Ensemble Multifactorial Evolution With Biased Skill-Factor Inheritance for Many-Task Optimization

Current years have witnessed an increment in the number of research activities on improving the efficacy of multitasking algorithms for tackling challenging optimization problems. However, current approaches often present two potential problems. First, although tasks may have different characteristi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 27; no. 6; pp. 1735 - 1749
Main Authors: Huynh Thi Thanh, Binh, Van Cuong, Le, Thang, Ta Bao, Long, Nguyen Hoang
Format: Journal Article
Language:English
Published: New York IEEE 01-12-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Current years have witnessed an increment in the number of research activities on improving the efficacy of multitasking algorithms for tackling challenging optimization problems. However, current approaches often present two potential problems. First, although tasks may have different characteristics, existing literature usually utilizes only one search operator for all of them. Second, while multitasking environments comprise tasks of varying difficulty, previous proposals treat them equally. This article proposes an algorithm named ensemble multifactorial evolution with biased skill-factor inheritance (EME-BI) for optimizing a large number of tasks simultaneously. In EME-BI, an effective parameter adaptation based on the knowledge transfer quality with biased skill-factor inheritance mechanism is designed to minimize negative transfer and allocate generated offspring to tasks that need resources. Besides, instead of using only one fixed search operator, EME-BI can automatically select the most appropriate one for each task at each evolutionary stage. Finally, the proposed algorithm is armed with a dynamically adjusted population size to promote exploitation. Empirical studies on various many-task benchmark problems and a real-world problem are conducted to verify the efficiency of EME-BI. The results portrayed that EME-BI achieves highly competitive performance compared to several state-of-the-art algorithms regarding the solution quality, convergence trend, and computation time. This proposal also won first prize at the CEC2021 Competition on Evolutionary Multitask Optimization, multitask single-objective optimization.
AbstractList Current years have witnessed an increment in the number of research activities on improving the efficacy of multitasking algorithms for tackling challenging optimization problems. However, current approaches often present two potential problems. First, although tasks may have different characteristics, existing literature usually utilizes only one search operator for all of them. Second, while multitasking environments comprise tasks of varying difficulty, previous proposals treat them equally. This article proposes an algorithm named ensemble multifactorial evolution with biased skill-factor inheritance (EME-BI) for optimizing a large number of tasks simultaneously. In EME-BI, an effective parameter adaptation based on the knowledge transfer quality with biased skill-factor inheritance mechanism is designed to minimize negative transfer and allocate generated offspring to tasks that need resources. Besides, instead of using only one fixed search operator, EME-BI can automatically select the most appropriate one for each task at each evolutionary stage. Finally, the proposed algorithm is armed with a dynamically adjusted population size to promote exploitation. Empirical studies on various many-task benchmark problems and a real-world problem are conducted to verify the efficiency of EME-BI. The results portrayed that EME-BI achieves highly competitive performance compared to several state-of-the-art algorithms regarding the solution quality, convergence trend, and computation time. This proposal also won first prize at the CEC2021 Competition on Evolutionary Multitask Optimization, multitask single-objective optimization.
Author Huynh Thi Thanh, Binh
Long, Nguyen Hoang
Van Cuong, Le
Thang, Ta Bao
Author_xml – sequence: 1
  givenname: Binh
  orcidid: 0000-0003-1976-6113
  surname: Huynh Thi Thanh
  fullname: Huynh Thi Thanh, Binh
  email: binhht@soict.hust.edu.vn
  organization: School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
– sequence: 2
  givenname: Le
  orcidid: 0000-0003-1558-2130
  surname: Van Cuong
  fullname: Van Cuong, Le
  email: cuonglv.hust@gmail.com
  organization: School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
– sequence: 3
  givenname: Ta Bao
  orcidid: 0000-0003-0167-1263
  surname: Thang
  fullname: Thang, Ta Bao
  email: thangtb3@viettel.com.vn
  organization: Viettel Cyberspace Center, Viettel Group, Hanoi, Vietnam
– sequence: 4
  givenname: Nguyen Hoang
  surname: Long
  fullname: Long, Nguyen Hoang
  email: longnh.mso@gmail.com
  organization: School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
BookMark eNo9kF1LwzAUhoNMcJv-APEm4HVnkqZJeqmj08HGLpwfdyVNU5atS2eSCvPX27rh1XkPPO858IzAwDZWA3CL0QRjlD6ss_fphCBCJjEhHBN0AYY4pThCiLBBl5FII87F5xUYeb9FCNMEp0MgM-v1vqg1XLZ1MJVUoXFG1jD7buo2mMbCDxM28MlIr0v4ujN1Hc3-KDi3G-1MkFZpWHX7UtpjtJZ-B1eHYPbmR_b9a3BZydrrm_Mcg7dZtp6-RIvV83z6uIgUoUmIRFEwWSlMFdIFVzIpqGKk4HGJSpFIIiTXNC0FjxnSqqQEJTFBRclLyVjCVTwG96e7B9d8tdqHfNu0znYvcyLSRAjKKO0ofKKUa7x3usoPzuylO-YY5b3JvDeZ9ybzs8muc3fqGK31P5-mgjBO418TTHJU
CODEN ITEVF5
Cites_doi 10.1109/TEVC.2019.2904696
10.1109/TCYB.2020.2969025
10.1109/TEVC.2022.3160196
10.1109/TEVC.2021.3101697
10.1109/TETCI.2019.2916051
10.1109/CEC.2017.7969579
10.1016/j.apm.2020.05.016
10.1109/TEVC.2021.3068157
10.1145/3377930.3390203
10.1007/s40747-016-0011-y
10.1109/TEVC.2017.2735550
10.1109/TCYB.2019.2962865
10.1109/TEVC.2019.2925959
10.1109/TCYB.2021.3065340
10.1109/TEVC.2019.2906927
10.1109/CEC45853.2021.9504691
10.1016/j.swevo.2018.08.015
10.1109/TEVC.2015.2458037
10.1109/MCI.2022.3155332
10.1109/TEVC.2020.2991717
10.1109/TCYB.2016.2554622
10.1609/aaai.v33i01.33014295
10.1109/ICEC.1995.489178
10.1109/TCYB.2020.2981733
10.1109/TEVC.2021.3065707
10.1016/j.asoc.2021.107253
10.1109/TCYB.2018.2845361
10.1007/978-3-319-94472-2_10
10.1016/j.knosys.2019.105294
10.1109/CEC.2017.7969454
10.1109/TCYB.2020.2974100
10.1007/s12559-022-10012-8
10.1109/TEVC.2017.2785351
10.1109/CEC.2014.6900380
10.1109/TEVC.2009.2014613
10.1109/TEVC.2017.2783441
10.1109/CEC.2019.8789909
10.1109/TEVC.2018.2881955
10.24963/ijcai.2018/538
10.1016/j.ins.2020.05.132
10.1007/978-3-319-46672-9_5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3227120
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1749
ExternalDocumentID 10_1109_TEVC_2022_3227120
9982674
Genre orig-research
GrantInformation_xml – fundername: Vingroup Innovation Foundation (VINIF)
  grantid: VINIF.2022.DA00183
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RIL
RNS
TN5
VH1
XFK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-8bb6afc14c0eb7ca5b4c62b73d0d85a28a7e49d87360ecd4205320bd7da6657c3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Thu Oct 10 17:23:48 EDT 2024
Fri Aug 23 01:17:24 EDT 2024
Wed Jun 26 19:37:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-8bb6afc14c0eb7ca5b4c62b73d0d85a28a7e49d87360ecd4205320bd7da6657c3
ORCID 0000-0003-1976-6113
0000-0003-1558-2130
0000-0003-0167-1263
PQID 2895884644
PQPubID 85418
PageCount 15
ParticipantIDs ieee_primary_9982674
crossref_primary_10_1109_TEVC_2022_3227120
proquest_journals_2895884644
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
Da (ref27) 2017
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Feng (ref41) 2020
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref30
  doi: 10.1109/TEVC.2019.2904696
– ident: ref5
  doi: 10.1109/TCYB.2020.2969025
– ident: ref35
  doi: 10.1109/TEVC.2022.3160196
– ident: ref24
  doi: 10.1109/TEVC.2021.3101697
– ident: ref20
  doi: 10.1109/TETCI.2019.2916051
– ident: ref36
  doi: 10.1109/CEC.2017.7969579
– ident: ref40
  doi: 10.1016/j.apm.2020.05.016
– ident: ref31
  doi: 10.1109/TEVC.2021.3068157
– ident: ref42
  doi: 10.1145/3377930.3390203
– ident: ref3
  doi: 10.1007/s40747-016-0011-y
– ident: ref43
  doi: 10.1109/TEVC.2017.2735550
– ident: ref12
  doi: 10.1109/TCYB.2019.2962865
– ident: ref10
  doi: 10.1109/TEVC.2019.2925959
– ident: ref13
  doi: 10.1109/TCYB.2021.3065340
– ident: ref21
  doi: 10.1109/TEVC.2019.2906927
– ident: ref34
  doi: 10.1109/CEC45853.2021.9504691
– ident: ref26
  doi: 10.1016/j.swevo.2018.08.015
– ident: ref2
  doi: 10.1109/TEVC.2015.2458037
– ident: ref9
  doi: 10.1109/MCI.2022.3155332
– ident: ref17
  doi: 10.1109/TEVC.2020.2991717
– ident: ref4
  doi: 10.1109/TCYB.2016.2554622
– ident: ref37
  doi: 10.1609/aaai.v33i01.33014295
– ident: ref39
  doi: 10.1109/ICEC.1995.489178
– ident: ref6
  doi: 10.1109/TCYB.2020.2981733
– ident: ref18
  doi: 10.1109/TEVC.2021.3065707
– ident: ref19
  doi: 10.1016/j.asoc.2021.107253
– ident: ref32
  doi: 10.1109/TCYB.2018.2845361
– volume-title: New MTO benchmarks for GECCO 2020 competition on evolutionary multi-task optimization
  year: 2020
  ident: ref41
  contributor:
    fullname: Feng
– ident: ref1
  doi: 10.1007/978-3-319-94472-2_10
– ident: ref16
  doi: 10.1016/j.knosys.2019.105294
– ident: ref29
  doi: 10.1109/CEC.2017.7969454
– year: 2017
  ident: ref27
  article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results
  publication-title: arXiv:1706.03470
  contributor:
    fullname: Da
– ident: ref23
  doi: 10.1109/TCYB.2020.2974100
– ident: ref28
  doi: 10.1007/s12559-022-10012-8
– ident: ref8
  doi: 10.1109/TEVC.2017.2785351
– ident: ref38
  doi: 10.1109/CEC.2014.6900380
– ident: ref25
  doi: 10.1109/TEVC.2009.2014613
– ident: ref7
  doi: 10.1109/TEVC.2017.2783441
– ident: ref33
  doi: 10.1109/CEC.2019.8789909
– ident: ref15
  doi: 10.1109/TEVC.2018.2881955
– ident: ref22
  doi: 10.24963/ijcai.2018/538
– ident: ref14
  doi: 10.1016/j.ins.2020.05.132
– ident: ref11
  doi: 10.1007/978-3-319-46672-9_5
SSID ssj0014519
Score 2.4870155
Snippet Current years have witnessed an increment in the number of research activities on improving the efficacy of multitasking algorithms for tackling challenging...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1735
SubjectTerms Adaptive transfer
Algorithms
Evolution
Evolutionary computation
Inheritances
Knowledge management
Knowledge transfer
many-task optimization (MaTO)
multifactorial evolutionary algorithm (MFEA)
Multitasking
Optimization
parameter adaptation
Sociology
Statistics
Task analysis
Title Ensemble Multifactorial Evolution With Biased Skill-Factor Inheritance for Many-Task Optimization
URI https://ieeexplore.ieee.org/document/9982674
https://www.proquest.com/docview/2895884644
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5RJhh4tCDKSx6YEC6J48TJyCMVDMBAgW6RXxVV24BIyu_HdtyqEixsGRwp8n2--y7nuw_gTNFAR6EaYZIIgmkSUJwxSfBIqJBqO_THFdrvntnjML3N7Zici2UvjNbaXT7TPfvoavnqQ87tr7JLkxqQhNEWtFiWNr1ay4qBHZPSXKbPDGNMh76CGQbZ5SB_vTGZICE9g14WWmnvlRjkRFV-eWIXXvrb__uwHdjyNBJdNXbfhTVdtmF7IdGA_Iltw-bKvME2bFhq2Uxm7gDPy0rPxFQj14TbCO8YNKL828MRvY3rd3Q9NoFOoefJeDrFfbcK3Ze2bbC2iEGG9aIH41LwgFcT9GRc0Mz3du7BSz8f3NxhL7iAJaFxjVMhEj6SIZWBFkzyWFCZEMEiFag05iTlTNNMpSxKAi0VJU5WQiimuC3gyGgf1suPUh8AkjQMI4OOLGPcZOAGr8IwzzSINeEjwwm6cL4wQfHZzNUoXD4SZIW1V2HtVXh7daFj93y50G93F44XRiv8yasKk0Da3ltD8w7_fusINqxkfHMl5RjW66-5PoFWpeanDlE_oZHJtQ
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADSwFRVh84IQyJ48TJkSVVKwocKMst8lZRtU0Rbfl-bMetkODCLQdHijzPM28ynnkAp4oGOgpVF5NEEEyTgOKMSYK7QoVU26E_rtDefGIPb-ltbsfknM97YbTW7vKZvrCPrpavRnJqf5VdmtSAJIwuwnJMWcKqbq15zcAOSqmu02eGM6ZvvoYZBtllJ3-5MbkgIRcGvyy04t4_opCTVfnli12AaWz879M2Yd0TSXRVWX4LFnRZg42ZSAPyZ7YGaz8mDtZg1ZLLajbzNvC8HOuhGGjk2nAr6R2DR5R_eUCi197kHV33TKhT6KnfGwxww61CrdI2Dk4sZpDhvejeOBXc4eM-ejROaOi7O3fguZF3bprYSy5gSWg8wakQCe_KkMpACyZ5LKhMiGCRClQac5JypmmmUhYlgZaKEicsIRRT3JZwZLQLS-Wo1HuAJA3DyOAjyxg3ObhBrDDcMw1iTXjXsII6nM1MUHxUkzUKl5EEWWHtVVh7Fd5eddi2ez5f6Le7DoczoxX-7I0Lk0La7ltD9Pb_fusEVpqd-3bRbj3cHcCqFZCvLqgcwtLkc6qPYHGspscOXd9mts0G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Multifactorial+Evolution+With+Biased+Skill-Factor+Inheritance+for+Many-Task+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Huynh+Thi+Thanh%2C+Binh&rft.au=Van+Cuong%2C+Le&rft.au=Thang%2C+Ta+Bao&rft.au=Long%2C+Nguyen+Hoang&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1735&rft.epage=1749&rft_id=info:doi/10.1109%2FTEVC.2022.3227120&rft.externalDocID=9982674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon