Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation
Introduction Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments a...
Saved in:
Published in: | Precision agriculture Vol. 25; no. 6; pp. 2881 - 2902 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-12-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Introduction
Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras.
Materials and methods
In this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms.
Results and conclusion
The high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics. |
---|---|
AbstractList | Introduction
Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras.
Materials and methods
In this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms.
Results and conclusion
The high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics. IntroductionService robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras.Materials and methodsIn this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms.Results and conclusionThe high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics. |
Author | Navone, Alessandro Tuberga, Brenno Chiaberge, Marcello Ambrosio, Marco Martini, Mauro |
Author_xml | – sequence: 1 givenname: Mauro orcidid: 0000-0002-6204-3845 surname: Martini fullname: Martini, Mauro email: mauro.martini@polito.it organization: Department of Electronics and Telecommunications, Politecnico di Torino – sequence: 2 givenname: Marco surname: Ambrosio fullname: Ambrosio, Marco organization: Department of Electronics and Telecommunications, Politecnico di Torino – sequence: 3 givenname: Alessandro surname: Navone fullname: Navone, Alessandro organization: Department of Electronics and Telecommunications, Politecnico di Torino – sequence: 4 givenname: Brenno surname: Tuberga fullname: Tuberga, Brenno organization: Department of Electronics and Telecommunications, Politecnico di Torino – sequence: 5 givenname: Marcello surname: Chiaberge fullname: Chiaberge, Marcello organization: Department of Electronics and Telecommunications, Politecnico di Torino |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F8brNHKfUDBC96DsludpvSJjXJtvTfG7uCN-fyDsz7zDDvDEx88BaAW4LvCcaLh0RK1QhTjggmYoGqCzAtyhCpiJyUnkmBKBXVFZiltMG4YJxOgVn5tfaN8z08uDToLdRDDj7swpCg1wfX6-yCh87DGI7I6GRb2MSwT_Do8hrarrNNdgcL08nntc2uga3OGvbW23hmr8Flp7fJ3vzqHHw-rT6WL-jt_fl1-fiGGsp5RqaudNfShbF8wQhpcSWsFrISkgtuLOFlLmsmSUtFR03TSWyNkLVmvBaUGzYHd-PefQxfg01ZbcIQfTmpGKE1FoxhWlx0dJUnUoq2U_vodjqeFMHqJ0s1ZqlKluqcpaoKxEYoFbPvbfxb_Q_1DVkrea0 |
Cites_doi | 10.1016/j.compag.2018.01.009 10.1016/j.inpa.2023.02.001 10.3920/978-90-8686-947-3 10.26599/TST.2021.9010012 10.1016/j.compag.2017.12.001 10.1109/CVPR.2016.350 10.1109/LRA.2020.2965061 10.1016/j.patcog.2016.01.013 10.4060/cc0959en 10.3920/978-90-8686-947-3_56 10.1016/j.compag.2020.105812 10.3390/s19173796 10.1109/MetroAgriFor.2019.8909219 10.1109/IROS.2004.1389727 10.1109/CASE49997.2022.9926582 10.1038/s43016-021-00322-9 10.1109/ICCCR56747.2023.10193996 10.1016/j.eaef.2015.09.002 10.1007/978-3-030-73050-5_16 10.1109/IROS55552.2023.10341261 10.1109/IROS51168.2021.9635969 10.1016/j.compag.2021.106418 10.1016/j.compag.2020.105256 10.3389/fpls.2021.684328 10.1109/CVPR.2018.00474 10.1109/ICACCS.2019.8728415 10.1109/ACCESS.2020.2964608 10.1007/978-3-031-26422-1_13 10.1016/j.compag.2022.106977 10.1016/j.compag.2022.107593 10.1016/j.engappai.2018.09.011 10.1007/s10846-022-01793-z 10.1109/CVPR.2018.00745 10.22214/ijraset.2018.1146 10.3389/frai.2023.1213330 10.1109/ICCV.2019.00140 10.1109/ICCV51070.2023.00371 10.5935/1806-6690.20200084 10.1109/ACCESS.2020.3021739 10.1109/ECMR59166.2023.10256334 10.1023/A:1015678121948 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7ST C1K SOI |
