Building Data Sets for Rainforest Deforestation Detection Through a Citizen Science Project
Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in which the volunteers analyze and label segments of remote sensing images to build new training sets for creating different classification models....
Saved in:
Published in: | IEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in which the volunteers analyze and label segments of remote sensing images to build new training sets for creating different classification models. In previous work, only three modules related to CS have been proposed. In this letter, two new modules are created: 1) organization and selection and 2) ML. Therefore, these modules turn the ForestEyes project a more robust system in the deforestation detection task, building high-confidence labeled collections, increasing the monitoring coverage, and decreasing volunteer dependence. Performed experiments show that volunteers create better data sets than those based on automatic PRODES-based approaches, selecting the most relevant samples and discarding noisy segments that might disrupt ML techniques. Finally, the results showed the feasibility of allying CS with ML for rainforest deforestation detection task. |
---|---|
AbstractList | Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in which the volunteers analyze and label segments of remote sensing images to build new training sets for creating different classification models. In previous work, only three modules related to CS have been proposed. In this letter, two new modules are created: 1) organization and selection and 2) ML. Therefore, these modules turn the ForestEyes project a more robust system in the deforestation detection task, building high-confidence labeled collections, increasing the monitoring coverage, and decreasing volunteer dependence. Performed experiments show that volunteers create better data sets than those based on automatic PRODES-based approaches, selecting the most relevant samples and discarding noisy segments that might disrupt ML techniques. Finally, the results showed the feasibility of allying CS with ML for rainforest deforestation detection task. |
Author | Faria, Fabio Augusto Dallaqua, Fernanda Beatriz Jordan Rojas Fazenda, Alvaro Luiz |
Author_xml | – sequence: 1 givenname: Fernanda Beatriz Jordan Rojas orcidid: 0000-0003-2676-7368 surname: Dallaqua fullname: Dallaqua, Fernanda Beatriz Jordan Rojas email: fernanda.dallaqua@unifesp.br organization: Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil – sequence: 2 givenname: Fabio Augusto orcidid: 0000-0003-2956-6326 surname: Faria fullname: Faria, Fabio Augusto email: ffaria@unifesp.br organization: Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil – sequence: 3 givenname: Alvaro Luiz orcidid: 0000-0002-4052-1113 surname: Fazenda fullname: Fazenda, Alvaro Luiz email: alvaro.fazenda@unifesp.br organization: Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil |
BookMark | eNo9UMtOwzAQtFCRaAsfgLhY4pyyfiRxjtBCQaoEantA4mAZZ9O6Kk5xkgN8PQ5FnHZWmpmdnREZ-NojIZcMJoxBcbOYL1cTDhwmAgSHQp2QIUtTlUCas0GPZZqkhXo9I6Om2QFwqVQ-JG93nduXzm_ozLSGrrBtaFUHujTOx4lNS2d4BKZ1tY9bi_YXrbeh7jZbaujUte4bPV1Zh94ifQn1LpLOyWll9g1e_M0xWT_cr6ePyeJ5_jS9XSSWy7RNKqlQMGZLxouCQ5lxCQZExaRkWWatyatcmAxKAUZxNPHfErK8RCXfrWFiTK6PtodQf3YxqN7VXfDxouYZA6ZENIwsdmTZUDdNwEofgvsw4Usz0H2Fuq9Q9xXqvwqj5uqocYj4zy9i6lQo8QNzB25p |
CODEN | IGRSBY |
Cites_doi | 10.1145/2567948.2579215 10.1109/eScience.2019.00010 10.3390/rs12060910 10.1007/s10479-011-0841-3 10.1177/001316448104100307 10.1007/s10712-019-09533-z 10.1109/TSMC.1973.4309314 10.1007/978-3-642-04898-2_455 10.1016/j.envsoft.2011.11.015 10.15346/hc.v1i2.5 10.1016/j.tree.2009.03.017 10.3390/ijgi8110513 10.1016/j.patcog.2013.01.004 10.1109/JSTSP.2011.2139193 10.1109/TPAMI.2012.120 10.1109/SBSC.2010.20 10.1016/j.rse.2008.05.012 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2020.3032098 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Forestry |
EISSN | 1558-0571 |
EndPage | 5 |
ExternalDocumentID | 10_1109_LGRS_2020_3032098 9245538 |
Genre | orig-research |
GrantInformation_xml | – fundername: CAPES grantid: Finance Code 001 funderid: 10.13039/501100002322 – fundername: National Council for Scientific and Technological Development (CNPq) through the Universal Project grantid: #408919/2016-7 funderid: 10.13039/501100003593 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) grantid: Finance Code 001 funderid: 10.13039/501100002322 – fundername: INCT of the Future Internet for Smart Cities funded by CNPq grantid: #465446/2014-0 funderid: 10.13039/501100003593 – fundername: São Paulo Research Foundation (FAPESP) grantid: #2014/50937-1; #2015/24485-9 funderid: 10.13039/501100001807 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS XFK ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c245t-f48e311cd129920d6240a03f144166cca7f73a60d30a82ea110d067de84bca13 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Thu Nov 07 04:57:12 EST 2024 Fri Aug 23 03:19:51 EDT 2024 Wed Jun 26 19:25:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-f48e311cd129920d6240a03f144166cca7f73a60d30a82ea110d067de84bca13 |
ORCID | 0000-0002-4052-1113 0000-0003-2956-6326 0000-0003-2676-7368 |
PQID | 2610183240 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9245538 proquest_journals_2610183240 crossref_primary_10_1109_LGRS_2020_3032098 |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 Irving (ref14) 2016 Kodinariya (ref25) 2013; 1 ref11 ref10 Schohn (ref16); 2 ref2 ref1 ref17 ref19 ref18 Grey (ref4) 2009; 29 ref23 ref20 (ref15) 2017 ref22 Pedro Coelho (ref21) 2012 Petersen (ref8) 2017 ref7 ref9 ref3 ref6 ref5 Pedregosa (ref24) 2011; 12 |
References_xml | – ident: ref11 doi: 10.1145/2567948.2579215 – ident: ref10 doi: 10.1109/eScience.2019.00010 – volume-title: Forest Watcher Brings Data Straight to Environmental Defenders year: 2017 ident: ref8 contributor: fullname: Petersen – volume: 12 start-page: 2825 year: 2011 ident: ref24 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – volume: 29 year: 2009 ident: ref4 article-title: Viewpoint: The age of citizen cyberscience publication-title: Cern Courier contributor: fullname: Grey – volume-title: Landsat Surface Reflectance-Derived Spectral Indices, Product Guide, Version 3.6 year: 2017 ident: ref15 – ident: ref18 doi: 10.3390/rs12060910 – ident: ref19 doi: 10.1007/s10479-011-0841-3 – ident: ref22 doi: 10.1177/001316448104100307 – ident: ref7 doi: 10.1007/s10712-019-09533-z – ident: ref20 doi: 10.1109/TSMC.1973.4309314 – volume: 1 start-page: 90 issue: 6 year: 2013 ident: ref25 article-title: Review on determining number of cluster in K-means clustering publication-title: Int. J. contributor: fullname: Kodinariya – ident: ref12 doi: 10.1007/978-3-642-04898-2_455 – ident: ref6 doi: 10.1016/j.envsoft.2011.11.015 – year: 2012 ident: ref21 article-title: Mahotas: Open source software for scriptable computer vision publication-title: arXiv:1211.4907 contributor: fullname: Pedro Coelho – ident: ref1 doi: 10.15346/hc.v1i2.5 – ident: ref5 doi: 10.1016/j.tree.2009.03.017 – ident: ref17 doi: 10.3390/ijgi8110513 – ident: ref23 doi: 10.1016/j.patcog.2013.01.004 – ident: ref9 doi: 10.1109/JSTSP.2011.2139193 – ident: ref13 doi: 10.1109/TPAMI.2012.120 – ident: ref3 doi: 10.1109/SBSC.2010.20 – volume: 2 start-page: 6 issue: 4 volume-title: Proc. ICML ident: ref16 article-title: Less is more: Active learning with support vector machines contributor: fullname: Schohn – ident: ref2 doi: 10.1016/j.rse.2008.05.012 – year: 2016 ident: ref14 article-title: MaskSLIC: Regional superpixel generation with application to local pathology characterisation in medical images publication-title: arXiv:1606.09518 contributor: fullname: Irving |
SSID | ssj0024887 |
Score | 2.3804276 |
Snippet | Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Active learning (AL) Artificial satellites Collections Conditioned stimulus Datasets Deforestation Detection Earth Feasibility studies Forestry Image classification Image segmentation Learning algorithms Machine learning machine learning (ML) Modules Rainforests Remote sensing Segments supervised learning Task analysis Training Tropical climate Tropical forests |
Title | Building Data Sets for Rainforest Deforestation Detection Through a Citizen Science Project |
URI | https://ieeexplore.ieee.org/document/9245538 https://www.proquest.com/docview/2610183240 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPtBKPhUcLolCQByZEqOOkiTNCnwNCiHaoxBAlsSO6pIimA3x67hy3CMHC5kixFN0_9t35cT-AK4xoCV-eO1Io5fi661MNSM8RMs95mvJMGvLceBI-zmR_QGVybjZ3YbTW5vCZvqWm2ctXi2xFS2UdzBW6OEBrUAsjWd3V-q6rJw0MjyICpxvJmd3BdHnUeRg9TzATFJigEi48kj98kIGq_JqJjXsZHvzvww5h34aR7K7S_Qi2dNGAHeJsErytAbsWbv6K7e2Rofd-NOHl3kKwWT8pEzbR5ZJh0Mpokyc3fVlfVw0jGD6V5qhWwaYVz4clrDcv55-6YHZWYE_VWs4xTIeDaW_sWLqCk-HXlk7uS-25bqbQ40eCqwB9e8K9nDKsIEBhwzz0koArjydS6ARNqdC1KS39NEtc7wTqxaLQp8AExjRuGvipAZq5Mg0MKSET2k8F-r4WXK_NHb9VNTRik3vwKCZtYtImttq0oEn23bxoTduC9lqg2I6yZYzZH6cpyednf_c6hz1B1xXMkkkb6uX7Sl9AbalWl-bv-QJUz7-B |
link.rule.ids | 315,782,786,798,4028,27932,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPtAjKwqMFUSjggQkR6jhp4ozQJ6JUiHaoxBAlsSO6pIimA3x6zo5bhGBhc6RYiu4f--78uB_AJUa0Cl-eWpwJYbmy5aoakI7FeJrSOKYJ1-S5wdgfTXmnq8rkXK_vwkgp9eEzeaOaei9fzJOlWiprYq7QwgFags2W63t-cVvru7Ie1zg8FRNYrYBPzR6mTYPmsP88xlyQYYqqgOEB_-GFNFbl11ysHUxv73-ftg-7JpAkt4XyB7AhsypsK9KmwrdVoWLw5q_Y3uprfu9HDV7uDAabdKI8ImOZLwiGrURt86S6L-nIoqElw6dcH9bKyKQg-pCItGf57FNmxMwL5KlYzTmESa87aQ8sw1ewEvza3EpdLh3bTgT6_IBR4aF3j6iTqhzL81BaP_WdyKPCoRFnMkJTCnRuQnI3TiLbOYJyNs_kMRCGUY0de26skWY2jz3NSkiYdGOG3q8OVytzh29FFY1QZx80CJU2odImNNrUoabsu37RmLYOjZVAoRlnixDzP6omJZee_N3rAiqDyeMwHN6PHk5hh6nLC3oBpQHl_H0pz6C0EMtz_Sd9AZdVwtI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Data+Sets+for+Rainforest+Deforestation+Detection+Through+a+Citizen+Science+Project&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Dallaqua%2C+Fernanda+Beatriz+Jordan+Rojas&rft.au=Faria%2C+Fabio+Augusto&rft.au=Fazenda%2C+Alvaro+Luiz&rft.date=2022&rft.pub=IEEE&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3032098&rft.externalDocID=9245538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |