Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation

Introduction Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments a...

Full description

Saved in:
Bibliographic Details
Published in:Precision agriculture Vol. 25; no. 6; pp. 2881 - 2902
Main Authors: Martini, Mauro, Ambrosio, Marco, Navone, Alessandro, Tuberga, Brenno, Chiaberge, Marcello
Format: Journal Article
Language:English
Published: New York Springer US 01-12-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Introduction Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras. Materials and methods In this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms. Results and conclusion The high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics.
AbstractList Introduction Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras. Materials and methods In this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms. Results and conclusion The high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics.
IntroductionService robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras.Materials and methodsIn this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms.Results and conclusionThe high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics.
Author Navone, Alessandro
Tuberga, Brenno
Chiaberge, Marcello
Ambrosio, Marco
Martini, Mauro
Author_xml – sequence: 1
  givenname: Mauro
  orcidid: 0000-0002-6204-3845
  surname: Martini
  fullname: Martini, Mauro
  email: mauro.martini@polito.it
  organization: Department of Electronics and Telecommunications, Politecnico di Torino
– sequence: 2
  givenname: Marco
  surname: Ambrosio
  fullname: Ambrosio, Marco
  organization: Department of Electronics and Telecommunications, Politecnico di Torino
– sequence: 3
  givenname: Alessandro
  surname: Navone
  fullname: Navone, Alessandro
  organization: Department of Electronics and Telecommunications, Politecnico di Torino
– sequence: 4
  givenname: Brenno
  surname: Tuberga
  fullname: Tuberga, Brenno
  organization: Department of Electronics and Telecommunications, Politecnico di Torino
– sequence: 5
  givenname: Marcello
  surname: Chiaberge
  fullname: Chiaberge, Marcello
  organization: Department of Electronics and Telecommunications, Politecnico di Torino
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F8brNHKfUDBC96DsludpvSJjXJtvTfG7uCN-fyDsz7zDDvDEx88BaAW4LvCcaLh0RK1QhTjggmYoGqCzAtyhCpiJyUnkmBKBXVFZiltMG4YJxOgVn5tfaN8z08uDToLdRDDj7swpCg1wfX6-yCh87DGI7I6GRb2MSwT_Do8hrarrNNdgcL08nntc2uga3OGvbW23hmr8Flp7fJ3vzqHHw-rT6WL-jt_fl1-fiGGsp5RqaudNfShbF8wQhpcSWsFrISkgtuLOFlLmsmSUtFR03TSWyNkLVmvBaUGzYHd-PefQxfg01ZbcIQfTmpGKE1FoxhWlx0dJUnUoq2U_vodjqeFMHqJ0s1ZqlKluqcpaoKxEYoFbPvbfxb_Q_1DVkrea0
Cites_doi 10.1016/j.compag.2018.01.009
10.1016/j.inpa.2023.02.001
10.3920/978-90-8686-947-3
10.26599/TST.2021.9010012
10.1016/j.compag.2017.12.001
10.1109/CVPR.2016.350
10.1109/LRA.2020.2965061
10.1016/j.patcog.2016.01.013
10.4060/cc0959en
10.3920/978-90-8686-947-3_56
10.1016/j.compag.2020.105812
10.3390/s19173796
10.1109/MetroAgriFor.2019.8909219
10.1109/IROS.2004.1389727
10.1109/CASE49997.2022.9926582
10.1038/s43016-021-00322-9
10.1109/ICCCR56747.2023.10193996
10.1016/j.eaef.2015.09.002
10.1007/978-3-030-73050-5_16
10.1109/IROS55552.2023.10341261
10.1109/IROS51168.2021.9635969
10.1016/j.compag.2021.106418
10.1016/j.compag.2020.105256
10.3389/fpls.2021.684328
10.1109/CVPR.2018.00474
10.1109/ICACCS.2019.8728415
10.1109/ACCESS.2020.2964608
10.1007/978-3-031-26422-1_13
10.1016/j.compag.2022.106977
10.1016/j.compag.2022.107593
10.1016/j.engappai.2018.09.011
10.1007/s10846-022-01793-z
10.1109/CVPR.2018.00745
10.22214/ijraset.2018.1146
10.3389/frai.2023.1213330
10.1109/ICCV.2019.00140
10.1109/ICCV51070.2023.00371
10.5935/1806-6690.20200084
10.1109/ACCESS.2020.3021739
10.1109/ECMR59166.2023.10256334
10.1023/A:1015678121948
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7ST
C1K
SOI
DOI 10.1007/s11119-024-10157-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Physics
Computer Science
EISSN 1573-1618
EndPage 2902
ExternalDocumentID 10_1007_s11119_024_10157_6
GrantInformation_xml – fundername: Politecnico di Torino
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
78A
7WY
7X2
7XC
88I
8FE
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EIOEI
EJD
ESBYG
ESTFP
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAK
LLZTM
M0C
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOR
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
Y6R
YLTOR
Z45
Z7R
Z7U
Z7V
Z7W
Z7Y
Z83
ZMTXR
ZOVNA
~KM
AAYXX
CITATION
7ST
C1K
SOI
ID FETCH-LOGICAL-c244t-b96afd27be47311d065ea58658454be1496a89381d25f2bcf80eb589a349524b3
IEDL.DBID AEJHL
ISSN 1385-2256
IngestDate Mon Nov 18 05:57:37 EST 2024
Fri Nov 22 01:22:30 EST 2024
Sun Nov 17 01:22:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Service robotics
Autonomous navigation
Synthetic data
Deep semantic segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-b96afd27be47311d065ea58658454be1496a89381d25f2bcf80eb589a349524b3
ORCID 0000-0002-6204-3845
OpenAccessLink http://link.springer.com/10.1007/s11119-024-10157-6
PQID 3129053302
PQPubID 54630
PageCount 22
ParticipantIDs proquest_journals_3129053302
crossref_primary_10_1007_s11119_024_10157_6
springer_journals_10_1007_s11119_024_10157_6
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances in Precision Agriculture
PublicationTitle Precision agriculture
PublicationTitleAbbrev Precision Agric
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Aghi, D., Cerrato, S., Mazzia, V., & Chiaberge, M. (2021). Deep semantic segmentation at the edge for autonomous navigation in vineyard rows. In 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3421–3428). https://doi.org/10.1109/IROS51168.2021.9635969
Loshchilov, I., & Hutter, F. (2018). Decoupled weight decay regularization. In International conference on learning representations (ICLR)
Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017). arXiv:1706.05587
KesturRMeduriANarasipuraOMangonet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchardEngineering Applications of Artificial Intelligence201977596910.1016/j.engappai.2018.09.011
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., & Lo, W.-Y. (2023). Segment anything. arXiv:2304.02643
Hu, J., Shen, L., & Sun, G.: Squeeze-and-excitation networks. In 2018 IEEE/CVF conference on computer vision and pattern recognition (pp. 7132–7141) (2018). https://doi.org/10.1109/CVPR.2018.00745
KabirMSNSongM-ZSungN-SChungS-OKimY-JNoguchiNHongS-JPerformance comparison of single and multi-GNSS receivers under agricultural fields in KoreaEngineering in Agriculture, Environment and Food201691273510.1016/j.eaef.2015.09.002
Liu, E., Monica, J., Gold, K., Cadle-Davidson, L., Combs, D., & Jiang, Y. (2023) Vision-based vineyard navigation solution with automatic annotation. arXiv:2303.14347
Van DijkMMorleyTRauMLSaghaiYA meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050Nature Food20212749450110.1038/s43016-021-00322-937117684
WangYHeZCaoDMaLLiKJiaLCuiYCoverage path planning for kiwifruit picking robots based on deep reinforcement learningComputers and Electronics in Agriculture202320510.1016/j.compag.2022.107593
PengHXueCShaoYChenKXiongJXieZZhangLSemantic segmentation of litchi branches using deeplabv3+ modelIEEE Access2020816454616455510.1109/ACCESS.2020.3021739
Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., & Le, Q. Searching for mobilenetv3. In 2019 IEEE/CVF international conference on computer vision (ICCV) (pp. 1314–1324). IEEE Computer Society, Los Alamitos, CA, USA (2019). https://doi.org/10.1109/ICCV.2019.00140
RenCKimD-KJeongDA survey of deep learning in agriculture: Techniques and their applicationsJournal of Information Processing Systems202016510151033
LuoZYangWYuanYGouRLiXSemantic segmentation of agricultural images: A surveyInformation Processing in Agriculture20231117218610.1016/j.inpa.2023.02.001
Comba, L., Biglia, A., Ricauda Aimonino, D., Barge, P., Tortia, C., & Gay, P. (2019). 2d and 3d data fusion for crop monitoring in precision agriculture. Proceedings of the IEEE (pp. 62–67). https://doi.org/10.1109/MetroAgriFor.2019.8909219
Navone, A., Martini, M., Ostuni, A., Angarano, S., & Chiaberge, M. (2023) Autonomous navigation in rows of trees and high crops with deep semantic segmentation. arXiv:2304.08988
ZhaiZMartínezJFBeltranVMartínezNLDecision support systems for agriculture 4.0 Survey and challengesComputers and Electronics in Agriculture202017010.1016/j.compag.2020.105256
Navone, A., Romanelli, F., Ambrosio, M., Martini, M., Angarano, S., & Chiaberge, M. (2023) Lavender autonomous navigation with semantic segmentation at the edge. arXiv:2309.06863
VidovićICupecRHocenskiŽCrop row detection by global energy minimizationPattern Recognition201655688610.1016/j.patcog.2016.01.013
Shruthi, U., Nagaveni, V., & Raghavendra, B.K. (2019). A review on machine learning classification techniques for plant disease detection. In 2019 5th international conference on advanced computing & communication systems (ICACCS) (pp. 281–284). https://doi.org/10.1109/ICACCS.2019.8728415
Stafford, J.V.: Precision Agriculture ’23. Wageningen Academic, Leiden, The Netherlands (2023). https://doi.org/10.3920/978-90-8686-947-3
FerentinosKPDeep learning models for plant disease detection and diagnosisComputers and Electronics in Agriculture201814531131810.1016/j.compag.2018.01.009
HäniNRoyPIslerVMinneapple: A benchmark dataset for apple detection and segmentationIEEE Robotics and Automation Letters20205285285810.1109/LRA.2020.2965061
Martini, M., Eirale, A., Tuberga, B., Ambrosio, M., Ostuni, A., Messina, F., Mazzara, L., & Chiaberge, M.: Enhancing navigation benchmarking and perception data generation for row-based crops in simulation (pp. 451–457). Wageningen Academic, Leiden, The Netherlands (2023). https://doi.org/10.3920/978-90-8686-947-3_56
SalvettiFAngaranoSMartiniMCerratoSChiabergeMAminiM-RCanuSFischerAGunsTKralj NovakPTsoumakasGWaypoint generation in row-based crops with deep learning and contrastive clusteringMachine Learning and Knowledge Discovery in Databases2023ChamSpringer20321810.1007/978-3-031-26422-1_13
Yépez-PonceDFSalcedoJVRosero-MontalvoPDSanchisJMobile robotics in smart farming: Current trends and applicationsFrontiers in Artificial Intelligence202310.3389/frai.2023.12133303771908210500442
BarthRJsselmuidenJHemmingJVan HentenEJData synthesis methods for semantic segmentation in agriculture: A Capsicum annuum datasetComputers and Electronics in Agriculture201814428429610.1016/j.compag.2017.12.001
ZhuKZhangTDeep reinforcement learning based mobile robot navigation: A reviewTsinghua Science and Technology202126567469110.26599/TST.2021.9010012
Megeto, G. A. S., Silva, A.G.D., Bulgarelli, R.F., Bublitz, C.F., Valente, A.C., & Costa, D.A.G.D. (2021). Artificial intelligence applications in the agriculture 4.0. Revista Ciência Agronômica, 51
Martini, M., Eirale, A., Cerrato, S., & Chiaberge, M.: Pic4rl-gym: A ROS2 modular framework for robots autonomous navigation with deep reinforcement learning. In 2023 3rd international conference on computer, control and robotics (ICCCR) (pp. 198–202) (2023). https://doi.org/10.1109/ICCCR56747.2023.10193996
ShafiUMumtazRGarcía-NietoJHassanSAZaidiSARIqbalNPrecision agriculture techniques and practices: From considerations to applicationsSensors201910.3390/s19173796314807096749385
Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No.04CH37566)(Vol. 3, pp. 2149–21543). https://doi.org/10.1109/IROS.2004.1389727
FAOThe future of food and agriculture–Drivers and triggers for transformationFAO202210.4060/cc0959en
DroukasLDoulgeriZTsakiridisNLTriantafyllouDKleitsiotisIMariolisIGiakoumisDTzovarasDKaterisDBochtisDA survey of robotic harvesting systems and enabling technologiesJournal of Intelligent Robotic Systems202310.1007/s10846-022-01793-z367216469881528
Martini, M., Cerrato, S., Salvetti, F., Angarano, S., & Chiaberge, M. Position-agnostic autonomous navigation in vineyards with deep reinforcement learning. In 2022 IEEE 18th international conference on automation science and engineering (CASE) (pp. 477–484) (2022). https://doi.org/10.1109/CASE49997.2022.9926582
MazziaVKhaliqASalvettiFChiabergeMReal-time apple detection system using embedded systems with hardware accelerators: An edge AI applicationIEEE Access202089102911410.1109/ACCESS.2020.2964608
DeshmukhDPratiharDKDebAKRayHBhattacharyyaNAbrahamAHanneTCastilloOGandhiNNogueira RiosTHongT-PDesign and development of intelligent pesticide spraying system for agricultural robotHybrid Intelligent Systems2021ChamSpringer15717010.1007/978-3-030-73050-5_16
Sankhla, M.S., Kumari, M., Sharma, K., Kushwah, R., & Kumar, R. (2018). Water contamination through pesticide & their toxic effect on human health. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2018.1146
Cerrato, S., Mazzia, V., Salvetti, F., & Chiaberge, M.: A deep learning driven algorithmic pipeline for autonomous navigation in row-based crops (2021). arXiv:2112.03816
RaeiEAsanjanAANikooMRSadeghMPourshahabiSAdamowskiJFA deep learning image segmentation model for agricultural irrigation system classificationComputers and Electronics in Agriculture202219810.1016/j.compag.2022.106977
MaheswariPRajaPApolo-ApoloOEPérez-RuizMIntelligent fruit yield estimation for orchards using deep learning based semantic segmentation techniques—A reviewFrontiers in Plant Science202110.3389/fpls.2021.684328342490548267528
SongZZhangZYangSDingDNingJIdentifying sunflower lodging based on image fusion and deep semantic segmentation with UAV remote sensing imagingComputers and Electronics in Agriculture202017910.1016/j.compag.2020.105812
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3213–3223) (2016). https://doi.org/10.1109/CVPR.2016.350
SuDKongHQiaoYSukkariehSData augmentation for deep learning based semantic segmentation and crop-weed classification in agricultural roboticsComputers and Electronics in Agriculture202119010.1016/j.compag.2021.106418
ThuilotBCariouCMartinetPBerducatMAutomatic guidance of a farm tractor relying on a single CP-DGPSAutonomous Robots2002131537110.1023/A:1015678121948
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.: Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 4510–4520). IEEE Computer Society, Los Alamitos, CA, USA (2018). https://doi.org/10.1109/CVPR.2018.00474
10157_CR13
U Shafi (10157_CR35) 2019
10157_CR36
10157_CR16
10157_CR38
I Vidović (10157_CR42) 2016; 55
V Mazzia (10157_CR25) 2020; 8
10157_CR33
10157_CR12
10157_CR34
MSN Kabir (10157_CR14) 2016; 9
H Peng (10157_CR29) 2020; 8
B Thuilot (10157_CR40) 2002; 13
Y Wang (10157_CR43) 2023; 205
N Häni (10157_CR11) 2020; 5
FAO (10157_CR9) 2022
C Ren (10157_CR31) 2020; 16
Z Zhai (10157_CR45) 2020; 170
10157_CR28
M Van Dijk (10157_CR41) 2021; 2
10157_CR24
10157_CR26
10157_CR27
KP Ferentinos (10157_CR10) 2018; 145
R Kestur (10157_CR15) 2019; 77
10157_CR22
10157_CR23
D Su (10157_CR39) 2021; 190
D Deshmukh (10157_CR7) 2021
Z Song (10157_CR37) 2020; 179
10157_CR1
Z Luo (10157_CR20) 2023; 11
DF Yépez-Ponce (10157_CR44) 2023
P Maheswari (10157_CR21) 2021
L Droukas (10157_CR8) 2023
K Zhu (10157_CR46) 2021; 26
E Raei (10157_CR30) 2022; 198
R Barth (10157_CR2) 2018; 144
F Salvetti (10157_CR32) 2023
10157_CR6
10157_CR5
10157_CR17
10157_CR4
10157_CR18
10157_CR3
10157_CR19
References_xml – volume: 145
  start-page: 311
  year: 2018
  ident: 10157_CR10
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.01.009
  contributor:
    fullname: KP Ferentinos
– volume: 11
  start-page: 172
  year: 2023
  ident: 10157_CR20
  publication-title: Information Processing in Agriculture
  doi: 10.1016/j.inpa.2023.02.001
  contributor:
    fullname: Z Luo
– ident: 10157_CR38
  doi: 10.3920/978-90-8686-947-3
– volume: 26
  start-page: 674
  issue: 5
  year: 2021
  ident: 10157_CR46
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2021.9010012
  contributor:
    fullname: K Zhu
– volume: 144
  start-page: 284
  year: 2018
  ident: 10157_CR2
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.12.001
  contributor:
    fullname: R Barth
– ident: 10157_CR6
  doi: 10.1109/CVPR.2016.350
– volume: 5
  start-page: 852
  issue: 2
  year: 2020
  ident: 10157_CR11
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2020.2965061
  contributor:
    fullname: N Häni
– volume: 55
  start-page: 68
  year: 2016
  ident: 10157_CR42
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.01.013
  contributor:
    fullname: I Vidović
– year: 2022
  ident: 10157_CR9
  publication-title: FAO
  doi: 10.4060/cc0959en
  contributor:
    fullname: FAO
– ident: 10157_CR24
  doi: 10.3920/978-90-8686-947-3_56
– volume: 179
  year: 2020
  ident: 10157_CR37
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105812
  contributor:
    fullname: Z Song
– volume: 16
  start-page: 1015
  issue: 5
  year: 2020
  ident: 10157_CR31
  publication-title: Journal of Information Processing Systems
  contributor:
    fullname: C Ren
– year: 2019
  ident: 10157_CR35
  publication-title: Sensors
  doi: 10.3390/s19173796
  contributor:
    fullname: U Shafi
– ident: 10157_CR5
  doi: 10.1109/MetroAgriFor.2019.8909219
– ident: 10157_CR17
  doi: 10.1109/IROS.2004.1389727
– ident: 10157_CR22
  doi: 10.1109/CASE49997.2022.9926582
– volume: 2
  start-page: 494
  issue: 7
  year: 2021
  ident: 10157_CR41
  publication-title: Nature Food
  doi: 10.1038/s43016-021-00322-9
  contributor:
    fullname: M Van Dijk
– ident: 10157_CR23
  doi: 10.1109/ICCCR56747.2023.10193996
– volume: 9
  start-page: 27
  issue: 1
  year: 2016
  ident: 10157_CR14
  publication-title: Engineering in Agriculture, Environment and Food
  doi: 10.1016/j.eaef.2015.09.002
  contributor:
    fullname: MSN Kabir
– start-page: 157
  volume-title: Hybrid Intelligent Systems
  year: 2021
  ident: 10157_CR7
  doi: 10.1007/978-3-030-73050-5_16
  contributor:
    fullname: D Deshmukh
– ident: 10157_CR18
  doi: 10.1109/IROS55552.2023.10341261
– ident: 10157_CR4
– ident: 10157_CR1
  doi: 10.1109/IROS51168.2021.9635969
– volume: 190
  year: 2021
  ident: 10157_CR39
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106418
  contributor:
    fullname: D Su
– volume: 170
  year: 2020
  ident: 10157_CR45
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105256
  contributor:
    fullname: Z Zhai
– year: 2021
  ident: 10157_CR21
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2021.684328
  contributor:
    fullname: P Maheswari
– ident: 10157_CR33
  doi: 10.1109/CVPR.2018.00474
– ident: 10157_CR36
  doi: 10.1109/ICACCS.2019.8728415
– volume: 8
  start-page: 9102
  year: 2020
  ident: 10157_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964608
  contributor:
    fullname: V Mazzia
– start-page: 203
  volume-title: Machine Learning and Knowledge Discovery in Databases
  year: 2023
  ident: 10157_CR32
  doi: 10.1007/978-3-031-26422-1_13
  contributor:
    fullname: F Salvetti
– ident: 10157_CR28
– volume: 198
  year: 2022
  ident: 10157_CR30
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.106977
  contributor:
    fullname: E Raei
– volume: 205
  year: 2023
  ident: 10157_CR43
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107593
  contributor:
    fullname: Y Wang
– ident: 10157_CR19
– volume: 77
  start-page: 59
  year: 2019
  ident: 10157_CR15
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.09.011
  contributor:
    fullname: R Kestur
– year: 2023
  ident: 10157_CR8
  publication-title: Journal of Intelligent Robotic Systems
  doi: 10.1007/s10846-022-01793-z
  contributor:
    fullname: L Droukas
– ident: 10157_CR13
  doi: 10.1109/CVPR.2018.00745
– ident: 10157_CR34
  doi: 10.22214/ijraset.2018.1146
– year: 2023
  ident: 10157_CR44
  publication-title: Frontiers in Artificial Intelligence
  doi: 10.3389/frai.2023.1213330
  contributor:
    fullname: DF Yépez-Ponce
– ident: 10157_CR12
  doi: 10.1109/ICCV.2019.00140
– ident: 10157_CR16
  doi: 10.1109/ICCV51070.2023.00371
– ident: 10157_CR26
  doi: 10.5935/1806-6690.20200084
– volume: 8
  start-page: 164546
  year: 2020
  ident: 10157_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021739
  contributor:
    fullname: H Peng
– ident: 10157_CR3
– ident: 10157_CR27
  doi: 10.1109/ECMR59166.2023.10256334
– volume: 13
  start-page: 53
  issue: 1
  year: 2002
  ident: 10157_CR40
  publication-title: Autonomous Robots
  doi: 10.1023/A:1015678121948
  contributor:
    fullname: B Thuilot
SSID ssj0010042
Score 2.414338
Snippet Introduction Service robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions....
IntroductionService robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 2881
SubjectTerms Agriculture
Atmospheric Sciences
Autonomous navigation
Biomedical and Life Sciences
Chemistry and Earth Sciences
Computer Science
Crops
Datasets
Image processing
Image quality
Image segmentation
Life Sciences
Physics
Precision farming
Remote Sensing/Photogrammetry
Robot control
Robotics
Robust control
Semantic segmentation
Soil Science & Conservation
Statistics for Engineering
Synthetic data
Virtual networks
Visual control
Visual fields
Visual perception
Visual perception driven algorithms
Title Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation
URI https://link.springer.com/article/10.1007/s11119-024-10157-6
https://www.proquest.com/docview/3129053302
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH44h6AHp1NxOiUHbxpZ06Y_jkM3p4gXFbyVpEnnEDJZV8H_3pesdSh60F56aBtK3pe87yXvfQE4kYppL-GCCpVkNAj9gEoWS6oRXTpSKstchdzoPrp7ii8HVibH_1y6MC_n9Y6km6iXtW54JRRdCs4cHo9o2IAm-h6O4G72Bzej28_NAwtEF2fFnCJcw6pW5udWvvqjJcn8ti_q3M2w9a8f3YLNil2S_gIO27CiTRs2-uNZpbCh29Cqz3Eg1bBuw5pLA82KHZAD82wFOMyYvE2KEpsS5dyWPUzLghjx5vQ4poZMDMHwnVoXqIg9BKwgdkGXLLJDcAIlxbtBaom_QWwOKhk7dWv77S48DgcPFyNancJAM3T9cyqTUOSKRVIHke95CjmLFjy2zIUHUmOEFQokPch7Gc-ZzPK4pyWPE-Fj7MUC6e_BqpkavQ8Ew5dMM5VEHkYxiA3JWeaL3BciyXPR63XgtLZF-roQ20iXssq2W1Ps1tR1axp2oFubK60GXpH6dl3NZsyyDpzV9lk-_r21g7-9fgjrzJnYJrZ0YXU-K_URNApVHldwtPfrh6vhB51Y20k
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCAEHlgKirD5wA0uNE2c5VtBSxHKhSNwiO3ZKLy5qGiT-nrGbEIHgALkmsSzPs-eNPfMMcCYV017CBRUqyWgQ-gGVLJZUI7p0pFSWuQq5wWP08Bxf9axMTlDXwrhs9_pI0q3UTbEbPglFn4JLh8cjGi7CcpCEAWJ5uXszvO5_nh5YJLpAK-YU8RpWxTI_t_LVITUs89vBqPM3_c3_9XQLNip-SbpzQGzDgjYtWO-OppXGhm7BZn2TA6kmdgtWXCJoVuyA7JkXK8FhRuRtXJTYlChntvBhUhbEiDenyDExZGwIBvDUOkFF7DVgBbFbumSeH4JLKCneDZJL7AaxWahk5PSt7b-78NTvDS8HtLqHgWbo_GdUJqHIFYukDiLf8xSyFi14bLkLD6TGGCsUSHuQ-TKeM5nlcUdLHifCx-iLBdLfgyUzMXofCAYwmWYqiTyMYxAdkrPMF7kvRJLnotNpw3ltjPR1LreRNsLKdlhTHNbUDWsatuGotldaTb0i9e3Oms2ZZW24qO3TvP69tYO_fX4Kq4Ph_V16d_NwewhrzJnbprkcwdJsWupjWCxUeVJh8wPrX92r
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEQgOLAVEWX3gBhaNsx8raFUWISRA4hbZsVN6casmqcTfM3aTViA4IHJNYlmesec9e-YZ4FxIppzY55TLOKVe4HpUsEhQhd6lQinT1FbI9Z_Dx7fopmtkcuZV_DbbvT6SnNU0GJUmXVyNZXa1KHzDJ6YYX3AZcfyQBsuw4iGTQU9f6XTv-g_zkwTjlZZ0RT5F3w2qwpmfW_kanBaI89shqY09va3_93obNivcSTozR9mBJaWbsNEZTCrtDdWErfqGB1JN-Cas2gTRNN8F0dXvRppDD8h0mJfYFC8LUxAxKnOi-dQqdYw0GWqCxJ6a4CiJuR4sJ2arl8zyRnBpJfmHRtCJ3SAmO5UMrO61-XcPXnvdl-s-re5noCmCgoKKOOCZZKFQXug6jkQ0o7gfGUzje0Ih9wo4wiFExMzPmEizqK2EH8XcRVbGPOHuQ0OPtDoAgsQmVUzGoYP8Br1G-Cx1eeZyHmcZb7dbcFEbJhnPZDiSheCyGdYEhzWxw5oELTiubZdUUzJPXLPjZnJpWQsua1stXv_e2uHfPj-DtaebXvJw-3h_BOvMWttkvxxDo5iU6gSWc1meVm76CcMp5m4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+visual+autonomous+navigation+in+row-based+crops+with+effective+synthetic+data+generation&rft.jtitle=Precision+agriculture&rft.au=Martini%2C+Mauro&rft.au=Ambrosio%2C+Marco&rft.au=Navone%2C+Alessandro&rft.au=Tuberga%2C+Brenno&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1385-2256&rft.eissn=1573-1618&rft.volume=25&rft.issue=6&rft.spage=2881&rft.epage=2902&rft_id=info:doi/10.1007%2Fs11119-024-10157-6&rft.externalDocID=10_1007_s11119_024_10157_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon