Analysis of Polymer-Ceramic Composites Performance on Electrical and Mechanical Properties through Finite Element and Empirical Models

Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and f...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 17; no. 15; p. 3837
Main Authors: Keshyagol, Kiran, Hiremath, Shivashankarayya, H M, Vishwanatha, Rao, P Krishnananda, Hiremath, Pavan, Naik, Nithesh
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 02-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite's permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models.
AbstractList Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite's permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models.Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite's permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models.
Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite’s permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models.
Audience Academic
Author Rao, P Krishnananda
Naik, Nithesh
H M, Vishwanatha
Hiremath, Pavan
Keshyagol, Kiran
Hiremath, Shivashankarayya
Author_xml – sequence: 1
  givenname: Kiran
  orcidid: 0000-0002-7541-6022
  surname: Keshyagol
  fullname: Keshyagol, Kiran
  organization: Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
– sequence: 2
  givenname: Shivashankarayya
  orcidid: 0000-0001-7613-9832
  surname: Hiremath
  fullname: Hiremath, Shivashankarayya
  organization: Survivability Signal Intelligence Research Center, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
– sequence: 3
  givenname: Vishwanatha
  orcidid: 0000-0003-3045-9771
  surname: H M
  fullname: H M, Vishwanatha
  organization: Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
– sequence: 4
  givenname: P Krishnananda
  surname: Rao
  fullname: Rao, P Krishnananda
  organization: Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
– sequence: 5
  givenname: Pavan
  surname: Hiremath
  fullname: Hiremath, Pavan
  organization: Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
– sequence: 6
  givenname: Nithesh
  orcidid: 0000-0003-0356-7697
  surname: Naik
  fullname: Naik, Nithesh
  organization: Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39124501$$D View this record in MEDLINE/PubMed
BookMark eNpdkctu3CAUhlGVqknTbPoAFVI3VSWnYGCMl6PRpK2UqLNo1xbgQ4aIiwv2Yl4gz10yk15UWBxA33eEzv8ancUUAaG3lFwz1pNPQdGOCiZZ9wJd0L5fNbTn_Oyf8zm6KuWB1MUYlW3_Cp2znrZcEHqBHtdR-UNxBSeLd8kfAuRmA1kFZ_AmhSkVN0PBO8g25aCiAZwi3nowc3ZGeaziiO_A7FU8Xnc5TZBnV515n9Nyv8c3LtYeT06AOB-FbZjcSb9LI_jyBr20yhe4eq6X6MfN9vvmS3P77fPXzfq2MS1nc9Nqyw1IqUBzKjstFdWdbQWzwnacGd0RDlpZkGYcOae0r7XXbAVKMqEtu0QfTn2nnH4uUOYhuGLAexUhLWVgpE5Gipa1FX3_H_qQllyndaRIL7gQpFLXJ-peeRhctGnOytQ9Qp1gjcq6-r6WhAvKOFlV4eNJMDmVksEOU3ZB5cNAyfCU6PA30Qq_e_7DogOMf9Df-bFf18Oeew
Cites_doi 10.1016/j.apt.2016.03.028
10.1149/2.0151602jes
10.1016/S0025-5408(03)00075-8
10.1016/j.ijhydene.2011.02.136
10.1002/app.34122
10.1002/app.49801
10.1088/2053-1591/ab4a36
10.1016/j.physb.2020.412357
10.1016/j.matlet.2010.02.058
10.1016/j.jnoncrysol.2013.12.005
10.2528/PIER06052601
10.1007/s10854-021-07242-1
10.3390/polym16040545
10.3390/ma15041543
10.3390/polym15214279
10.1016/j.compstruct.2011.05.036
10.1103/PhysRevB.56.8035
10.1088/1361-6404/aadf9b
10.1016/j.cej.2023.143802
10.1016/j.ijleo.2012.06.090
10.1016/j.materresbull.2020.110818
10.1016/j.compscitech.2012.12.014
10.3390/engproc2023059095
10.1016/0031-8914(65)90045-5
10.3390/nano11010162
10.1177/0021998308094543
10.1016/j.solmat.2018.11.008
10.1016/j.actamat.2015.11.008
10.3390/act10070137
10.3390/app122412592
10.3390/s24113504
10.3390/nano12193483
10.1109/MIKON.2014.6899908
10.1038/srep33508
10.1016/j.polymertesting.2011.04.008
10.1016/j.jeurceramsoc.2016.10.032
10.1109/TMTT.2010.2040406
10.3390/polym12040827
10.3390/polym13173005
10.1080/001501990910258
10.1002/app.47274
10.1149/2162-8777/acdaf5
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID NPM
AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.3390/ma17153837
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database
PubMed

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID A804513406
10_3390_ma17153837
39124501
Genre Journal Article
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CZ9
D1I
E3Z
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
NPM
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
TR2
TUS
AAYXX
CITATION
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c243t-2bf4ce88aeb4187b8a1b7f253f5f743cb704ebafe8cdd44119cdd9b36ea835bf3
ISSN 1996-1944
IngestDate Sat Oct 26 04:33:41 EDT 2024
Thu Oct 10 22:23:09 EDT 2024
Tue Nov 12 23:36:17 EST 2024
Thu Sep 26 20:54:58 EDT 2024
Sat Nov 02 12:02:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords permittivity
empirical models
capacitive model
polymer composites
FE analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-2bf4ce88aeb4187b8a1b7f253f5f743cb704ebafe8cdd44119cdd9b36ea835bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3045-9771
0000-0003-0356-7697
0000-0001-7613-9832
0000-0002-7541-6022
OpenAccessLink https://www.proquest.com/docview/3090954550
PMID 39124501
PQID 3090954550
PQPubID 2032366
ParticipantIDs proquest_miscellaneous_3091285232
proquest_journals_3090954550
gale_infotracacademiconefile_A804513406
crossref_primary_10_3390_ma17153837
pubmed_primary_39124501
PublicationCentury 2000
PublicationDate 2024-Aug-02
PublicationDateYYYYMMDD 2024-08-02
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Looyenga (ref_19) 1965; 31
Lu (ref_14) 2023; 468
Gupta (ref_33) 2019; 136
ref_13
ref_12
Ramajo (ref_44) 2008; 42
Vadakkepatt (ref_18) 2016; 163
ref_32
Wang (ref_41) 2013; 76
Zhang (ref_3) 2021; 138
Iravani (ref_27) 2014; 9
ref_30
Costa (ref_37) 2014; 387
Djouada (ref_36) 2023; 12
Wiens (ref_7) 2017; 37
ref_38
Zhang (ref_1) 2016; 6
ref_15
Kakati (ref_17) 2011; 36
Padurariu (ref_43) 2016; 103
Levy (ref_10) 1997; 56
Tran (ref_16) 2018; 39
Koledintseva (ref_11) 2006; 63
Yoon (ref_5) 2003; 38
(ref_35) 2011; 93
ref_25
Parra (ref_26) 2010; 64
Pearce (ref_28) 2019; 191
ref_23
ref_22
ref_21
Drozdov (ref_40) 2020; 126
Simpkin (ref_9) 2010; 58
Renteria (ref_24) 2019; 6
Shivashankar (ref_39) 2021; 602
Talebian (ref_20) 2013; 124
ref_29
Guo (ref_34) 2016; 27
Shivashankar (ref_6) 2021; 32
ref_8
Abraham (ref_42) 2005; 315
Ayatollahi (ref_2) 2011; 30
ref_4
Wang (ref_31) 2011; 122
References_xml – volume: 27
  start-page: 1162
  year: 2016
  ident: ref_34
  article-title: Effect of silicone coupling agent on dielectric properties of barium titanate/silicone elastomer composites
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.03.028
  contributor:
    fullname: Guo
– volume: 163
  start-page: A119
  year: 2016
  ident: ref_18
  article-title: Bruggeman’s Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0151602jes
  contributor:
    fullname: Vadakkepatt
– volume: 38
  start-page: 765
  year: 2003
  ident: ref_5
  article-title: Dielectric constant and mixing model of BaTiO3 composite thick films
  publication-title: Mater. Res. Bull.