DOI | 10.1007/s11119-024-10157-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Physics Computer Science |
EISSN | 1573-1618 |
EndPage | 2902 |
ExternalDocumentID | 10_1007_s11119_024_10157_6 |
GrantInformation_xml | – fundername: Politecnico di Torino |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 78A 7WY 7X2 7XC 88I 8FE 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EIOEI EJD ESBYG ESTFP ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAK LLZTM M0C M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOR QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR Z45 Z7R Z7U Z7V Z7W Z7Y Z83 ZMTXR ZOVNA ~KM AAYXX CITATION 7ST C1K SOI |
ID | FETCH-LOGICAL-c244t-b96afd27be47311d065ea58658454be1496a89381d25f2bcf80eb589a349524b3 |
IEDL.DBID | AEJHL |
ISSN | 1385-2256 |
IngestDate | Mon Nov 18 05:57:37 EST 2024 Fri Nov 22 01:22:30 EST 2024 Sun Nov 17 01:22:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Service robotics Autonomous navigation Synthetic data Deep semantic segmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c244t-b96afd27be47311d065ea58658454be1496a89381d25f2bcf80eb589a349524b3 |
ORCID | 0000-0002-6204-3845 |
OpenAccessLink | http://link.springer.com/10.1007/s11119-024-10157-6 |
PQID | 3129053302 |
PQPubID | 54630 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3129053302 crossref_primary_10_1007_s11119_024_10157_6 springer_journals_10_1007_s11119_024_10157_6 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal on Advances in Precision Agriculture |
PublicationTitle | Precision agriculture |
PublicationTitleAbbrev | Precision Agric |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Aghi, D., Cerrato, S., Mazzia, V., & Chiaberge, M. (2021). Deep semantic segmentation at the edge for autonomous navigation in vineyard rows. In 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3421–3428). https://doi.org/10.1109/IROS51168.2021.9635969 Loshchilov, I., & Hutter, F. (2018). Decoupled weight decay regularization. In International conference on learning representations (ICLR) Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017). arXiv:1706.05587 KesturRMeduriANarasipuraOMangonet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchardEngineering Applications of Artificial Intelligence201977596910.1016/j.engappai.2018.09.011 Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., & Lo, W.-Y. (2023). Segment anything. arXiv:2304.02643 Hu, J., Shen, L., & Sun, G.: Squeeze-and-excitation networks. In 2018 IEEE/CVF conference on computer vision and pattern recognition (pp. 7132–7141) (2018). https://doi.org/10.1109/CVPR.2018.00745 KabirMSNSongM-ZSungN-SChungS-OKimY-JNoguchiNHongS-JPerformance comparison of single and multi-GNSS receivers under agricultural fields in KoreaEngineering in Agriculture, Environment and Food201691273510.1016/j.eaef.2015.09.002 Liu, E., Monica, J., Gold, K., Cadle-Davidson, L., Combs, D., & Jiang, Y. (2023) Vision-based vineyard navigation solution with automatic annotation. arXiv:2303.14347 Van DijkMMorleyTRauMLSaghaiYA meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050Nature Food20212749450110.1038/s43016-021-00322-937117684 WangYHeZCaoDMaLLiKJiaLCuiYCoverage path planning for kiwifruit picking robots based on deep reinforcement learningComputers and Electronics in Agriculture202320510.1016/j.compag.2022.107593 PengHXueCShaoYChenKXiongJXieZZhangLSemantic segmentation of litchi branches using deeplabv3+ modelIEEE Access2020816454616455510.1109/ACCESS.2020.3021739 Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., & Le, Q. Searching for mobilenetv3. In 2019 IEEE/CVF international conference on computer vision (ICCV) (pp. 1314–1324). IEEE Computer Society, Los Alamitos, CA, USA (2019). https://doi.org/10.1109/ICCV.2019.00140 RenCKimD-KJeongDA survey of deep learning in agriculture: Techniques and their applicationsJournal of Information Processing Systems202016510151033 LuoZYangWYuanYGouRLiXSemantic segmentation of agricultural images: A surveyInformation Processing in Agriculture20231117218610.1016/j.inpa.2023.02.001 Comba, L., Biglia, A., Ricauda Aimonino, D., Barge, P., Tortia, C., & Gay, P. (2019). 2d and 3d data fusion for crop monitoring in precision agriculture. Proceedings of the IEEE (pp. 62–67). https://doi.org/10.1109/MetroAgriFor.2019.8909219 Navone, A., Martini, M., Ostuni, A., Angarano, S., & Chiaberge, M. (2023) Autonomous navigation in rows of trees and high crops with deep semantic segmentation. arXiv:2304.08988 ZhaiZMartínezJFBeltranVMartínezNLDecision support systems for agriculture 4.0 Survey and challengesComputers and Electronics in Agriculture202017010.1016/j.compag.2020.105256 Navone, A., Romanelli, F., Ambrosio, M., Martini, M., Angarano, S., & Chiaberge, M. (2023) Lavender autonomous navigation with semantic segmentation at the edge. arXiv:2309.06863 VidovićICupecRHocenskiŽCrop row detection by global energy minimizationPattern Recognition201655688610.1016/j.patcog.2016.01.013 Shruthi, U., Nagaveni, V., & Raghavendra, B.K. (2019). A review on machine learning classification techniques for plant disease detection. In 2019 5th international conference on advanced computing & communication systems (ICACCS) (pp. 281–284). https://doi.org/10.1109/ICACCS.2019.8728415 Stafford, J.V.: Precision Agriculture ’23. Wageningen Academic, Leiden, The Netherlands (2023). https://doi.org/10.3920/978-90-8686-947-3 FerentinosKPDeep learning models for plant disease detection and diagnosisComputers and Electronics in Agriculture201814531131810.1016/j.compag.2018.01.009 HäniNRoyPIslerVMinneapple: A benchmark dataset for apple detection and segmentationIEEE Robotics and Automation Letters20205285285810.1109/LRA.2020.2965061 Martini, M., Eirale, A., Tuberga, B., Ambrosio, M., Ostuni, A., Messina, F., Mazzara, L., & Chiaberge, M.: Enhancing navigation benchmarking and perception data generation for row-based crops in simulation (pp. 451–457). Wageningen Academic, Leiden, The Netherlands (2023). https://doi.org/10.3920/978-90-8686-947-3_56 SalvettiFAngaranoSMartiniMCerratoSChiabergeMAminiM-RCanuSFischerAGunsTKralj NovakPTsoumakasGWaypoint generation in row-based crops with deep learning and contrastive clusteringMachine Learning and Knowledge Discovery in Databases2023ChamSpringer20321810.1007/978-3-031-26422-1_13 Yépez-PonceDFSalcedoJVRosero-MontalvoPDSanchisJMobile robotics in smart farming: Current trends and applicationsFrontiers in Artificial Intelligence202310.3389/frai.2023.12133303771908210500442 BarthRJsselmuidenJHemmingJVan HentenEJData synthesis methods for semantic segmentation in agriculture: A Capsicum annuum datasetComputers and Electronics in Agriculture201814428429610.1016/j.compag.2017.12.001 ZhuKZhangTDeep reinforcement learning based mobile robot navigation: A reviewTsinghua Science and Technology202126567469110.26599/TST.2021.9010012 Megeto, G. A. S., Silva, A.G.D., Bulgarelli, R.F., Bublitz, C.F., Valente, A.C., & Costa, D.A.G.D. (2021). Artificial intelligence applications in the agriculture 4.0. Revista Ciência Agronômica, 51 Martini, M., Eirale, A., Cerrato, S., & Chiaberge, M.: Pic4rl-gym: A ROS2 modular framework for robots autonomous navigation with deep reinforcement learning. In 2023 3rd international conference on computer, control and robotics (ICCCR) (pp. 198–202) (2023). https://doi.org/10.1109/ICCCR56747.2023.10193996 ShafiUMumtazRGarcía-NietoJHassanSAZaidiSARIqbalNPrecision agriculture techniques and practices: From considerations to applicationsSensors201910.3390/s19173796314807096749385 Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No.04CH37566)(Vol. 3, pp. 2149–21543). https://doi.org/10.1109/IROS.2004.1389727 FAOThe future of food and agriculture–Drivers and triggers for transformationFAO202210.4060/cc0959en DroukasLDoulgeriZTsakiridisNLTriantafyllouDKleitsiotisIMariolisIGiakoumisDTzovarasDKaterisDBochtisDA survey of robotic harvesting systems and enabling technologiesJournal of Intelligent Robotic Systems202310.1007/s10846-022-01793-z367216469881528 Martini, M., Cerrato, S., Salvetti, F., Angarano, S., & Chiaberge, M. Position-agnostic autonomous navigation in vineyards with deep reinforcement learning. In 2022 IEEE 18th international conference on automation science and engineering (CASE) (pp. 477–484) (2022). https://doi.org/10.1109/CASE49997.2022.9926582 MazziaVKhaliqASalvettiFChiabergeMReal-time apple detection system using embedded systems with hardware accelerators: An edge AI applicationIEEE Access202089102911410.1109/ACCESS.2020.2964608 DeshmukhDPratiharDKDebAKRayHBhattacharyyaNAbrahamAHanneTCastilloOGandhiNNogueira RiosTHongT-PDesign and development of intelligent pesticide spraying system for agricultural robotHybrid Intelligent Systems2021ChamSpringer15717010.1007/978-3-030-73050-5_16 Sankhla, M.S., Kumari, M., Sharma, K., Kushwah, R., & Kumar, R. (2018). Water contamination through pesticide & their toxic effect on human health. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2018.1146 Cerrato, S., Mazzia, V., Salvetti, F., & Chiaberge, M.: A deep learning driven algorithmic pipeline for autonomous navigation in row-based crops (2021). arXiv:2112.03816 RaeiEAsanjanAANikooMRSadeghMPourshahabiSAdamowskiJFA deep learning image segmentation model for agricultural irrigation system classificationComputers and Electronics in Agriculture202219810.1016/j.compag.2022.106977 MaheswariPRajaPApolo-ApoloOEPérez-RuizMIntelligent fruit yield estimation for orchards using deep learning based semantic segmentation techniques—A reviewFrontiers in Plant Science202110.3389/fpls.2021.684328342490548267528 SongZZhangZYangSDingDNingJIdentifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imagingComputers and Electronics in Agriculture202017910.1016/j.compag.2020.105812 Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3213–3223) (2016). https://doi.org/10.1109/CVPR.2016.350 SuDKongHQiaoYSukkariehSData augmentation for deep learning based semantic segmentation and crop-weed classification in agricultural roboticsComputers and Electronics in Agriculture202119010.1016/j.compag.2021.106418 ThuilotBCariouCMartinetPBerducatMAutomatic guidance of a farm tractor relying on a single CP-DGPSAutonomous Robots2002131537110.1023/A:1015678121948 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.: Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 4510–4520). IEEE Computer Society, Los Alamitos, CA, USA (2018). https://doi.org/10.1109/CVPR.2018.00474 10157_CR13 U Shafi (10157_CR35) 2019 10157_CR36 10157_CR16 10157_CR38 I Vidović (10157_CR42) 2016; 55 V Mazzia (10157_CR25) 2020; 8 10157_CR33 10157_CR12 10157_CR34 MSN Kabir (10157_CR14) 2016; 9 H Peng (10157_CR29) 2020; 8 B Thuilot (10157_CR40) 2002; 13 Y Wang (10157_CR43) 2023; 205 N Häni (10157_CR11) 2020; 5 FAO (10157_CR9) 2022 C Ren (10157_CR31) 2020; 16 Z Zhai (10157_CR45) 2020; 170 10157_CR28 M Van Dijk (10157_CR41) 2021; 2 10157_CR24 10157_CR26 10157_CR27 KP Ferentinos (10157_CR10) 2018; 145 R Kestur (10157_CR15) 2019; 77 10157_CR22 10157_CR23 D Su (10157_CR39) 2021; 190 D Deshmukh (10157_CR7) 2021 Z Song (10157_CR37) 2020; 179 10157_CR1 Z Luo (10157_CR20) 2023; 11 DF Yépez-Ponce (10157_CR44) 2023 P Maheswari (10157_CR21) 2021 L Droukas (10157_CR8) 2023 K Zhu (10157_CR46) 2021; 26 E Raei (10157_CR30) 2022; 198 R Barth (10157_CR2) 2018; 144 F Salvetti (10157_CR32) 2023 10157_CR6 10157_CR5 10157_CR17 10157_CR4 10157_CR18 10157_CR3 10157_CR19 |
References_xml | – volume: 145 start-page: 311 year: 2018 ident: 10157_CR10 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.01.009 contributor: fullname: KP Ferentinos – volume: 11 start-page: 172 year: 2023 ident: 10157_CR20 publication-title: Information Processing in Agriculture doi: 10.1016/j.inpa.2023.02.001 contributor: fullname: Z Luo – ident: 10157_CR38 doi: 10.3920/978-90-8686-947-3 – volume: 26 start-page: 674 issue: 5 year: 2021 ident: 10157_CR46 publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2021.9010012 contributor: fullname: K Zhu – volume: 144 start-page: 284 year: 2018 ident: 10157_CR2 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.12.001 contributor: fullname: R Barth – ident: 10157_CR6 doi: 10.1109/CVPR.2016.350 – volume: 5 start-page: 852 issue: 2 year: 2020 ident: 10157_CR11 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2020.2965061 contributor: fullname: N Häni – volume: 55 start-page: 68 year: 2016 ident: 10157_CR42 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.01.013 contributor: fullname: I Vidović – year: 2022 ident: 10157_CR9 publication-title: FAO doi: 10.4060/cc0959en contributor: fullname: FAO – ident: 10157_CR24 doi: 10.3920/978-90-8686-947-3_56 – volume: 179 year: 2020 ident: 10157_CR37 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105812 contributor: fullname: Z Song – volume: 16 start-page: 1015 issue: 5 year: 2020 ident: 10157_CR31 publication-title: Journal of Information Processing Systems contributor: fullname: C Ren – year: 2019 ident: 10157_CR35 publication-title: Sensors doi: 10.3390/s19173796 contributor: fullname: U Shafi – ident: 10157_CR5 doi: 10.1109/MetroAgriFor.2019.8909219 – ident: 10157_CR17 doi: 10.1109/IROS.2004.1389727 – ident: 10157_CR22 doi: 10.1109/CASE49997.2022.9926582 – volume: 2 start-page: 494 issue: 7 year: 2021 ident: 10157_CR41 publication-title: Nature Food doi: 10.1038/s43016-021-00322-9 contributor: fullname: M Van Dijk – ident: 10157_CR23 doi: 10.1109/ICCCR56747.2023.10193996 – volume: 9 start-page: 27 issue: 1 year: 2016 ident: 10157_CR14 publication-title: Engineering in Agriculture, Environment and Food doi: 10.1016/j.eaef.2015.09.002 contributor: fullname: MSN Kabir – start-page: 157 volume-title: Hybrid Intelligent Systems year: 2021 ident: 10157_CR7 doi: 10.1007/978-3-030-73050-5_16 contributor: fullname: D Deshmukh – ident: 10157_CR18 doi: 10.1109/IROS55552.2023.10341261 – ident: 10157_CR4 – ident: 10157_CR1 doi: 10.1109/IROS51168.2021.9635969 – volume: 190 year: 2021 ident: 10157_CR39 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106418 contributor: fullname: D Su – volume: 170 year: 2020 ident: 10157_CR45 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105256 contributor: fullname: Z Zhai – year: 2021 ident: 10157_CR21 publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2021.684328 contributor: fullname: P Maheswari – ident: 10157_CR33 doi: 10.1109/CVPR.2018.00474 – ident: 10157_CR36 doi: 10.1109/ICACCS.2019.8728415 – volume: 8 start-page: 9102 year: 2020 ident: 10157_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964608 contributor: fullname: V Mazzia – start-page: 203 volume-title: Machine Learning and Knowledge Discovery in Databases year: 2023 ident: 10157_CR32 doi: 10.1007/978-3-031-26422-1_13 contributor: fullname: F Salvetti – ident: 10157_CR28 – volume: 198 year: 2022 ident: 10157_CR30 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2022.106977 contributor: fullname: E Raei – volume: 205 year: 2023 ident: 10157_CR43 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2022.107593 contributor: fullname: Y Wang – ident: 10157_CR19 – volume: 77 start-page: 59 year: 2019 ident: 10157_CR15 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2018.09.011 contributor: fullname: R Kestur – year: 2023 ident: 10157_CR8 publication-title: Journal of Intelligent Robotic Systems doi: 10.1007/s10846-022-01793-z contributor: fullname: L Droukas – ident: 10157_CR13 doi: 10.1109/CVPR.2018.00745 – ident: 10157_CR34 doi: 10.22214/ijraset.2018.1146 – year: 2023 ident: 10157_CR44 publication-title: Frontiers in Artificial Intelligence doi: 10.3389/frai.2023.1213330 contributor: fullname: DF Yépez-Ponce – ident: 10157_CR12 doi: 10.1109/ICCV.2019.00140 – ident: 10157_CR16 doi: 10.1109/ICCV51070.2023.00371 – ident: 10157_CR26 doi: 10.5935/1806-6690.20200084 – volume: 8 start-page: 164546 year: 2020 ident: 10157_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021739 contributor: fullname: H Peng – ident: 10157_CR3 – ident: 10157_CR27 doi: 10.1109/ECMR59166.2023.10256334 – volume: 13 start-page: 53 issue: 1 year: 2002 ident: 10157_CR40 publication-title: Autonomous Robots doi: 10.1023/A:1015678121948 contributor: fullname: B Thuilot |
SSID | ssj0010042 |
Score | 2.414338 |
Snippet | Introduction
Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions.... IntroductionService robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 2881 |
SubjectTerms | Agriculture Atmospheric Sciences Autonomous navigation Biomedical and Life Sciences Chemistry and Earth Sciences Computer Science Crops Datasets Image processing Image quality Image segmentation Life Sciences Physics Precision farming Remote Sensing/Photogrammetry Robot control Robotics Robust control Semantic segmentation Soil Science & Conservation Statistics for Engineering Synthetic data Virtual networks Visual control Visual fields Visual perception Visual perception driven algorithms |
Title | Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation |
URI | https://link.springer.com/article/10.1007/s11119-024-10157-6 https://www.proquest.com/docview/3129053302 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH44h6AHp1NxOiUHbxpZ06Y_jkM3p4gXFbyVpEnnEDJZV8H_3pesdSh60F56aBtK3pe87yXvfQE4kYppL-GCCpVkNAj9gEoWS6oRXTpSKstchdzoPrp7ii8HVibH_1y6MC_n9Y6km6iXtW54JRRdCs4cHo9o2IAm-h6O4G72Bzej28_NAwtEF2fFnCJcw6pW5udWvvqjJcn8ti_q3M2w9a8f3YLNil2S_gIO27CiTRs2-uNZpbCh29Cqz3Eg1bBuw5pLA82KHZAD82wFOMyYvE2KEpsS5dyWPUzLghjx5vQ4poZMDMHwnVoXqIg9BKwgdkGXLLJDcAIlxbtBaom_QWwOKhk7dWv77S48DgcPFyNancJAM3T9cyqTUOSKRVIHke95CjmLFjy2zIUHUmOEFQokPch7Gc-ZzPK4pyWPE-Fj7MUC6e_BqpkavQ8Ew5dMM5VEHkYxiA3JWeaL3BciyXPR63XgtLZF-roQ20iXssq2W1Ps1tR1axp2oFubK60GXpH6dl3NZsyyDpzV9lk-_r21g7-9fgjrzJnYJrZ0YXU-K_URNApVHldwtPfrh6vhB51Y20k |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCAEHlgKirD5wA0uNE2c5VtBSxHKhSNwiO3ZKLy5qGiT-nrGbEIHgALkmsSzPs-eNPfMMcCYV017CBRUqyWgQ-gGVLJZUI7p0pFSWuQq5wWP08Bxf9axMTlDXwrhs9_pI0q3UTbEbPglFn4JLh8cjGi7CcpCEAWJ5uXszvO5_nh5YJLpAK-YU8RpWxTI_t_LVITUs89vBqPM3_c3_9XQLNip-SbpzQGzDgjYtWO-OppXGhm7BZn2TA6kmdgtWXCJoVuyA7JkXK8FhRuRtXJTYlChntvBhUhbEiDenyDExZGwIBvDUOkFF7DVgBbFbumSeH4JLKCneDZJL7AaxWahk5PSt7b-78NTvDS8HtLqHgWbo_GdUJqHIFYukDiLf8xSyFi14bLkLD6TGGCsUSHuQ-TKeM5nlcUdLHifCx-iLBdLfgyUzMXofCAYwmWYqiTyMYxAdkrPMF7kvRJLnotNpw3ltjPR1LreRNsLKdlhTHNbUDWsatuGotldaTb0i9e3Oms2ZZW24qO3TvP69tYO_fX4Kq4Ph_V16d_NwewhrzJnbprkcwdJsWupjWCxUeVJh8wPrX92r |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEQgOLAVEWX3gBhaNsx8raFUWISRA4hbZsVN6casmqcTfM3aTViA4IHJNYlmesec9e-YZ4FxIppzY55TLOKVe4HpUsEhQhd6lQinT1FbI9Z_Dx7fopmtkcuZV_DbbvT6SnNU0GJUmXVyNZXa1KHzDJ6YYX3AZcfyQBsuw4iGTQU9f6XTv-g_zkwTjlZZ0RT5F3w2qwpmfW_kanBaI89shqY09va3_93obNivcSTozR9mBJaWbsNEZTCrtDdWErfqGB1JN-Cas2gTRNN8F0dXvRppDD8h0mJfYFC8LUxAxKnOi-dQqdYw0GWqCxJ6a4CiJuR4sJ2arl8zyRnBpJfmHRtCJ3SAmO5UMrO61-XcPXnvdl-s-re5noCmCgoKKOOCZZKFQXug6jkQ0o7gfGUzje0Ih9wo4wiFExMzPmEizqK2EH8XcRVbGPOHuQ0OPtDoAgsQmVUzGoYP8Br1G-Cx1eeZyHmcZb7dbcFEbJhnPZDiSheCyGdYEhzWxw5oELTiubZdUUzJPXLPjZnJpWQsua1stXv_e2uHfPj-DtaebXvJw-3h_BOvMWttkvxxDo5iU6gSWc1meVm76CcMp5m4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+visual+autonomous+navigation+in+row-based+crops+with+effective+synthetic+data+generation&rft.jtitle=Precision+agriculture&rft.au=Martini%2C+Mauro&rft.au=Ambrosio%2C+Marco&rft.au=Navone%2C+Alessandro&rft.au=Tuberga%2C+Brenno&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1385-2256&rft.eissn=1573-1618&rft.volume=25&rft.issue=6&rft.spage=2881&rft.epage=2902&rft_id=info:doi/10.1007%2Fs11119-024-10157-6&rft.externalDocID=10_1007_s11119_024_10157_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon |