Unlocking the potential: Evolving role of technical lignin in diverse applications and overcoming challenges

Recent advancements have transformed lignin from a byproduct into a valuable raw material for polymers, dyes, adhesives, and fertilizers. However, its structural heterogeneity, variable reactive group content, impurities, and high extraction costs pose challenges to industrial-scale adoption. Effici...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules Vol. 274; no. Pt 2; p. 133506
Main Authors: Jeffri, Noorfarisya Izma, Mohammad Rawi, Nurul Fazita, Mohamad Kassim, Mohamad Haafiz, Abdullah, Che Ku
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advancements have transformed lignin from a byproduct into a valuable raw material for polymers, dyes, adhesives, and fertilizers. However, its structural heterogeneity, variable reactive group content, impurities, and high extraction costs pose challenges to industrial-scale adoption. Efficient separation technologies and selective bond cleavage are crucial. Advanced pretreatment methods have enhanced lignin purity and reduced contamination, while novel catalytic techniques have improved depolymerization efficiency and selectivity. This review compares catalytic depolymerization methodologies, highlighting their advantages and disadvantages, and noting challenges in comparing yield values due to variations in isolation methods and lignin sources. Recognizing “technical lignin” from pulping processes, the review emphasizes its diverse applications and the necessity of understanding its structural characteristics. Emerging trends focus on bio-based functional additives and nanostructured lignin materials, promising enhanced properties and functionalities. Innovations open possibilities in sustainable agriculture, high-performance foams and composites, and advanced medical applications like drug delivery and wound healing. Leveraging lignin's biocompatibility, abundance, and potential for high-value applications, it can significantly contribute to sustainable material development across various industries. Continuous research in bio-based additives and nanostructured materials underscores lignin's potential to revolutionize material science and promote environmentally friendly industrial applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.133506