  doi: 10.1016/S0025-5408(03)00075-8
  contributor:
    fullname: Yoon
– volume: 36
  start-page: 14851
  year: 2011
  ident: ref_17
  article-title: Semi-empirical modeling of electrical conductivity for composite bipolar plate with multiple reinforcements
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.02.136
  contributor:
    fullname: Kakati
– volume: 122
  start-page: 545
  year: 2011
  ident: ref_31
  article-title: Polymerization of styrene using novel bispyrazolylimine dinickel (II)/methylaluminoxane catalytic systems
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.34122
  contributor:
    fullname: Wang
– volume: 138
  start-page: 49801
  year: 2021
  ident: ref_3
  article-title: Fluorinated graphene/polyimide nanocomposites for advanced electronic packaging applications
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.49801
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 115211
  year: 2019
  ident: ref_24
  article-title: Particle size influence on material properties of BaTiO3 ceramics fabricated using freeze-form extrusion 3D printing
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab4a36
  contributor:
    fullname: Renteria
– volume: 602
  start-page: 412357
  year: 2021
  ident: ref_39
  article-title: Investigation on dielectric properties of PDMS based nanocomposites
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2020.412357
  contributor:
    fullname: Shivashankar
– volume: 64
  start-page: 1226
  year: 2010
  ident: ref_26
  article-title: Elastic modulus and hardness of CaTiO3, CaCu3Ti4O12 and CaTiO3/CaCu3Ti4O12 mixture
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2010.02.058
  contributor:
    fullname: Parra
– volume: 387
  start-page: 6
  year: 2014
  ident: ref_37
  article-title: Evaluation of dielectric models for ceramic/polymer composites: Effect of filler size and concentration
  publication-title: J. Non Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2013.12.005
  contributor:
    fullname: Costa
– volume: 63
  start-page: 223
  year: 2006
  ident: ref_11
  article-title: A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER06052601
  contributor:
    fullname: Koledintseva
– volume: 32
  start-page: 28674
  year: 2021
  ident: ref_6
  article-title: Study on low-frequency dielectric behavior of the carbon black/polymer nanocomposite
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-021-07242-1
  contributor:
    fullname: Shivashankar
– ident: ref_15
  doi: 10.3390/polym16040545
– ident: ref_21
  doi: 10.3390/ma15041543
– ident: ref_29
  doi: 10.3390/polym15214279
– volume: 93
  start-page: 3209
  year: 2011
  ident: ref_35
  article-title: Dielectric modeling of multiphase composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2011.05.036
– volume: 56
  start-page: 8035
  year: 1997
  ident: ref_10
  article-title: Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.56.8035
  contributor:
    fullname: Levy
– volume: 39
  start-page: 063001
  year: 2018
  ident: ref_16
  article-title: Evidence for Maxwell’s equations, fields, force laws and alternative theories of classical electrodynamics
  publication-title: Eur. J. Phys.
  doi: 10.1088/1361-6404/aadf9b
  contributor:
    fullname: Tran
– volume: 9
  start-page: 385
  year: 2014
  ident: ref_27
  article-title: Synthesis of silver nanoparticles: Chemical, physical and biological methods
  publication-title: Res. Pharm. Sci.
  contributor:
    fullname: Iravani
– volume: 468
  start-page: 143802
  year: 2023
  ident: ref_14
  article-title: Constructing highly flexible dielectric sponge for enhancing triboelectric performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143802
  contributor:
    fullname: Lu
– volume: 124
  start-page: 2324
  year: 2013
  ident: ref_20
  article-title: A general review on the derivation of Clausius–Mossotti relation
  publication-title: Optik
  doi: 10.1016/j.ijleo.2012.06.090
  contributor:
    fullname: Talebian
– volume: 126
  start-page: 110818
  year: 2020
  ident: ref_40
  article-title: Modeling dielectric permittivity of polymer composites at microwave frequencies
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2020.110818
  contributor:
    fullname: Drozdov
– volume: 76
  start-page: 29
  year: 2013
  ident: ref_41
  article-title: Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2012.12.014
  contributor:
    fullname: Wang
– ident: ref_23
  doi: 10.3390/engproc2023059095
– volume: 31
  start-page: 401
  year: 1965
  ident: ref_19
  article-title: Dielectric constants of heterogeneous mixtures
  publication-title: Physica
  doi: 10.1016/0031-8914(65)90045-5
  contributor:
    fullname: Looyenga
– ident: ref_30
  doi: 10.3390/nano11010162
– volume: 42
  start-page: 2027
  year: 2008
  ident: ref_44
  article-title: Computational Approach of Dielectric Permitivities in BaTiO3—Epoxy Composites
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998308094543
  contributor:
    fullname: Ramajo
– volume: 191
  start-page: 133
  year: 2019
  ident: ref_28
  article-title: The importance of accurate determination of optical constants for the design of nanometallic light-trapping structures
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.11.008
  contributor:
    fullname: Pearce
– volume: 103
  start-page: 724
  year: 2016
  ident: ref_43
  article-title: Nonlinear dielectric properties of paraelectric-dielectric composites described by a 3D Finite Element Method based on Landau-Devonshire theory
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.11.008
  contributor:
    fullname: Padurariu
– ident: ref_12
– ident: ref_25
  doi: 10.3390/act10070137
– ident: ref_8
  doi: 10.3390/app122412592
– ident: ref_22
  doi: 10.3390/s24113504
– ident: ref_32
  doi: 10.3390/nano12193483
– ident: ref_38
  doi: 10.1109/MIKON.2014.6899908
– volume: 6
  start-page: 33508
  year: 2016
  ident: ref_1
  article-title: Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles
  publication-title: Sci. Rep.
  doi: 10.1038/srep33508
  contributor:
    fullname: Zhang
– volume: 30
  start-page: 548
  year: 2011
  ident: ref_2
  article-title: Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2011.04.008
  contributor:
    fullname: Ayatollahi
– volume: 37
  start-page: 1487
  year: 2017
  ident: ref_7
  article-title: CAD-assisted modeling of high dielectric contrast composite materials
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.10.032
  contributor:
    fullname: Wiens
– volume: 58
  start-page: 545
  year: 2010
  ident: ref_9
  article-title: Derivation of lichtenecker’s logarithmic mixture formula from maxwell’s equations
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2010.2040406
  contributor:
    fullname: Simpkin
– ident: ref_13
  doi: 10.3390/polym12040827
– ident: ref_4
  doi: 10.3390/polym13173005
– volume: 315
  start-page: 1
  year: 2005
  ident: ref_42
  article-title: Modeling Permittivity and Tangent Loss in Dielectric Materials Using Finite Element Method and Monte Carlo Simulation
  publication-title: Ferroelectrics
  doi: 10.1080/001501990910258
  contributor:
    fullname: Abraham
– volume: 136
  start-page: 47274
  year: 2019
  ident: ref_33
  article-title: Electrical properties of polycarbonate/expanded graphite nanocomposites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47274
  contributor:
    fullname: Gupta
– volume: 12
  start-page: 063003
  year: 2023
  ident: ref_36
  article-title: Dielectric Characterization of Heterogeneous Composites Using Time Domain Spectroscopy and Microwave Test Benches in Microwave Frequency
  publication-title: ECS J. Solid. State Sci. Technol.
  doi: 10.1149/2162-8777/acdaf5
  contributor:
    fullname: Djouada
SSID ssj0000331829
Score 2.4329221
Snippet Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach...
SourceID proquest
gale
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 3837
SubjectTerms Addition polymerization
Barium
Barium titanates
Ceramic materials
Ceramics
Composite materials
Dielectric properties
Dimethylpolysiloxane
Electric fields
Electric properties
Electrical properties
Energy storage
Fillers
Finite element analysis
Finite element method
Mechanical properties
Permittivity
Polydimethylsiloxane
Polymer matrix composites
Polymers
Pressure effects
Sensors
Title Analysis of Polymer-Ceramic Composites Performance on Electrical and Mechanical Properties through Finite Element and Empirical Models
URI https://www.ncbi.nlm.nih.gov/pubmed/39124501
https://www.proquest.com/docview/3090954550
https://www.proquest.com/docview/3091285232
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6ywUOiDeFBRmBxAFFNLHTOMdq26qrpauKLohbZCcOrdimq6QF9Q_wu5mx0zhbIQQHLmnjxE7q-Tyemc6DkDcqlDzqZ7CQMMSHh0x6Mo0Cj8FprEKlewKDkyfz6OKLGI74qNPZl9lybf-V0tAGtMbI2X-gdjMoNMB3oDkcgepw_Cu6t7OMzNZXu5UuvVNdYtl5s_jRSUtX6PneBAwAAEamGk6TOWCqMSDYnM7QWl9i2tWmps94iYIq9mk81Eer66XtjsXVrqq2zDuVG_vDHXOvFjv51db2Ol-WDqATYMAgQhtTz3yx_C4reI1vspS7XbN9fF5Wix_S2PzNvunsuR-lsfvODOdaFBIN5LJt1gi4capzSvB0ODt7N7AptbRlzegu7cc2W2TDu6M2RsMWJ0bN-3dbBGMx-lSupB8hs7c33czDPRnMk9lwnHw4uzg_IrcCYGGsZQcyezwDXhjENt8tDvneDXhDwjnc5w-0FyPFXN4jd2v1gw4sbu6Tji4ekDutpJQPyc89gug6pwcIog5BtIUgui6oQxCFaacOQdQhiNYIohZBtEaQ6dAgiFoEPSKfxqPL04lXV-vw0oCzjReonKdaCKkV90WkhPRVlAchy8McxNRURT2ulcy1SLMMhHA_hs9Ysb6WoAWonD0mx8W60E8JjVKQagMp4jzVXGSByFiGlSNDkfZ5qliXvN7PcHJtk7IkoMwiHRJHhy55i5OfIPU3pUxlHXACz8CcZ8lAYG4lBhJtl5zs6ZPUS7lKWC8G9QOD_rvkVXMZmC_-oyYLvd6ae0C-C0Er6ZInlq7NCzG4xMOe_-zPgz8ntx38T8jxptzqF-SoyrYvDeR-Ab78sbk
link.rule.ids 315,782,786,27933,27934
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Polymer-Ceramic+Composites+Performance+on+Electrical+and+Mechanical+Properties+through+Finite+Element+and+Empirical+Models&rft.jtitle=Materials&rft.au=Keshyagol%2C+Kiran&rft.au=Hiremath%2C+Shivashankarayya&rft.au=Vishwanatha%2C+H+M&rft.au=Rao%2C+P+Krishnananda&rft.date=2024-08-02&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=17&rft.issue=15&rft.spage=3837&rft_id=info:doi/10.3390%2Fma17153837&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon