Efficient novel fungal-enriched biochar formulation for hexavalent chromium bioremediation
Chromium (Cr), a key element in industrial processes such as leather tanning, poses severe environmental hazards, particularly its hexavalent form, Cr(VI), which is highly toxic and prevalent in tannery effluents/sludge. The persistence and toxicity of Cr(VI) necessitate the development of effective...
Saved in:
Published in: | Journal of environmental management Vol. 370; p. 122806 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-11-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chromium (Cr), a key element in industrial processes such as leather tanning, poses severe environmental hazards, particularly its hexavalent form, Cr(VI), which is highly toxic and prevalent in tannery effluents/sludge. The persistence and toxicity of Cr(VI) necessitate the development of effective remediation strategies to mitigate its environmental impact. This study investigated the potential of Trichoderma yunnanense (NBRICRF_97) and its combination with 0.5% sugarcane bagasse biochar (SBC) for the reduction of Cr(VI). The results demonstrated that T. yunnanense alone achieved a 91.04% reduction of 50 mg L−1 Cr(VI) within 72 h. Combined with 0.5% SBC, the reduction efficiency increased to 99.65% within 48 h. However, the efficiency decreased at higher concentrations (200 mg L−1). The combination also improved fungal growth and increased extracellular ChrR enzyme activity (13.07 U mg−1 protein compared to the control). Total glutathione activity was boosted by 161.07% at 100 mg L−1 Cr(VI). Antioxidant enzymes (SOD, POD, CAT) and proline mitigated oxidative stress and FTIR analysis revealed changes in fungal cell wall functional groups (-OH and -NH) upon Cr(VI) exposure. SEM-EDX confirmed chromium deposition on fungal surfaces. These results underscore the Cr(VI) detoxification capabilities of T. yunnanense and the synergistic benefits of SBC, suggesting a promising bioremediation strategy for Cr(VI)-contaminated environments. The integration of T. yunnanense with SBC offers a sustainable and cost-effective approach for the bioremediation of Cr(VI)-contaminated sites, with potential for implementation in large-scale environmental cleanup efforts.
[Display omitted]
•The study defines a novel fungus (T. yunnanense) for Cr(VI) reduction.•T. yunnanense + 0.5% SBC exhibited remarkable Cr(VI) reduction (99.63%) in 96.•Extracellular ChrR enzyme activity increased (11.17 U mg⁻1) in the presence of SBC.•FTIR, SEM-EDX, and XRD analyses validated Cr(VI) reduction on fungal mycelia.•Reduction kinetics best fit a first-order model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0301-4797 1095-8630 1095-8630 |
DOI: | 10.1016/j.jenvman.2024.122806 |