On the Use of Reinforcement Learning for Attacking and Defending Load Frequency Control
The electric grid is an attractive target for cyberattackers given its critical nature in society. With the increasing sophistication of cyberattacks, effective grid defense will benefit from proactively identifying vulnerabilities and attack strategies. We develop a deep reinforcement learning-base...
Saved in:
Published in: | IEEE transactions on smart grid Vol. 15; no. 3; pp. 3262 - 3277 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-05-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The electric grid is an attractive target for cyberattackers given its critical nature in society. With the increasing sophistication of cyberattacks, effective grid defense will benefit from proactively identifying vulnerabilities and attack strategies. We develop a deep reinforcement learning-based method that recognizes vulnerabilities in load frequency control, an essential process that maintains grid security and reliability. We demonstrate how our method can synthesize a variety of attacks involving false data injection and load switching, while specifying the attack and threat models - providing insight into potential attack strategies and impact. We discuss how our approach can be employed for testing electric grid vulnerabilities. Moreover our method can be employed to generate data to inform the design of defense strategies and develop attack detection methods. For this, we design and compare a (deep learning-based) supervised attack detector with an unsupervised anomaly detector to highlight the benefits of developing defense strategies based on identified attack strategies. |
---|---|
AbstractList | The electric grid is an attractive target for cyberattackers given its critical nature in society. With the increasing sophistication of cyberattacks, effective grid defense will benefit from proactively identifying vulnerabilities and attack strategies. We develop a deep reinforcement learning-based method that recognizes vulnerabilities in load frequency control, an essential process that maintains grid security and reliability. We demonstrate how our method can synthesize a variety of attacks involving false data injection and load switching, while specifying the attack and threat models – providing insight into potential attack strategies and impact. We discuss how our approach can be employed for testing electric grid vulnerabilities. Moreover our method can be employed to generate data to inform the design of defense strategies and develop attack detection methods. For this, we design and compare a (deep learning-based) supervised attack detector with an unsupervised anomaly detector to highlight the benefits of developing defense strategies based on identified attack strategies. |
Author | Kundur, Deepa Mohamed, Amr S. |
Author_xml | – sequence: 1 givenname: Amr S. orcidid: 0000-0001-6812-4200 surname: Mohamed fullname: Mohamed, Amr S. email: amr.mohamed@mail.utoronto.ca organization: Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada – sequence: 2 givenname: Deepa orcidid: 0000-0001-5999-1847 surname: Kundur fullname: Kundur, Deepa email: dkundur@ece.utoronto.ca organization: Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada |
BookMark | eNpNkE1LAzEQhoNUsNbePXgIeN6aZJL9OJZqq7BQ0BaPISazurVNanZ76L93lxZxLjPv8M4HzzUZ-OCRkFvOJpyz4mH1tpgIJmACIIEzdkGGvJBFAizlg79awRUZN82GdQEAqSiG5H3pafuFdN0gDRV9xdpXIVrcoW9piSb62n_SrkWnbWvsd6-Md_QRK_SuV2Uwjs4j_hzQ2yOdBd_GsL0hl5XZNjg-5xFZz59Ws-ekXC5eZtMysUKqNhGWicrlrlAfOUcrhcqEKoyUWcFRmNy4zAjIsCqQKzDOSAcst5lxylkhJIzI_WnvPobug6bVm3CIvjupgUmZCsHTvHOxk8vG0DQRK72P9c7Eo-ZM9wR1R1D3BPWZYDdydxqpEfGfHVImVQq_ylZtPg |
CODEN | ITSGBQ |
Cites_doi | 10.1109/TIE.2019.2944091 10.1109/TSG.2017.2661307 10.1109/TSG.2011.2160297 10.1109/ICCPS.2016.7479109 10.1109/MELE.2020.3026496 10.1109/ICDSP.2018.8631857 10.1109/TPWRS.2013.2266441 10.3390/en14010027 10.1109/TSP.2014.2385670 10.1109/ACCESS.2018.2845300 10.1109/TSG.2020.3010510 10.1109/IJCNN.2018.8489202 10.1016/j.tej.2017.02.006 10.1109/tsg.2023.3272632 10.1109/TSG.2022.3145633 10.1109/TIFS.2016.2607701 10.1109/TSG.2022.3206717 10.1109/TNNLS.2018.2885530 10.1109/ieeestd.2018.8332112 10.1109/ACC.2010.5530460 10.1109/TSG.2018.2790704 10.1109/TII.2020.2994977 10.1109/JSYST.2019.2911869 10.1109/TPWRS.2018.2829743 10.1109/TSG.2021.3080693 10.1109/TSG.2020.3011391 10.1109/TSG.2017.2666046 10.1109/JIOT.2020.3021429 10.1109/TPWRS.2014.2321287 10.1109/TIFS.2023.3305868 10.1109/TSG.2017.2703842 10.1109/SSCI.2017.8285291 10.1109/TNNLS.2015.2404803 10.23919/ChiCC.2018.8483623 10.3390/en13153860 10.1109/TCYB.2020.2969320 10.1109/TSG.2014.2382714 10.2172/1337873 10.1109/TPEL.2021.3132028 10.1109/TPWRS.2020.3020870 10.1016/j.ijepes.2021.107784 10.14722/ndss.2017.23313 10.1109/TPWRS.2016.2645662 10.1016/j.comnet.2007.02.001 10.1007/978-981-15-1063-2_9 10.1109/TSG.2014.2298195 10.1109/TSG.2021.3083696 10.1109/TII.2017.2765313 10.2172/1090210 10.1109/TSG.2018.2872120 10.1016/c2009-0-63095-6 10.1109/SmartGridComm.2015.7436348 10.1109/TIFS.2017.2676721 10.1109/JAS.2021.1004261 10.1109/TII.2018.2825243 10.1049/iet-stg.2020.0015 10.1109/TSG.2022.3159842 10.1109/TII.2019.2957828 10.1201/9781420009248.sec2 10.1109/TSG.2016.2622686 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TSG.2023.3343100 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1949-3061 |
EndPage | 3277 |
ExternalDocumentID | 10_1109_TSG_2023_3343100 10360456 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACIWK AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RIG RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c245t-2c02fd8d95b81ec4257259a44791e2a8ad7a237ef9e153ada4d308c7ad5dc2243 |
IEDL.DBID | RIE |
ISSN | 1949-3053 |
IngestDate | Sun Nov 17 10:11:16 EST 2024 Fri Aug 23 01:40:03 EDT 2024 Wed Jun 26 19:39:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-2c02fd8d95b81ec4257259a44791e2a8ad7a237ef9e153ada4d308c7ad5dc2243 |
ORCID | 0000-0001-6812-4200 0000-0001-5999-1847 |
PQID | 3044622168 |
PQPubID | 2040408 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TSG_2023_3343100 ieee_primary_10360456 proquest_journals_3044622168 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on smart grid |
PublicationTitleAbbrev | TSG |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref59 ref14 ref58 Baumeister (ref3) 2010; 650 ref53 ref52 ref11 ref10 (ref1) 2007 ref17 ref16 ref19 ref18 ref50 Ng (ref68); 99 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 (ref57) 2018 ref6 ref5 ref40 ref35 ref34 Sutton (ref51) 2018 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 (ref54) 2019 Lee (ref2) 2010 ref24 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 (ref55) 2021 ref60 ref62 ref61 (ref56) 2009 |
References_xml | – ident: ref15 doi: 10.1109/TIE.2019.2944091 – ident: ref26 doi: 10.1109/TSG.2017.2661307 – ident: ref49 doi: 10.1109/TSG.2011.2160297 – ident: ref42 doi: 10.1109/ICCPS.2016.7479109 – ident: ref64 doi: 10.1109/MELE.2020.3026496 – ident: ref30 doi: 10.1109/ICDSP.2018.8631857 – ident: ref61 doi: 10.1109/TPWRS.2013.2266441 – ident: ref65 doi: 10.3390/en14010027 – volume-title: The NETL Modern Grid Initiative Powering our 21st-Century Economy: Barriers to Achieving the Modern Grid year: 2007 ident: ref1 – ident: ref27 doi: 10.1109/TSP.2014.2385670 – ident: ref39 doi: 10.1109/ACCESS.2018.2845300 – ident: ref6 doi: 10.1109/TSG.2020.3010510 – ident: ref21 doi: 10.1109/IJCNN.2018.8489202 – ident: ref4 doi: 10.1016/j.tej.2017.02.006 – ident: ref67 doi: 10.1109/tsg.2023.3272632 – ident: ref9 doi: 10.1109/TSG.2022.3145633 – year: 2019 ident: ref54 article-title: Actions needed to address significant cybersecurity risks facing the electric grid – ident: ref18 doi: 10.1109/TIFS.2016.2607701 – ident: ref41 doi: 10.1109/TSG.2022.3206717 – ident: ref22 doi: 10.1109/TNNLS.2018.2885530 – volume-title: National Strategy for Critical Infrastructure year: 2009 ident: ref56 – ident: ref58 doi: 10.1109/ieeestd.2018.8332112 – ident: ref17 doi: 10.1109/ACC.2010.5530460 – ident: ref23 doi: 10.1109/TSG.2018.2790704 – ident: ref20 doi: 10.1109/TII.2020.2994977 – ident: ref50 doi: 10.1109/JSYST.2019.2911869 – ident: ref37 doi: 10.1109/TPWRS.2018.2829743 – year: 2010 ident: ref2 article-title: Guidelines for smart grid cyber security: Vol. 1, smart grid cyber security strategy, architecture, and high-level requirements contributor: fullname: Lee – ident: ref44 doi: 10.1109/TSG.2021.3080693 – ident: ref7 doi: 10.1109/TSG.2020.3011391 – ident: ref46 doi: 10.1109/TSG.2017.2666046 – ident: ref36 doi: 10.1109/JIOT.2020.3021429 – ident: ref63 doi: 10.1109/TPWRS.2014.2321287 – ident: ref40 doi: 10.1109/TIFS.2023.3305868 – ident: ref12 doi: 10.1109/TSG.2017.2703842 – ident: ref19 doi: 10.1109/SSCI.2017.8285291 – ident: ref11 doi: 10.1109/TNNLS.2015.2404803 – ident: ref29 doi: 10.23919/ChiCC.2018.8483623 – ident: ref25 doi: 10.3390/en13153860 – volume: 650 volume-title: Literature Review on Smart Grid Cyber Security year: 2010 ident: ref3 contributor: fullname: Baumeister – ident: ref28 doi: 10.1109/TCYB.2020.2969320 – volume: 99 start-page: 278 volume-title: Proc. 16th ICML ident: ref68 article-title: Policy invariance under reward transformations: Theory and application to reward shaping contributor: fullname: Ng – ident: ref5 doi: 10.1109/TSG.2014.2382714 – ident: ref33 doi: 10.2172/1337873 – year: 2021 ident: ref55 article-title: DOE needs to ensure its plans fully address risks to distribution systems – ident: ref24 doi: 10.1109/TPEL.2021.3132028 – ident: ref8 doi: 10.1109/TPWRS.2020.3020870 – ident: ref59 doi: 10.1016/j.ijepes.2021.107784 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: ref51 contributor: fullname: Sutton – ident: ref52 doi: 10.14722/ndss.2017.23313 – ident: ref62 doi: 10.1109/TPWRS.2016.2645662 – ident: ref69 doi: 10.1016/j.comnet.2007.02.001 – ident: ref66 doi: 10.1007/978-981-15-1063-2_9 – ident: ref35 doi: 10.1109/TSG.2014.2298195 – ident: ref47 doi: 10.1109/TSG.2021.3083696 – ident: ref14 doi: 10.1109/TII.2017.2765313 – ident: ref34 doi: 10.2172/1090210 – ident: ref38 doi: 10.1109/TSG.2018.2872120 – ident: ref32 doi: 10.1016/c2009-0-63095-6 – ident: ref45 doi: 10.1109/SmartGridComm.2015.7436348 – ident: ref53 doi: 10.1109/TIFS.2017.2676721 – ident: ref60 doi: 10.1109/JAS.2021.1004261 – ident: ref13 doi: 10.1109/TII.2018.2825243 – volume-title: National Cyber Security Strategy year: 2018 ident: ref57 – ident: ref10 doi: 10.1049/iet-stg.2020.0015 – ident: ref16 doi: 10.1109/TSG.2022.3159842 – ident: ref43 doi: 10.1109/TII.2019.2957828 – ident: ref31 doi: 10.1201/9781420009248.sec2 – ident: ref48 doi: 10.1109/TSG.2016.2622686 |
SSID | ssj0000333629 |
Score | 2.4562283 |
Snippet | The electric grid is an attractive target for cyberattackers given its critical nature in society. With the increasing sophistication of cyberattacks,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 3262 |
SubjectTerms | anomaly detection autoencoder Computer crime cyber-physical security Deep learning Frequency control Frequency measurement Power measurement power system Power system dynamics Reinforcement learning Security Transmission line measurements |
Title | On the Use of Reinforcement Learning for Attacking and Defending Load Frequency Control |
URI | https://ieeexplore.ieee.org/document/10360456 https://www.proquest.com/docview/3044622168 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTjDwLKJQkAcWhpTUdmJ7rPqgAwKJtoItcu0LW4radODfYzspKkIMbFEUR5bPd_fdG-DWJFILrWwkmcWIp7GJFDU8cmBY6VSl3MS-UHgyFU9vcjjybXKi71oYRAzJZ9j1jyGWb5dm411ljsNZ6iFIAxpCyapY69uhEjPmhLEKUWTu4_kJ24YlY3U_mz50_aTwLmPc-7R_qKEwV-WXMA4aZnz0z70dw2ENJUm_ov0J7GFxCgc7DQbP4PW5IA7hkfkayTInLxj6pJrgEiR1a9V34l6Rfllq493mRBeWDDHHUO5CHpfakvGqSrj-JIMqs70F8_FoNphE9SiFyFCelBE1Mc2ttCpZyB4az6jO7tGcC9VDqqW2QlMmMFfoRKC2mlsWSyO0TaxxWp6dQ7NYFngBxG3AmdSLJHdAkC8MVxI9cKLCuEtJmW7D3fZks4-qY0YWLI1YZY4KmadCVlOhDS1_kjvfVYfYhs6WFlnNU-uM-dgzpb1UXv6x7Ar23d95lY_YgWa52uA1NNZ2cxPuyhdiNLrh |
link.rule.ids | 315,782,786,798,27935,27936,54770 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6JQwAMLQ0pqO7E9VkApooBEi2CLXPvClqI-Bv49tpNWRYiBLYpixfL57r57A1yYRGqhlY0ksxjxNDaRooZHDgwrnaqUm9gXCnf74uld3tz6NjnRohYGEUPyGTb9Y4jl25GZeVeZ43CWegiyCmsJFyIuy7UWLpWYMSeOVYgjcx_RT9g8MBmrq0H_rulnhTcZ496r_UMRhckqv8Rx0DGd7X_ubge2KjBJ2iX1d2EFiz3YXGoxuA9vzwVxGI-8TpCMcvKCoVOqCU5BUjVX_SDuFWlPp9p4xznRhSU3mGMoeCG9kbakMy5Trr_IdZnbfgCvndvBdTeqhilEhvJkGlET09xKq5KhbKHxrOosH825UC2kWmorNGUCc4VOCGqruWWxNELbxBqn59kh1IpRgUdA3AacUT1McgcF-dBwJdFDJyqMu5aU6Tpczk82-yx7ZmTB1ohV5qiQeSpkFRXqcOBPcum78hDr0JjTIqu4apIxH32mtJXK4z-WncN6d_DYy3r3Tw8nsOH-xMvsxAbUpuMZnsLqxM7Owr35BllLviw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Use+of+Reinforcement+Learning+for+Attacking+and+Defending+Load+Frequency+Control&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Mohamed%2C+Amr+S.&rft.au=Kundur%2C+Deepa&rft.date=2024-05-01&rft.pub=IEEE&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=15&rft.issue=3&rft.spage=3262&rft.epage=3277&rft_id=info:doi/10.1109%2FTSG.2023.3343100&rft.externalDocID=10360456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |