The Influence of Applications of Bio-Inputs Derived from Macroalgae and Bacteria on a Phaseolus vulgaris L. Crop
BACKGROUNDThe common bean (Phaseolus vulgaris L.), is one of the most relevant legumes worldwide, as a source of protein, fiber, carbohydrates, and biologically important minerals. In recent decades, bean production increased significantly, especially in developing countries, where the availability...
Saved in:
Published in: | Frontiers in bioscience (Elite edition) Vol. 14; no. 3; p. 21 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
IMR Press
15-08-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUNDThe common bean (Phaseolus vulgaris L.), is one of the most relevant legumes worldwide, as a source of protein, fiber, carbohydrates, and biologically important minerals. In recent decades, bean production increased significantly, especially in developing countries, where the availability of animal protein is often in short supply. However, a large portion of this agricultural production has been achieved in an unsustainable manner, through the intensive use of non-renewable agrochemicals, which in both the short and long term negatively affect soil fertility. To address this problem, the use of sustainable and renewable bio-inputs derived from macroalgae, and microorganisms may be amongst solutions required. Extracts of seaweeds have been shown to be biodegradable and non-toxic both for treated plants and consumers. This study aimed to evaluate the influence of the application of three bio-inputs made from different organisms on a common bean variety (BRSMG Realce) by analysing plant physiology and productivity, pod morphology, nutritional and mineral characterization of the bean. The study also aimed to evaluate the length of BRSMG Realce crop life cycle and compare its nutritional value with other commonly consumed varieties. METHODSSix treatments were performed: T0 - Control; T1 - Calmar® (soil - 100 kg/ha); T2 - Profertil® (foliar - 0.5%(v/v)); T3 - Albit® (leaf - 0.02%(v/v)); T4 - Calmar® ((100 kg/ha) + Profertil® (0.5%(v/v)); T5 - Calmar® ((100 kg/ha) + Albit® (0.02% (v/v)). RESULTSThe leaf chlorophyll index revealed significant increases for T2, T4 and T5, compared to control. In general, the treatments related to the pods morphology showed significant increases in the length/width ratio. In terms of productivity, significant increases were found with T1, T4 and T5. In the analysis of the nutritional value of dried beans there were significant increases in the contents of fiber in T1, protein in T4 and T5 and carbohydrates for T1, T2 and T3. For mineral composition, there were increases in the phosphorus content of T2, T4 and T5 beans. When the cooked beans were analysed, T4 and T1 produced a greater amount of ash and proteins, as compared to control. CONCLUSIONSThe applications of bio-inputs in the bean crop (Phaseolus vulgaris L.) exerted several positive and significant effects, mainly on the CCI, productivity, pod morphology as well as cooked bean nutritional values. It was verified that BRSMG Reakce has the potential to be included in the Portuguese diet. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1945-0494 1945-0508 |
DOI: | 10.31083/j.fbe1403021 |