 2021
GE Hinton (26_CR17) 2002; 14
K Inoue (26_CR15) 2014; 94
26_CR1
GE Hinton (26_CR21) 2006; 313
26_CR30
K Gao (26_CR37) 2022; 111
Y Zhao (26_CR13) 2006; 2
I Sutskever (26_CR22) 2008; 21
JJ Hopfield (26_CR25) 1982; 79
L Rabiner (26_CR16) 1986; 3
26_CR38
26_CR8
26_CR14
26_CR36
PY Lu (26_CR3) 2022; 5
26_CR6
26_CR5
26_CR12
26_CR34
26_CR4
26_CR11
26_CR33
26_CR32
26_CR31
GE Hinton (26_CR39) 2006; 18
S-M Udrescu (26_CR9) 2020; 6
M Cranmer (26_CR10) 2020; 33
26_CR29
M Raissi (26_CR7) 2019; 378
26_CR41
26_CR40
E Dupont (26_CR35) 2018; 31
26_CR27
26_CR26
26_CR24
26_CR23
26_CR20
References_xml – ident: 26_CR29
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 26_CR21
  publication-title: Science
  doi: 10.1126/science.1127647
  contributor:
    fullname: GE Hinton
– ident: 26_CR27
– volume: 5
  start-page: 206
  issue: 1
  year: 2022
  ident: 26_CR3
  publication-title: Commun Phys
  doi: 10.1038/s42005-022-00987-z
  contributor:
    fullname: PY Lu
– volume: 33
  start-page: 17429
  year: 2020
  ident: 26_CR10
  publication-title: Adv Neural Inform Process Syst
  contributor:
    fullname: M Cranmer
– volume: 2
  start-page: 47
  year: 2006
  ident: 26_CR13
  publication-title: J Cell Automata
  contributor:
    fullname: Y Zhao
– ident: 26_CR8
– ident: 26_CR4
  doi: 10.1007/978-981-16-5036-9_30
– ident: 26_CR23
– ident: 26_CR12
  doi: 10.1201/9780429494093
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 26_CR17
  publication-title: Neural Comput
  doi: 10.1162/089976602760128018
  contributor:
    fullname: GE Hinton
– ident: 26_CR41
– ident: 26_CR1
– volume: 94
  start-page: 51
  issue: 1
  year: 2014
  ident: 26_CR15
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5353-8
  contributor:
    fullname: K Inoue
– ident: 26_CR5
– volume: 111
  start-page: 123
  issue: 1
  year: 2022
  ident: 26_CR37
  publication-title: Mach Learn
  doi: 10.1007/s10994-021-06058-8
  contributor:
    fullname: K Gao
– ident: 26_CR38
  doi: 10.24963/kr.2022/44
– ident: 26_CR33
– ident: 26_CR18
– ident: 26_CR31
– ident: 26_CR14
– volume: 21
  start-page: 1601
  year: 2008
  ident: 26_CR22
  publication-title: Adv Neural Inform Process Syst
  contributor:
    fullname: I Sutskever
– volume: 31
  start-page: 710
  year: 2018
  ident: 26_CR35
  publication-title: Adv Neural Inform Process Syst
  contributor:
    fullname: E Dupont
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 26_CR39
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
  contributor:
    fullname: GE Hinton
– ident: 26_CR26
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 26_CR28
  publication-title: Commun ACM
  doi: 10.1145/3422622
  contributor:
    fullname: I Goodfellow
– ident: 26_CR30
  doi: 10.1109/ICCV.2015.320
– ident: 26_CR11
  doi: 10.1007/978-94-015-8054-0_8
– volume: 3
  start-page: 4
  issue: 1
  year: 1986
  ident: 26_CR16
  publication-title: IEEE ASAP Magaz
  doi: 10.1109/MASSP.1986.1165342
  contributor:
    fullname: L Rabiner
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 26_CR25
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.79.8.2554
  contributor:
    fullname: JJ Hopfield
– ident: 26_CR24
– volume: 6
  start-page: 2631
  issue: 16
  year: 2020
  ident: 26_CR9
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aay2631
  contributor:
    fullname: S-M Udrescu
– ident: 26_CR20
– ident: 26_CR40
– ident: 26_CR6
– ident: 26_CR34
– volume: 378
  start-page: 686
  year: 2019
  ident: 26_CR7
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
  contributor:
    fullname: M Raissi
– ident: 26_CR19
– ident: 26_CR36
– volume: 2021
  issue: 12
  year: 2021
  ident: 26_CR2
  publication-title: J Stat Mech Theory Exper
  doi: 10.1088/1742-5468/ac3ae5
  contributor:
    fullname: Y Yin
– ident: 26_CR32
SSID ssj0002923722
Score 2.2750638
Snippet Understanding the dynamics of a system is crucial in various scientific and engineering domains. Machine learning techniques have been employed to learn state...
Abstract Understanding the dynamics of a system is crucial in various scientific and engineering domains. Machine learning techniques have been employed to...
Abstract Understanding the dynamics of a system is crucial in various scientific and engineering domains. Machine learning techniques have been employed to...
SourceID doaj
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 296
SubjectTerms Computer Science
Research Article
Restricted Boltzmann Machine State Transition Rules Hidden Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-QwDI5YTlxWrADt8FjlwA2izThtkx6ZHR4XOPCQuFVJ4-5l6CA6c-FP8Jex0zJahASXvVaRUsWO_Tm2PwtxGBBdTYGCqimgVhl6soOF0QrQIeQuUOzDGd2LG3t176anTJOzGvXFNWE9PXB_cL_B5S5aUyNEk8W6CdiAjuh0EZ3RsSfb1u6fYIptMBBusQBDl0zqlcsIOGhFLoobqaFQ8M4TJcL-D9nQ5GTONsX3AR3Kk_6vfog1bLfEy8CB-lcmZCiTe0mVVvJ6OcNOcouI5IINNWWu_p5nQ3Jzh-THL1ox9Qsv-clVXvP7OjMyyduelGomz_2y41ZKNcGnds7JIVrF4zxqQqNyMp8tnh9828rLVHeJ3ba4Ozu9_XOhhjkKqoasANUglARTKLAKAYw3Y8IMhQljHs5HBotAQGzK0pdW29pibaGxjctCKAmc2dx7syPW23mLP4U0EY32sfAmxyyLZKJc8MDJunGTj2MzEkdvZ1o99nQZ1YoYOUmgIglUSQIVjMSEj321kqmu0wdSgGpQgOorBRiJ4zehVcP96z7Zc_d_7LknNiBpEqmR3hfri6clHohvXVz-Snr4CpPN4MQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Learning State Transition Rules from High-Dimensional Time Series Data with Recurrent Temporal Gaussian-Bernoulli Restricted Boltzmann Machines
URI https://link.springer.com/article/10.1007/s44230-023-00026-2
https://doaj.org/article/2858d73ce2d34dcfbef20de806d830d6
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBb6uPTSbn2g6dZCh95WFQ5lW_Jxadrlsh7SDujNkCy6h6ZOESeX_on95ZGKE2DoUKC7GjRsiBL5kRQ_CnHuEW1FgYKqKKBWKTqyg7lOFKBFyKyn2IcruqM7c_tgh9dMk6PXqYvm6XJVkYyGet3rlpLjTxS5GG6EhlyR3d0m8JAyYf5V1-LA5hcIshiArkHm36_-5YQiV_-bQmj0Lzd7__Vnn8RuByfl96X-P4sNbPbF3mpUg-xO7oH43fGoPsqILmV0UfG2lhwvJthKbjORfOlDDZnvf8nVIblBRHICjSSGbu4kp23lmHP0zOok75fEVhP5wy1absdUA5w1Uy4wkRSPBKkI0crBdDJ_fXZNI3_Gu5vYHopfN9f3VyPVzWJQFaQ5qBqhIKhDwZn3oJ3uE-7Ite_zgD8yegQkQl0UrjCJqQxWBmpT29T7ggCeyZzTR2KrmTZ4LKQOqBMXcqczTNNAZs56B1zw69dZP9Q98W2lnPJlSblRrsmV41qXtNZlXOsSemLA-ltLMl12fDCdPZbd6SvBZjYYXSEEnYaq9lhDEtAmebA6CXlPXKxUW3ZnuH3nmycfE_8idiDuDtoayVexNZ8t8FRstmFxFrfuWUwE_AGhR-l2
link.rule.ids 315,782,786,866,2108,27935,27936,41130,42199,52244
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgOcCF5SnK0wduYCkdO7FzpNtditjdw1IkbpYdT_ZSUtS0F_4Ef5kZN6mEQEhwjSZK5Hl7Zr4R4nVEdA0lCqqhhFoZDGQHK10oQIdQuki5D1d0F5_s5Rc3P2WYHDPOwuRu97EkmS31YdjNkOcvFPkYnoSGSpHhvWVI4ViWT4YZB7a_QDGLBRgmZP786i9eKIP1_1YJzQ7m7Pj_fu2euDsElPLdXgLuixvYPRDH47IGOejuQ_FjQFK9ljm-lNlJ5X4tebVbYS950ERy24eaM-L_Hq1D8oiI5Cs0opiHbZB8cSuv-JaecZ3kcg9ttZLvw67ngUw1w0235hITUfFSkIZiWjlbr7bfv4aukxe5exP7R-Lz2enyZKGGbQyqAVOBahFqCnYoPYsRdNBTijwqHae84o-4QKFEaus61LawjcXGQmtbZ2KsKcSzZQj6sTjq1h0-EVIn1EVIVdAlGpPI0LkYgEt-07acpnYi3ozc8d_2oBv-AK-cz9rTWft81h4mYsYMPFAyYHZ-sN5c-0H_PLjSJasbhKRNatqILRQJXVElp4tUTcTbkbV-0OL-L998-m_kr8TtxfLi3J9_uPz4TNyBLCkkJsVzcbTd7PCFuNmn3cssxz8BAeLsWw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgSIhLWwqoC7T1gRtYTewkdo4s220RUFWlSNwsOx73ss1Wm90Lf4K_zIyTXQkVVUK9RhMl8sf4jWfeG8beeQDTYKAgGgyoRQEO_WClMiHBgCyNx9iHMrpn3_X5TzM5IZmcDYs_VbuvU5I9p4FUmtrl8W2IxxviW4EoIBN43hArWlYCnfCTIkd_TOnage9AvlgiftFSDmyZf7_614mUhPvvZEXTYTPdefhv7rLtAWjyj_3KeM4eQbvHdtZNHPiwp1-w34PC6jVPuJOnwyvVcfHL1Qw6TgQUTuUgYkKdAHoVD07UEU5Xa2gxcUvH6UKXX9LtPek98ate8mrGT92qI6KmGMOinVPqCa2oWUiDWJeP57PlrxvXtvxbquqE7iX7MT25-nQmhi4NopFFJUUEWSMIwrDNe6mcyhGRVMrn1PoP3SFCjBDr2tU6042GRsuooym8rxH66dI59YpttfMW9hlXAVTmQuVUCUUR0AEa7ySlAvNY5iGO2Pv1TNnbXozDbmSX01hbHGubxtrKERvTZG4sSUg7PZgvru2wL600pQlaNSCDKkITPUSZBTBZFYzKQjViH9bTbIfd3d3zzdf_Z37Enl5Mpvbr5_Mvb9gzmRYKrpLsLdtaLlZwwB53YXWYlvQfYUD1LQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+State+Transition+Rules+from+High-Dimensional+Time+Series+Data+with+Recurrent+Temporal+Gaussian-Bernoulli+Restricted+Boltzmann+Machines&rft.jtitle=Human-Centric+Intelligent+Systems&rft.au=Watanabe%2C+Koji&rft.au=Inoue%2C+Katsumi&rft.date=2023-06-20&rft.pub=Springer+Netherlands&rft.eissn=2667-1336&rft.volume=3&rft.issue=3&rft.spage=296&rft.epage=311&rft_id=info:doi/10.1007%2Fs44230-023-00026-2&rft.externalDocID=10_1007_s44230_023_00026_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-1336&client=summon