Building Data Sets for Rainforest Deforestation Detection Through a Citizen Science Project

Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in which the volunteers analyze and label segments of remote sensing images to build new training sets for creating different classification models....

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5
Main Authors: Dallaqua, Fernanda Beatriz Jordan Rojas, Faria, Fabio Augusto, Fazenda, Alvaro Luiz
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in which the volunteers analyze and label segments of remote sensing images to build new training sets for creating different classification models. In previous work, only three modules related to CS have been proposed. In this letter, two new modules are created: 1) organization and selection and 2) ML. Therefore, these modules turn the ForestEyes project a more robust system in the deforestation detection task, building high-confidence labeled collections, increasing the monitoring coverage, and decreasing volunteer dependence. Performed experiments show that volunteers create better data sets than those based on automatic PRODES-based approaches, selecting the most relevant samples and discarding noisy segments that might disrupt ML techniques. Finally, the results showed the feasibility of allying CS with ML for rainforest deforestation detection task.
AbstractList Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in which the volunteers analyze and label segments of remote sensing images to build new training sets for creating different classification models. In previous work, only three modules related to CS have been proposed. In this letter, two new modules are created: 1) organization and selection and 2) ML. Therefore, these modules turn the ForestEyes project a more robust system in the deforestation detection task, building high-confidence labeled collections, increasing the monitoring coverage, and decreasing volunteer dependence. Performed experiments show that volunteers create better data sets than those based on automatic PRODES-based approaches, selecting the most relevant samples and discarding noisy segments that might disrupt ML techniques. Finally, the results showed the feasibility of allying CS with ML for rainforest deforestation detection task.
Author Faria, Fabio Augusto
Dallaqua, Fernanda Beatriz Jordan Rojas
Fazenda, Alvaro Luiz
Author_xml – sequence: 1
  givenname: Fernanda Beatriz Jordan Rojas
  orcidid: 0000-0003-2676-7368
  surname: Dallaqua
  fullname: Dallaqua, Fernanda Beatriz Jordan Rojas
  email: fernanda.dallaqua@unifesp.br
  organization: Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
– sequence: 2
  givenname: Fabio Augusto
  orcidid: 0000-0003-2956-6326
  surname: Faria
  fullname: Faria, Fabio Augusto
  email: ffaria@unifesp.br
  organization: Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
– sequence: 3
  givenname: Alvaro Luiz
  orcidid: 0000-0002-4052-1113
  surname: Fazenda
  fullname: Fazenda, Alvaro Luiz
  email: alvaro.fazenda@unifesp.br
  organization: Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
BookMark eNo9UMtOwzAQtFCRaAsfgLhY4pyyfiRxjtBCQaoEantA4mAZZ9O6Kk5xkgN8PQ5FnHZWmpmdnREZ-NojIZcMJoxBcbOYL1cTDhwmAgSHQp2QIUtTlUCas0GPZZqkhXo9I6Om2QFwqVQ-JG93nduXzm_ozLSGrrBtaFUHujTOx4lNS2d4BKZ1tY9bi_YXrbeh7jZbaujUte4bPV1Zh94ifQn1LpLOyWll9g1e_M0xWT_cr6ePyeJ5_jS9XSSWy7RNKqlQMGZLxouCQ5lxCQZExaRkWWatyatcmAxKAUZxNPHfErK8RCXfrWFiTK6PtodQf3YxqN7VXfDxouYZA6ZENIwsdmTZUDdNwEofgvsw4Usz0H2Fuq9Q9xXqvwqj5uqocYj4zy9i6lQo8QNzB25p
CODEN IGRSBY
Cites_doi 10.1145/2567948.2579215
10.1109/eScience.2019.00010
10.3390/rs12060910
10.1007/s10479-011-0841-3
10.1177/001316448104100307
10.1007/s10712-019-09533-z
10.1109/TSMC.1973.4309314
10.1007/978-3-642-04898-2_455
10.1016/j.envsoft.2011.11.015
10.15346/hc.v1i2.5
10.1016/j.tree.2009.03.017
10.3390/ijgi8110513
10.1016/j.patcog.2013.01.004
10.1109/JSTSP.2011.2139193
10.1109/TPAMI.2012.120
10.1109/SBSC.2010.20
10.1016/j.rse.2008.05.012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2020.3032098
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Forestry
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2020_3032098
9245538
Genre orig-research
GrantInformation_xml – fundername: CAPES
  grantid: Finance Code 001
  funderid: 10.13039/501100002322
– fundername: National Council for Scientific and Technological Development (CNPq) through the Universal Project
  grantid: #408919/2016-7
  funderid: 10.13039/501100003593
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  grantid: Finance Code 001
  funderid: 10.13039/501100002322
– fundername: INCT of the Future Internet for Smart Cities funded by CNPq
  grantid: #465446/2014-0
  funderid: 10.13039/501100003593
– fundername: São Paulo Research Foundation (FAPESP)
  grantid: #2014/50937-1; #2015/24485-9
  funderid: 10.13039/501100001807
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
XFK
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-f48e311cd129920d6240a03f144166cca7f73a60d30a82ea110d067de84bca13
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Thu Nov 07 04:57:12 EST 2024
Fri Aug 23 03:19:51 EDT 2024
Wed Jun 26 19:25:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-f48e311cd129920d6240a03f144166cca7f73a60d30a82ea110d067de84bca13
ORCID 0000-0002-4052-1113
0000-0003-2956-6326
0000-0003-2676-7368
PQID 2610183240
PQPubID 75725
PageCount 5
ParticipantIDs ieee_primary_9245538
proquest_journals_2610183240
crossref_primary_10_1109_LGRS_2020_3032098
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Irving (ref14) 2016
Kodinariya (ref25) 2013; 1
ref11
ref10
Schohn (ref16); 2
ref2
ref1
ref17
ref19
ref18
Grey (ref4) 2009; 29
ref23
ref20
(ref15) 2017
ref22
Pedro Coelho (ref21) 2012
Petersen (ref8) 2017
ref7
ref9
ref3
ref6
ref5
Pedregosa (ref24) 2011; 12
References_xml – ident: ref11
  doi: 10.1145/2567948.2579215
– ident: ref10
  doi: 10.1109/eScience.2019.00010
– volume-title: Forest Watcher Brings Data Straight to Environmental Defenders
  year: 2017
  ident: ref8
  contributor:
    fullname: Petersen
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref24
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– volume: 29
  year: 2009
  ident: ref4
  article-title: Viewpoint: The age of citizen cyberscience
  publication-title: Cern Courier
  contributor:
    fullname: Grey
– volume-title: Landsat Surface Reflectance-Derived Spectral Indices, Product Guide, Version 3.6
  year: 2017
  ident: ref15
– ident: ref18
  doi: 10.3390/rs12060910
– ident: ref19
  doi: 10.1007/s10479-011-0841-3
– ident: ref22
  doi: 10.1177/001316448104100307
– ident: ref7
  doi: 10.1007/s10712-019-09533-z
– ident: ref20
  doi: 10.1109/TSMC.1973.4309314
– volume: 1
  start-page: 90
  issue: 6
  year: 2013
  ident: ref25
  article-title: Review on determining number of cluster in K-means clustering
  publication-title: Int. J.
  contributor:
    fullname: Kodinariya
– ident: ref12
  doi: 10.1007/978-3-642-04898-2_455
– ident: ref6
  doi: 10.1016/j.envsoft.2011.11.015
– year: 2012
  ident: ref21
  article-title: Mahotas: Open source software for scriptable computer vision
  publication-title: arXiv:1211.4907
  contributor:
    fullname: Pedro Coelho
– ident: ref1
  doi: 10.15346/hc.v1i2.5
– ident: ref5
  doi: 10.1016/j.tree.2009.03.017
– ident: ref17
  doi: 10.3390/ijgi8110513
– ident: ref23
  doi: 10.1016/j.patcog.2013.01.004
– ident: ref9
  doi: 10.1109/JSTSP.2011.2139193
– ident: ref13
  doi: 10.1109/TPAMI.2012.120
– ident: ref3
  doi: 10.1109/SBSC.2010.20
– volume: 2
  start-page: 6
  issue: 4
  volume-title: Proc. ICML
  ident: ref16
  article-title: Less is more: Active learning with support vector machines
  contributor:
    fullname: Schohn
– ident: ref2
  doi: 10.1016/j.rse.2008.05.012
– year: 2016
  ident: ref14
  article-title: MaskSLIC: Regional superpixel generation with application to local pathology characterisation in medical images
  publication-title: arXiv:1606.09518
  contributor:
    fullname: Irving
SSID ssj0024887
Score 2.3804276
Snippet Originally, the ForestEyes project aims to detect deforestation in tropical forests based on citizen science (CS) and machine learning (ML) approaches, in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Active learning (AL)
Artificial satellites
Collections
Conditioned stimulus
Datasets
Deforestation
Detection
Earth
Feasibility studies
Forestry
Image classification
Image segmentation
Learning algorithms
Machine learning
machine learning (ML)
Modules
Rainforests
Remote sensing
Segments
supervised learning
Task analysis
Training
Tropical climate
Tropical forests
Title Building Data Sets for Rainforest Deforestation Detection Through a Citizen Science Project
URI https://ieeexplore.ieee.org/document/9245538
https://www.proquest.com/docview/2610183240
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPtBKPhUcLolCQByZEqOOkiTNCnwNCiHaoxBAlsSO6pIimA3x67hy3CMHC5kixFN0_9t35cT-AK4xoCV-eO1Io5fi661MNSM8RMs95mvJMGvLceBI-zmR_QGVybjZ3YbTW5vCZvqWm2ctXi2xFS2UdzBW6OEBrUAsjWd3V-q6rJw0MjyICpxvJmd3BdHnUeRg9TzATFJigEi48kj98kIGq_JqJjXsZHvzvww5h34aR7K7S_Qi2dNGAHeJsErytAbsWbv6K7e2Rofd-NOHl3kKwWT8pEzbR5ZJh0Mpokyc3fVlfVw0jGD6V5qhWwaYVz4clrDcv55-6YHZWYE_VWs4xTIeDaW_sWLqCk-HXlk7uS-25bqbQ40eCqwB9e8K9nDKsIEBhwzz0koArjydS6ARNqdC1KS39NEtc7wTqxaLQp8AExjRuGvipAZq5Mg0MKSET2k8F-r4WXK_NHb9VNTRik3vwKCZtYtImttq0oEn23bxoTduC9lqg2I6yZYzZH6cpyednf_c6hz1B1xXMkkkb6uX7Sl9AbalWl-bv-QJUz7-B
link.rule.ids 315,782,786,798,4028,27932,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPtAjKwqMFUSjggQkR6jhp4ozQJ6JUiHaoxBAlsSO6pIimA3x6zo5bhGBhc6RYiu4f--78uB_AJUa0Cl-eWpwJYbmy5aoakI7FeJrSOKYJ1-S5wdgfTXmnq8rkXK_vwkgp9eEzeaOaei9fzJOlWiprYq7QwgFags2W63t-cVvru7Ie1zg8FRNYrYBPzR6mTYPmsP88xlyQYYqqgOEB_-GFNFbl11ysHUxv73-ftg-7JpAkt4XyB7AhsypsK9KmwrdVoWLw5q_Y3uprfu9HDV7uDAabdKI8ImOZLwiGrURt86S6L-nIoqElw6dcH9bKyKQg-pCItGf57FNmxMwL5KlYzTmESa87aQ8sw1ewEvza3EpdLh3bTgT6_IBR4aF3j6iTqhzL81BaP_WdyKPCoRFnMkJTCnRuQnI3TiLbOYJyNs_kMRCGUY0de26skWY2jz3NSkiYdGOG3q8OVytzh29FFY1QZx80CJU2odImNNrUoabsu37RmLYOjZVAoRlnixDzP6omJZee_N3rAiqDyeMwHN6PHk5hh6nLC3oBpQHl_H0pz6C0EMtz_Sd9AZdVwtI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Data+Sets+for+Rainforest+Deforestation+Detection+Through+a+Citizen+Science+Project&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Dallaqua%2C+Fernanda+Beatriz+Jordan+Rojas&rft.au=Faria%2C+Fabio+Augusto&rft.au=Fazenda%2C+Alvaro+Luiz&rft.date=2022&rft.pub=IEEE&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3032098&rft.externalDocID=9245538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon