On the Use of Reinforcement Learning for Attacking and Defending Load Frequency Control

The electric grid is an attractive target for cyberattackers given its critical nature in society. With the increasing sophistication of cyberattacks, effective grid defense will benefit from proactively identifying vulnerabilities and attack strategies. We develop a deep reinforcement learning-base...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid Vol. 15; no. 3; pp. 3262 - 3277
Main Authors: Mohamed, Amr S., Kundur, Deepa
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-05-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The electric grid is an attractive target for cyberattackers given its critical nature in society. With the increasing sophistication of cyberattacks, effective grid defense will benefit from proactively identifying vulnerabilities and attack strategies. We develop a deep reinforcement learning-based method that recognizes vulnerabilities in load frequency control, an essential process that maintains grid security and reliability. We demonstrate how our method can synthesize a variety of attacks involving false data injection and load switching, while specifying the attack and threat models - providing insight into potential attack strategies and impact. We discuss how our approach can be employed for testing electric grid vulnerabilities. Moreover our method can be employed to generate data to inform the design of defense strategies and develop attack detection methods. For this, we design and compare a (deep learning-based) supervised attack detector with an unsupervised anomaly detector to highlight the benefits of developing defense strategies based on identified attack strategies.
AbstractList The electric grid is an attractive target for cyberattackers given its critical nature in society. With the increasing sophistication of cyberattacks, effective grid defense will benefit from proactively identifying vulnerabilities and attack strategies. We develop a deep reinforcement learning-based method that recognizes vulnerabilities in load frequency control, an essential process that maintains grid security and reliability. We demonstrate how our method can synthesize a variety of attacks involving false data injection and load switching, while specifying the attack and threat models – providing insight into potential attack strategies and impact. We discuss how our approach can be employed for testing electric grid vulnerabilities. Moreover our method can be employed to generate data to inform the design of defense strategies and develop attack detection methods. For this, we design and compare a (deep learning-based) supervised attack detector with an unsupervised anomaly detector to highlight the benefits of developing defense strategies based on identified attack strategies.
Author Kundur, Deepa
Mohamed, Amr S.
Author_xml – sequence: 1
  givenname: Amr S.
  orcidid: 0000-0001-6812-4200
  surname: Mohamed
  fullname: Mohamed, Amr S.
  email: amr.mohamed@mail.utoronto.ca
  organization: Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: Deepa
  orcidid: 0000-0001-5999-1847
  surname: Kundur
  fullname: Kundur, Deepa
  email: dkundur@ece.utoronto.ca
  organization: Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
BookMark eNpNkE1LAzEQhoNUsNbePXgIeN6aZJL9OJZqq7BQ0BaPISazurVNanZ76L93lxZxLjPv8M4HzzUZ-OCRkFvOJpyz4mH1tpgIJmACIIEzdkGGvJBFAizlg79awRUZN82GdQEAqSiG5H3pafuFdN0gDRV9xdpXIVrcoW9piSb62n_SrkWnbWvsd6-Md_QRK_SuV2Uwjs4j_hzQ2yOdBd_GsL0hl5XZNjg-5xFZz59Ws-ekXC5eZtMysUKqNhGWicrlrlAfOUcrhcqEKoyUWcFRmNy4zAjIsCqQKzDOSAcst5lxylkhJIzI_WnvPobug6bVm3CIvjupgUmZCsHTvHOxk8vG0DQRK72P9c7Eo-ZM9wR1R1D3BPWZYDdydxqpEfGfHVImVQq_ylZtPg
CODEN ITSGBQ
Cites_doi 10.1109/TIE.2019.2944091
10.1109/TSG.2017.2661307
10.1109/TSG.2011.2160297
10.1109/ICCPS.2016.7479109
10.1109/MELE.2020.3026496
10.1109/ICDSP.2018.8631857
10.1109/TPWRS.2013.2266441
10.3390/en14010027
10.1109/TSP.2014.2385670
10.1109/ACCESS.2018.2845300
10.1109/TSG.2020.3010510
10.1109/IJCNN.2018.8489202
10.1016/j.tej.2017.02.006
10.1109/tsg.2023.3272632
10.1109/TSG.2022.3145633
10.1109/TIFS.2016.2607701
10.1109/TSG.2022.3206717
10.1109/TNNLS.2018.2885530
10.1109/ieeestd.2018.8332112
10.1109/ACC.2010.5530460
10.1109/TSG.2018.2790704
10.1109/TII.2020.2994977
10.1109/JSYST.2019.2911869
10.1109/TPWRS.2018.2829743
10.1109/TSG.2021.3080693
10.1109/TSG.2020.3011391
10.1109/TSG.2017.2666046
10.1109/JIOT.2020.3021429
10.1109/TPWRS.2014.2321287
10.1109/TIFS.2023.3305868
10.1109/TSG.2017.2703842
10.1109/SSCI.2017.8285291
10.1109/TNNLS.2015.2404803
10.23919/ChiCC.2018.8483623
10.3390/en13153860
10.1109/TCYB.2020.2969320
10.1109/TSG.2014.2382714
10.2172/1337873
10.1109/TPEL.2021.3132028
10.1109/TPWRS.2020.3020870
10.1016/j.ijepes.2021.107784
10.14722/ndss.2017.23313
10.1109/TPWRS.2016.2645662
10.1016/j.comnet.2007.02.001
10.1007/978-981-15-1063-2_9
10.1109/TSG.2014.2298195
10.1109/TSG.2021.3083696
10.1109/TII.2017.2765313
10.2172/1090210
10.1109/TSG.2018.2872120
10.1016/c2009-0-63095-6
10.1109/SmartGridComm.2015.7436348
10.1109/TIFS.2017.2676721
10.1109/JAS.2021.1004261
10.1109/TII.2018.2825243
10.1049/iet-stg.2020.0015
10.1109/TSG.2022.3159842
10.1109/TII.2019.2957828
10.1201/9781420009248.sec2
10.1109/TSG.2016.2622686
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2023.3343100
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 3277
ExternalDocumentID 10_1109_TSG_2023_3343100
10360456
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c245t-2c02fd8d95b81ec4257259a44791e2a8ad7a237ef9e153ada4d308c7ad5dc2243
IEDL.DBID RIE
ISSN 1949-3053
IngestDate Sun Nov 17 10:11:16 EST 2024
Fri Aug 23 01:40:03 EDT 2024
Wed Jun 26 19:39:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-2c02fd8d95b81ec4257259a44791e2a8ad7a237ef9e153ada4d308c7ad5dc2243
ORCID 0000-0001-6812-4200
0000-0001-5999-1847
PQID 3044622168
PQPubID 2040408
PageCount 16
ParticipantIDs crossref_primary_10_1109_TSG_2023_3343100
ieee_primary_10360456
proquest_journals_3044622168
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref59
ref14
ref58
Baumeister (ref3) 2010; 650
ref53
ref52
ref11
ref10
(ref1) 2007
ref17
ref16
ref19
ref18
ref50
Ng (ref68); 99
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
(ref57) 2018
ref6
ref5
ref40
ref35
ref34
Sutton (ref51) 2018
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
(ref54) 2019
Lee (ref2) 2010
ref24
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
(ref55) 2021
ref60
ref62
ref61
(ref56) 2009
References_xml – ident: ref15
  doi: 10.1109/TIE.2019.2944091
– ident: ref26
  doi: 10.1109/TSG.2017.2661307
– ident: ref49
  doi: 10.1109/TSG.2011.2160297
– ident: ref42
  doi: 10.1109/ICCPS.2016.7479109
– ident: ref64
  doi: 10.1109/MELE.2020.3026496
– ident: ref30
  doi: 10.1109/ICDSP.2018.8631857
– ident: ref61
  doi: 10.1109/TPWRS.2013.2266441
– ident: ref65
  doi: 10.3390/en14010027
– volume-title: The NETL Modern Grid Initiative Powering our 21st-Century Economy: Barriers to Achieving the Modern Grid
  year: 2007
  ident: ref1
– ident: ref27
  doi: 10.1109/TSP.2014.2385670
– ident: ref39
  doi: 10.1109/ACCESS.2018.2845300
– ident: ref6
  doi: 10.1109/TSG.2020.3010510
– ident: ref21
  doi: 10.1109/IJCNN.2018.8489202
– ident: ref4
  doi: 10.1016/j.tej.2017.02.006
– ident: ref67
  doi: 10.1109/tsg.2023.3272632
– ident: ref9
  doi: 10.1109/TSG.2022.3145633
– year: 2019
  ident: ref54
  article-title: Actions needed to address significant cybersecurity risks facing the electric grid
– ident: ref18
  doi: 10.1109/TIFS.2016.2607701
– ident: ref41
  doi: 10.1109/TSG.2022.3206717
– ident: ref22
  doi: 10.1109/TNNLS.2018.2885530
– volume-title: National Strategy for Critical Infrastructure
  year: 2009
  ident: ref56
– ident: ref58
  doi: 10.1109/ieeestd.2018.8332112
– ident: ref17
  doi: 10.1109/ACC.2010.5530460
– ident: ref23
  doi: 10.1109/TSG.2018.2790704
– ident: ref20
  doi: 10.1109/TII.2020.2994977
– ident: ref50
  doi: 10.1109/JSYST.2019.2911869
– ident: ref37
  doi: 10.1109/TPWRS.2018.2829743
– year: 2010
  ident: ref2
  article-title: Guidelines for smart grid cyber security: Vol. 1, smart grid cyber security strategy, architecture, and high-level requirements
  contributor:
    fullname: Lee
– ident: ref44
  doi: 10.1109/TSG.2021.3080693
– ident: ref7
  doi: 10.1109/TSG.2020.3011391
– ident: ref46
  doi: 10.1109/TSG.2017.2666046
– ident: ref36
  doi: 10.1109/JIOT.2020.3021429
– ident: ref63
  doi: 10.1109/TPWRS.2014.2321287
– ident: ref40
  doi: 10.1109/TIFS.2023.3305868
– ident: ref12
  doi: 10.1109/TSG.2017.2703842
– ident: ref19
  doi: 10.1109/SSCI.2017.8285291
– ident: ref11
  doi: 10.1109/TNNLS.2015.2404803
– ident: ref29
  doi: 10.23919/ChiCC.2018.8483623
– ident: ref25
  doi: 10.3390/en13153860
– volume: 650
  volume-title: Literature Review on Smart Grid Cyber Security
  year: 2010
  ident: ref3
  contributor:
    fullname: Baumeister
– ident: ref28
  doi: 10.1109/TCYB.2020.2969320
– volume: 99
  start-page: 278
  volume-title: Proc. 16th ICML
  ident: ref68
  article-title: Policy invariance under reward transformations: Theory and application to reward shaping
  contributor:
    fullname: Ng
– ident: ref5
  doi: 10.1109/TSG.2014.2382714
– ident: ref33
  doi: 10.2172/1337873
– year: 2021
  ident: ref55
  article-title: DOE needs to ensure its plans fully address risks to distribution systems
– ident: ref24
  doi: 10.1109/TPEL.2021.3132028
– ident: ref8
  doi: 10.1109/TPWRS.2020.3020870
– ident: ref59
  doi: 10.1016/j.ijepes.2021.107784
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref51
  contributor:
    fullname: Sutton
– ident: ref52
  doi: 10.14722/ndss.2017.23313
– ident: ref62
  doi: 10.1109/TPWRS.2016.2645662
– ident: ref69
  doi: 10.1016/j.comnet.2007.02.001
– ident: ref66
  doi: 10.1007/978-981-15-1063-2_9
– ident: ref35
  doi: 10.1109/TSG.2014.2298195
– ident: ref47
  doi: 10.1109/TSG.2021.3083696
– ident: ref14
  doi: 10.1109/TII.2017.2765313
– ident: ref34
  doi: 10.2172/1090210
– ident: ref38
  doi: 10.1109/TSG.2018.2872120
– ident: ref32
  doi: 10.1016/c2009-0-63095-6
– ident: ref45
  doi: 10.1109/SmartGridComm.2015.7436348
– ident: ref53
  doi: 10.1109/TIFS.2017.2676721
– ident: ref60
  doi: 10.1109/JAS.2021.1004261
– ident: ref13
  doi: 10.1109/TII.2018.2825243
– volume-title: National Cyber Security Strategy
  year: 2018
  ident: ref57
– ident: ref10
  doi: 10.1049/iet-stg.2020.0015
– ident: ref16
  doi: 10.1109/TSG.2022.3159842
– ident: ref43
  doi: 10.1109/TII.2019.2957828
– ident: ref31
  doi: 10.1201/9781420009248.sec2
– ident: ref48
  doi: 10.1109/TSG.2016.2622686
SSID ssj0000333629
Score 2.4562283
Snippet The electric grid is an attractive target for cyberattackers given its critical nature in society. With the increasing sophistication of cyberattacks,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 3262
SubjectTerms anomaly detection
autoencoder
Computer crime
cyber-physical security
Deep learning
Frequency control
Frequency measurement
Power measurement
power system
Power system dynamics
Reinforcement learning
Security
Transmission line measurements
Title On the Use of Reinforcement Learning for Attacking and Defending Load Frequency Control
URI https://ieeexplore.ieee.org/document/10360456
https://www.proquest.com/docview/3044622168
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTjDwLKJQkAcWhpTUdmJ7rPqgAwKJtoItcu0LW4radODfYzspKkIMbFEUR5bPd_fdG-DWJFILrWwkmcWIp7GJFDU8cmBY6VSl3MS-UHgyFU9vcjjybXKi71oYRAzJZ9j1jyGWb5dm411ljsNZ6iFIAxpCyapY69uhEjPmhLEKUWTu4_kJ24YlY3U_mz50_aTwLmPc-7R_qKEwV-WXMA4aZnz0z70dw2ENJUm_ov0J7GFxCgc7DQbP4PW5IA7hkfkayTInLxj6pJrgEiR1a9V34l6Rfllq493mRBeWDDHHUO5CHpfakvGqSrj-JIMqs70F8_FoNphE9SiFyFCelBE1Mc2ttCpZyB4az6jO7tGcC9VDqqW2QlMmMFfoRKC2mlsWSyO0TaxxWp6dQ7NYFngBxG3AmdSLJHdAkC8MVxI9cKLCuEtJmW7D3fZks4-qY0YWLI1YZY4KmadCVlOhDS1_kjvfVYfYhs6WFlnNU-uM-dgzpb1UXv6x7Ar23d95lY_YgWa52uA1NNZ2cxPuyhdiNLrh
link.rule.ids 315,782,786,798,27935,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6JQwAMLQ0pqO7E9VkApooBEi2CLXPvClqI-Bv49tpNWRYiBLYpixfL57r57A1yYRGqhlY0ksxjxNDaRooZHDgwrnaqUm9gXCnf74uld3tz6NjnRohYGEUPyGTb9Y4jl25GZeVeZ43CWegiyCmsJFyIuy7UWLpWYMSeOVYgjcx_RT9g8MBmrq0H_rulnhTcZ496r_UMRhckqv8Rx0DGd7X_ubge2KjBJ2iX1d2EFiz3YXGoxuA9vzwVxGI-8TpCMcvKCoVOqCU5BUjVX_SDuFWlPp9p4xznRhSU3mGMoeCG9kbakMy5Trr_IdZnbfgCvndvBdTeqhilEhvJkGlET09xKq5KhbKHxrOosH825UC2kWmorNGUCc4VOCGqruWWxNELbxBqn59kh1IpRgUdA3AacUT1McgcF-dBwJdFDJyqMu5aU6Tpczk82-yx7ZmTB1ohV5qiQeSpkFRXqcOBPcum78hDr0JjTIqu4apIxH32mtJXK4z-WncN6d_DYy3r3Tw8nsOH-xMvsxAbUpuMZnsLqxM7Owr35BllLviw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Use+of+Reinforcement+Learning+for+Attacking+and+Defending+Load+Frequency+Control&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Mohamed%2C+Amr+S.&rft.au=Kundur%2C+Deepa&rft.date=2024-05-01&rft.pub=IEEE&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=15&rft.issue=3&rft.spage=3262&rft.epage=3277&rft_id=info:doi/10.1109%2FTSG.2023.3343100&rft.externalDocID=10360456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon