Ensemble Multifactorial Evolution With Biased Skill-Factor Inheritance for Many-Task Optimization
Current years have witnessed an increment in the number of research activities on improving the efficacy of multitasking algorithms for tackling challenging optimization problems. However, current approaches often present two potential problems. First, although tasks may have different characteristi...
Saved in:
Published in: | IEEE transactions on evolutionary computation Vol. 27; no. 6; pp. 1735 - 1749 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-12-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Current years have witnessed an increment in the number of research activities on improving the efficacy of multitasking algorithms for tackling challenging optimization problems. However, current approaches often present two potential problems. First, although tasks may have different characteristics, existing literature usually utilizes only one search operator for all of them. Second, while multitasking environments comprise tasks of varying difficulty, previous proposals treat them equally. This article proposes an algorithm named ensemble multifactorial evolution with biased skill-factor inheritance (EME-BI) for optimizing a large number of tasks simultaneously. In EME-BI, an effective parameter adaptation based on the knowledge transfer quality with biased skill-factor inheritance mechanism is designed to minimize negative transfer and allocate generated offspring to tasks that need resources. Besides, instead of using only one fixed search operator, EME-BI can automatically select the most appropriate one for each task at each evolutionary stage. Finally, the proposed algorithm is armed with a dynamically adjusted population size to promote exploitation. Empirical studies on various many-task benchmark problems and a real-world problem are conducted to verify the efficiency of EME-BI. The results portrayed that EME-BI achieves highly competitive performance compared to several state-of-the-art algorithms regarding the solution quality, convergence trend, and computation time. This proposal also won first prize at the CEC2021 Competition on Evolutionary Multitask Optimization, multitask single-objective optimization. |
---|---|
AbstractList | Current years have witnessed an increment in the number of research activities on improving the efficacy of multitasking algorithms for tackling challenging optimization problems. However, current approaches often present two potential problems. First, although tasks may have different characteristics, existing literature usually utilizes only one search operator for all of them. Second, while multitasking environments comprise tasks of varying difficulty, previous proposals treat them equally. This article proposes an algorithm named ensemble multifactorial evolution with biased skill-factor inheritance (EME-BI) for optimizing a large number of tasks simultaneously. In EME-BI, an effective parameter adaptation based on the knowledge transfer quality with biased skill-factor inheritance mechanism is designed to minimize negative transfer and allocate generated offspring to tasks that need resources. Besides, instead of using only one fixed search operator, EME-BI can automatically select the most appropriate one for each task at each evolutionary stage. Finally, the proposed algorithm is armed with a dynamically adjusted population size to promote exploitation. Empirical studies on various many-task benchmark problems and a real-world problem are conducted to verify the efficiency of EME-BI. The results portrayed that EME-BI achieves highly competitive performance compared to several state-of-the-art algorithms regarding the solution quality, convergence trend, and computation time. This proposal also won first prize at the CEC2021 Competition on Evolutionary Multitask Optimization, multitask single-objective optimization. |
Author | Huynh Thi Thanh, Binh Long, Nguyen Hoang Van Cuong, Le Thang, Ta Bao |
