Kinetic study of paraquat adsorption on alginate beads loaded with montmorillonite using shrinking core model

Water contamination by pesticides threatens clean water availability, highlighting the need for advanced sustainable sanitation systems. Adsorption using biopolymers and minerals is prominent. Understanding process kinetics and influencing parameters is crucial for optimizing contaminant-adsorbent c...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules Vol. 281; no. Pt 4; p. 136515
Main Authors: Etcheverry, Mariana, Zanini, Graciela P.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-11-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water contamination by pesticides threatens clean water availability, highlighting the need for advanced sustainable sanitation systems. Adsorption using biopolymers and minerals is prominent. Understanding process kinetics and influencing parameters is crucial for optimizing contaminant-adsorbent contact time for safe water disposal. The adsorption kinetics of Paraquat (PQ) at three initial concentrations (C0 = 19, 38, and 50 ppm) were studied using alginate-montmorillonite (Alg-Mt) beads with varying clay contents and a 30-min gelation time. The beads were characterized by elemental analysis, TG/DTG, FTIR, XRD, SEM, and EDX. The Shrinking Core Model (SCM) was applied to the experimental data to determine if the diffusion of PQ within the beads depended on clay content. The effective diffusion coefficient (Dp) in the adsorbent increased from 7 × 10−12 to 1 × 10−10 m2 s−1 with increasing clay content, suggesting that diffusion into the interior depended on interaction with the mineral. This investigation also demonstrated that the synthesis of beads at different gelation times does not impact either the adsorption capacity or the adsorption rate of the herbicide on the materials. These results indicate that diffusion depends solely on the interaction of the cationic herbicide with the clay encapsulated within the bead hydrogel. •Eco-friendly materials for the retention of cationic pesticides•Paraquat adsorption kinetics in alginate-clay beads•Influence of gelation time on adsorption kinetics•Diffusion coefficient estimation by Shrinking Core Model•Effect of clay content on PQ diffusion in the bead
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.136515