Author_xml | – sequence: 1 givenname: Binh orcidid: 0000-0003-1976-6113 surname: Huynh Thi Thanh fullname: Huynh Thi Thanh, Binh email: binhht@soict.hust.edu.vn organization: School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam – sequence: 2 givenname: Le orcidid: 0000-0003-1558-2130 surname: Van Cuong fullname: Van Cuong, Le email: cuonglv.hust@gmail.com organization: School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam – sequence: 3 givenname: Ta Bao orcidid: 0000-0003-0167-1263 surname: Thang fullname: Thang, Ta Bao email: thangtb3@viettel.com.vn organization: Viettel Cyberspace Center, Viettel Group, Hanoi, Vietnam – sequence: 4 givenname: Nguyen Hoang surname: Long fullname: Long, Nguyen Hoang email: longnh.mso@gmail.com organization: School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam |
BookMark | eNo9kF1LwzAUhoNMcJv-APEm4HVnkqZJeqmj08HGLpwfdyVNU5atS2eSCvPX27rh1XkPPO858IzAwDZWA3CL0QRjlD6ss_fphCBCJjEhHBN0AYY4pThCiLBBl5FII87F5xUYeb9FCNMEp0MgM-v1vqg1XLZ1MJVUoXFG1jD7buo2mMbCDxM28MlIr0v4ujN1Hc3-KDi3G-1MkFZpWHX7UtpjtJZ-B1eHYPbmR_b9a3BZydrrm_Mcg7dZtp6-RIvV83z6uIgUoUmIRFEwWSlMFdIFVzIpqGKk4HGJSpFIIiTXNC0FjxnSqqQEJTFBRclLyVjCVTwG96e7B9d8tdqHfNu0znYvcyLSRAjKKO0ofKKUa7x3usoPzuylO-YY5b3JvDeZ9ybzs8muc3fqGK31P5-mgjBO418TTHJU |
CODEN | ITEVF5 |
Cites_doi | 10.1109/TEVC.2019.2904696 10.1109/TCYB.2020.2969025 10.1109/TEVC.2022.3160196 10.1109/TEVC.2021.3101697 10.1109/TETCI.2019.2916051 10.1109/CEC.2017.7969579 10.1016/j.apm.2020.05.016 10.1109/TEVC.2021.3068157 10.1145/3377930.3390203 10.1007/s40747-016-0011-y 10.1109/TEVC.2017.2735550 10.1109/TCYB.2019.2962865 10.1109/TEVC.2019.2925959 10.1109/TCYB.2021.3065340 10.1109/TEVC.2019.2906927 10.1109/CEC45853.2021.9504691 10.1016/j.swevo.2018.08.015 10.1109/TEVC.2015.2458037 10.1109/MCI.2022.3155332 10.1109/TEVC.2020.2991717 10.1109/TCYB.2016.2554622 10.1609/aaai.v33i01.33014295 10.1109/ICEC.1995.489178 10.1109/TCYB.2020.2981733 10.1109/TEVC.2021.3065707 10.1016/j.asoc.2021.107253 10.1109/TCYB.2018.2845361 10.1007/978-3-319-94472-2_10 10.1016/j.knosys.2019.105294 10.1109/CEC.2017.7969454 10.1109/TCYB.2020.2974100 10.1007/s12559-022-10012-8 10.1109/TEVC.2017.2785351 10.1109/CEC.2014.6900380 10.1109/TEVC.2009.2014613 10.1109/TEVC.2017.2783441 10.1109/CEC.2019.8789909 10.1109/TEVC.2018.2881955 10.24963/ijcai.2018/538 10.1016/j.ins.2020.05.132 10.1007/978-3-319-46672-9_5 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TEVC.2022.3227120 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Computer Science |
EISSN | 1941-0026 |
EndPage | 1749 |
ExternalDocumentID | 10_1109_TEVC_2022_3227120 9982674 |
Genre | orig-research |
GrantInformation_xml | – fundername: Vingroup Innovation Foundation (VINIF) grantid: VINIF.2022.DA00183 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIG RIL RNS TN5 VH1 XFK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c245t-8bb6afc14c0eb7ca5b4c62b73d0d85a28a7e49d87360ecd4205320bd7da6657c3 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Thu Oct 10 17:23:48 EDT 2024 Fri Aug 23 01:17:24 EDT 2024 Wed Jun 26 19:37:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-8bb6afc14c0eb7ca5b4c62b73d0d85a28a7e49d87360ecd4205320bd7da6657c3 |
ORCID | 0000-0003-1976-6113 0000-0003-1558-2130 0000-0003-0167-1263 |
PQID | 2895884644 |
PQPubID | 85418 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9982674 crossref_primary_10_1109_TEVC_2022_3227120 proquest_journals_2895884644 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 Da (ref27) 2017 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Feng (ref41) 2020 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref30 doi: 10.1109/TEVC.2019.2904696 – ident: ref5 doi: 10.1109/TCYB.2020.2969025 – ident: ref35 doi: 10.1109/TEVC.2022.3160196 – ident: ref24 doi: 10.1109/TEVC.2021.3101697 – ident: ref20 doi: 10.1109/TETCI.2019.2916051 – ident: ref36 doi: 10.1109/CEC.2017.7969579 – ident: ref40 doi: 10.1016/j.apm.2020.05.016 – ident: ref31 doi: 10.1109/TEVC.2021.3068157 – ident: ref42 doi: 10.1145/3377930.3390203 – ident: ref3 doi: 10.1007/s40747-016-0011-y – ident: ref43 doi: 10.1109/TEVC.2017.2735550 – ident: ref12 doi: 10.1109/TCYB.2019.2962865 – ident: ref10 doi: 10.1109/TEVC.2019.2925959 – ident: ref13 doi: 10.1109/TCYB.2021.3065340 – ident: ref21 doi: 10.1109/TEVC.2019.2906927 – ident: ref34 doi: 10.1109/CEC45853.2021.9504691 – ident: ref26 doi: 10.1016/j.swevo.2018.08.015 – ident: ref2 doi: 10.1109/TEVC.2015.2458037 – ident: ref9 doi: 10.1109/MCI.2022.3155332 – ident: ref17 doi: 10.1109/TEVC.2020.2991717 – ident: ref4 doi: 10.1109/TCYB.2016.2554622 – ident: ref37 doi: 10.1609/aaai.v33i01.33014295 – ident: ref39 doi: 10.1109/ICEC.1995.489178 – ident: ref6 doi: 10.1109/TCYB.2020.2981733 – ident: ref18 doi: 10.1109/TEVC.2021.3065707 – ident: ref19 doi: 10.1016/j.asoc.2021.107253 – ident: ref32 doi: 10.1109/TCYB.2018.2845361 – volume-title: New MTO benchmarks for GECCO 2020 competition on evolutionary multi-task optimization year: 2020 ident: ref41 contributor: fullname: Feng – ident: ref1 doi: 10.1007/978-3-319-94472-2_10 – ident: ref16 doi: 10.1016/j.knosys.2019.105294 – ident: ref29 doi: 10.1109/CEC.2017.7969454 – year: 2017 ident: ref27 article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results publication-title: arXiv:1706.03470 contributor: fullname: Da – ident: ref23 doi: 10.1109/TCYB.2020.2974100 – ident: ref28 doi: 10.1007/s12559-022-10012-8 – ident: ref8 doi: 10.1109/TEVC.2017.2785351 – ident: ref38 doi: 10.1109/CEC.2014.6900380 – ident: ref25 doi: 10.1109/TEVC.2009.2014613 – ident: ref7 doi: 10.1109/TEVC.2017.2783441 – ident: ref33 doi: 10.1109/CEC.2019.8789909 – ident: ref15 doi: 10.1109/TEVC.2018.2881955 – ident: ref22 doi: 10.24963/ijcai.2018/538 – ident: ref14 doi: 10.1016/j.ins.2020.05.132 – ident: ref11 doi: 10.1007/978-3-319-46672-9_5 |
SSID | ssj0014519 |
Score | 2.4870155 |
Snippet | Current years have witnessed an increment in the number of research activities on improving the efficacy of multitasking algorithms for tackling challenging... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1735 |
SubjectTerms | Adaptive transfer Algorithms Evolution Evolutionary computation Inheritances Knowledge management Knowledge transfer many-task optimization (MaTO) multifactorial evolutionary algorithm (MFEA) Multitasking Optimization parameter adaptation Sociology Statistics Task analysis |
Title | Ensemble Multifactorial Evolution With Biased Skill-Factor Inheritance for Many-Task Optimization |
URI | https://ieeexplore.ieee.org/document/9982674 https://www.proquest.com/docview/2895884644 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RJhh4tCDKSx6YEC6J48TJyCMVDMBAgW6RXxVV24BIyu_HdtyqEixsGRwp8n2--y7nuw_gTNFAR6EaYZIIgmkSUJwxSfBIqJBqO_THFdrvntnjML3N7Zici2UvjNbaXT7TPfvoavnqQ87tr7JLkxqQhNEWtFiWNr1ay4qBHZPSXKbPDGNMh76CGQbZ5SB_vTGZICE9g14WWmnvlRjkRFV-eWIXXvrb__uwHdjyNBJdNXbfhTVdtmF7IdGA_Iltw-bKvME2bFhq2Uxm7gDPy0rPxFQj14TbCO8YNKL828MRvY3rd3Q9NoFOoefJeDrFfbcK3Ze2bbC2iEGG9aIH41LwgFcT9GRc0Mz3du7BSz8f3NxhL7iAJaFxjVMhEj6SIZWBFkzyWFCZEMEiFag05iTlTNNMpSxKAi0VJU5WQiimuC3gyGgf1suPUh8AkjQMI4OOLGPcZOAGr8IwzzSINeEjwwm6cL4wQfHZzNUoXD4SZIW1V2HtVXh7daFj93y50G93F44XRiv8yasKk0Da3ltD8w7_fusINqxkfHMl5RjW66-5PoFWpeanDlE_oZHJtQ |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADSwFRVh84IQyJ48TJkSVVKwocKMst8lZRtU0Rbfl-bMetkODCLQdHijzPM28ynnkAp4oGOgpVF5NEEEyTgOKMSYK7QoVU26E_rtDefGIPb-ltbsfknM97YbTW7vKZvrCPrpavRnJqf5VdmtSAJIwuwnJMWcKqbq15zcAOSqmu02eGM6ZvvoYZBtllJ3-5MbkgIRcGvyy04t4_opCTVfnli12AaWz879M2Yd0TSXRVWX4LFnRZg42ZSAPyZ7YGaz8mDtZg1ZLLajbzNvC8HOuhGGjk2nAr6R2DR5R_eUCi197kHV33TKhT6KnfGwxww61CrdI2Dk4sZpDhvejeOBXc4eM-ejROaOi7O3fguZF3bprYSy5gSWg8wakQCe_KkMpACyZ5LKhMiGCRClQac5JypmmmUhYlgZaKEicsIRRT3JZwZLQLS-Wo1HuAJA3DyOAjyxg3ObhBrDDcMw1iTXjXsII6nM1MUHxUkzUKl5EEWWHtVVh7Fd5eddi2ez5f6Le7DoczoxX-7I0Lk0La7ltD9Pb_fusEVpqd-3bRbj3cHcCqFZCvLqgcwtLkc6qPYHGspscOXd9mts0G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Multifactorial+Evolution+With+Biased+Skill-Factor+Inheritance+for+Many-Task+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Huynh+Thi+Thanh%2C+Binh&rft.au=Van+Cuong%2C+Le&rft.au=Thang%2C+Ta+Bao&rft.au=Long%2C+Nguyen+Hoang&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1735&rft.epage=1749&rft_id=info:doi/10.1109%2FTEVC.2022.3227120&rft.externalDocID=9982674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |