Analysis of Polymer-Ceramic Composites Performance on Electrical and Mechanical Properties through Finite Element and Empirical Models
Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and f...
Saved in:
Published in: | Materials Vol. 17; no. 15; p. 3837 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
02-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite's permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models. |
---|---|
AbstractList | Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite's permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models.Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite's permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models. Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite’s permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models. |
Audience | Academic |
Author | Rao, P Krishnananda Naik, Nithesh H M, Vishwanatha Hiremath, Pavan Keshyagol, Kiran Hiremath, Shivashankarayya |
Author_xml | – sequence: 1 givenname: Kiran orcidid: 0000-0002-7541-6022 surname: Keshyagol fullname: Keshyagol, Kiran organization: Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India – sequence: 2 givenname: Shivashankarayya orcidid: 0000-0001-7613-9832 surname: Hiremath fullname: Hiremath, Shivashankarayya organization: Survivability Signal Intelligence Research Center, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea – sequence: 3 givenname: Vishwanatha orcidid: 0000-0003-3045-9771 surname: H M fullname: H M, Vishwanatha organization: Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India – sequence: 4 givenname: P Krishnananda surname: Rao fullname: Rao, P Krishnananda organization: Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India – sequence: 5 givenname: Pavan surname: Hiremath fullname: Hiremath, Pavan organization: Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India – sequence: 6 givenname: Nithesh orcidid: 0000-0003-0356-7697 surname: Naik fullname: Naik, Nithesh organization: Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39124501$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkctu3CAUhlGVqknTbPoAFVI3VSWnYGCMl6PRpK2UqLNo1xbgQ4aIiwv2Yl4gz10yk15UWBxA33eEzv8ancUUAaG3lFwz1pNPQdGOCiZZ9wJd0L5fNbTn_Oyf8zm6KuWB1MUYlW3_Cp2znrZcEHqBHtdR-UNxBSeLd8kfAuRmA1kFZ_AmhSkVN0PBO8g25aCiAZwi3nowc3ZGeaziiO_A7FU8Xnc5TZBnV515n9Nyv8c3LtYeT06AOB-FbZjcSb9LI_jyBr20yhe4eq6X6MfN9vvmS3P77fPXzfq2MS1nc9Nqyw1IqUBzKjstFdWdbQWzwnacGd0RDlpZkGYcOae0r7XXbAVKMqEtu0QfTn2nnH4uUOYhuGLAexUhLWVgpE5Gipa1FX3_H_qQllyndaRIL7gQpFLXJ-peeRhctGnOytQ9Qp1gjcq6-r6WhAvKOFlV4eNJMDmVksEOU3ZB5cNAyfCU6PA30Qq_e_7DogOMf9Df-bFf18Oeew |
Cites_doi | 10.1016/j.apt.2016.03.028 10.1149/2.0151602jes 10.1016/S0025-5408(03)00075-8 10.1016/j.ijhydene.2011.02.136 10.1002/app.34122 10.1002/app.49801 10.1088/2053-1591/ab4a36 10.1016/j.physb.2020.412357 10.1016/j.matlet.2010.02.058 10.1016/j.jnoncrysol.2013.12.005 10.2528/PIER06052601 10.1007/s10854-021-07242-1 10.3390/polym16040545 10.3390/ma15041543 10.3390/polym15214279 10.1016/j.compstruct.2011.05.036 10.1103/PhysRevB.56.8035 10.1088/1361-6404/aadf9b 10.1016/j.cej.2023.143802 10.1016/j.ijleo.2012.06.090 10.1016/j.materresbull.2020.110818 10.1016/j.compscitech.2012.12.014 10.3390/engproc2023059095 10.1016/0031-8914(65)90045-5 10.3390/nano11010162 10.1177/0021998308094543 10.1016/j.solmat.2018.11.008 10.1016/j.actamat.2015.11.008 10.3390/act10070137 10.3390/app122412592 10.3390/s24113504 10.3390/nano12193483 10.1109/MIKON.2014.6899908 10.1038/srep33508 10.1016/j.polymertesting.2011.04.008 10.1016/j.jeurceramsoc.2016.10.032 10.1109/TMTT.2010.2040406 10.3390/polym12040827 10.3390/polym13173005 10.1080/001501990910258 10.1002/app.47274 10.1149/2162-8777/acdaf5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.3390/ma17153837 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | A804513406 10_3390_ma17153837 39124501 |
Genre | Journal Article |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CZ9 D1I E3Z EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E NPM OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RPM TR2 TUS AAYXX CITATION 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c243t-2bf4ce88aeb4187b8a1b7f253f5f743cb704ebafe8cdd44119cdd9b36ea835bf3 |
ISSN | 1996-1944 |
IngestDate | Sat Oct 26 04:33:41 EDT 2024 Thu Oct 10 22:23:09 EDT 2024 Tue Nov 12 23:36:17 EST 2024 Thu Sep 26 20:54:58 EDT 2024 Sat Nov 02 12:02:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | permittivity empirical models capacitive model polymer composites FE analysis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c243t-2bf4ce88aeb4187b8a1b7f253f5f743cb704ebafe8cdd44119cdd9b36ea835bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3045-9771 0000-0003-0356-7697 0000-0001-7613-9832 0000-0002-7541-6022 |
OpenAccessLink | https://www.proquest.com/docview/3090954550 |
PMID | 39124501 |
PQID | 3090954550 |
PQPubID | 2032366 |
ParticipantIDs | proquest_miscellaneous_3091285232 proquest_journals_3090954550 gale_infotracacademiconefile_A804513406 crossref_primary_10_3390_ma17153837 pubmed_primary_39124501 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug-02 |
PublicationDateYYYYMMDD | 2024-08-02 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Looyenga (ref_19) 1965; 31 Lu (ref_14) 2023; 468 Gupta (ref_33) 2019; 136 ref_13 ref_12 Ramajo (ref_44) 2008; 42 Vadakkepatt (ref_18) 2016; 163 ref_32 Wang (ref_41) 2013; 76 Zhang (ref_3) 2021; 138 Iravani (ref_27) 2014; 9 ref_30 Costa (ref_37) 2014; 387 Djouada (ref_36) 2023; 12 Wiens (ref_7) 2017; 37 ref_38 Zhang (ref_1) 2016; 6 ref_15 Kakati (ref_17) 2011; 36 Padurariu (ref_43) 2016; 103 Levy (ref_10) 1997; 56 Tran (ref_16) 2018; 39 Koledintseva (ref_11) 2006; 63 Yoon (ref_5) 2003; 38 (ref_35) 2011; 93 ref_25 Parra (ref_26) 2010; 64 Pearce (ref_28) 2019; 191 ref_23 ref_22 ref_21 Drozdov (ref_40) 2020; 126 Simpkin (ref_9) 2010; 58 Renteria (ref_24) 2019; 6 Shivashankar (ref_39) 2021; 602 Talebian (ref_20) 2013; 124 ref_29 Guo (ref_34) 2016; 27 Shivashankar (ref_6) 2021; 32 ref_8 Abraham (ref_42) 2005; 315 Ayatollahi (ref_2) 2011; 30 ref_4 Wang (ref_31) 2011; 122 |
References_xml | – volume: 27 start-page: 1162 year: 2016 ident: ref_34 article-title: Effect of silicone coupling agent on dielectric properties of barium titanate/silicone elastomer composites publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.03.028 contributor: fullname: Guo – volume: 163 start-page: A119 year: 2016 ident: ref_18 article-title: Bruggeman’s Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0151602jes contributor: fullname: Vadakkepatt – volume: 38 start-page: 765 year: 2003 ident: ref_5 article-title: Dielectric constant and mixing model of BaTiO3 composite thick films publication-title: Mater. Res. Bull. doi: 10.1016/S0025-5408(03)00075-8 contributor: fullname: Yoon – volume: 36 start-page: 14851 year: 2011 ident: ref_17 article-title: Semi-empirical modeling of electrical conductivity for composite bipolar plate with multiple reinforcements publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.02.136 contributor: fullname: Kakati – volume: 122 start-page: 545 year: 2011 ident: ref_31 article-title: Polymerization of styrene using novel bispyrazolylimine dinickel (II)/methylaluminoxane catalytic systems publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.34122 contributor: fullname: Wang – volume: 138 start-page: 49801 year: 2021 ident: ref_3 article-title: Fluorinated graphene/polyimide nanocomposites for advanced electronic packaging applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.49801 contributor: fullname: Zhang – volume: 6 start-page: 115211 year: 2019 ident: ref_24 article-title: Particle size influence on material properties of BaTiO3 ceramics fabricated using freeze-form extrusion 3D printing publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab4a36 contributor: fullname: Renteria – volume: 602 start-page: 412357 year: 2021 ident: ref_39 article-title: Investigation on dielectric properties of PDMS based nanocomposites publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2020.412357 contributor: fullname: Shivashankar – volume: 64 start-page: 1226 year: 2010 ident: ref_26 article-title: Elastic modulus and hardness of CaTiO3, CaCu3Ti4O12 and CaTiO3/CaCu3Ti4O12 mixture publication-title: Mater. Lett. doi: 10.1016/j.matlet.2010.02.058 contributor: fullname: Parra – volume: 387 start-page: 6 year: 2014 ident: ref_37 article-title: Evaluation of dielectric models for ceramic/polymer composites: Effect of filler size and concentration publication-title: J. Non Cryst. Solids doi: 10.1016/j.jnoncrysol.2013.12.005 contributor: fullname: Costa – volume: 63 start-page: 223 year: 2006 ident: ref_11 article-title: A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER06052601 contributor: fullname: Koledintseva – volume: 32 start-page: 28674 year: 2021 ident: ref_6 article-title: Study on low-frequency dielectric behavior of the carbon black/polymer nanocomposite publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-021-07242-1 contributor: fullname: Shivashankar – ident: ref_15 doi: 10.3390/polym16040545 – ident: ref_21 doi: 10.3390/ma15041543 – ident: ref_29 doi: 10.3390/polym15214279 – volume: 93 start-page: 3209 year: 2011 ident: ref_35 article-title: Dielectric modeling of multiphase composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2011.05.036 – volume: 56 start-page: 8035 year: 1997 ident: ref_10 article-title: Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.56.8035 contributor: fullname: Levy – volume: 39 start-page: 063001 year: 2018 ident: ref_16 article-title: Evidence for Maxwell’s equations, fields, force laws and alternative theories of classical electrodynamics publication-title: Eur. J. Phys. doi: 10.1088/1361-6404/aadf9b contributor: fullname: Tran – volume: 9 start-page: 385 year: 2014 ident: ref_27 article-title: Synthesis of silver nanoparticles: Chemical, physical and biological methods publication-title: Res. Pharm. Sci. contributor: fullname: Iravani – volume: 468 start-page: 143802 year: 2023 ident: ref_14 article-title: Constructing highly flexible dielectric sponge for enhancing triboelectric performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143802 contributor: fullname: Lu – volume: 124 start-page: 2324 year: 2013 ident: ref_20 article-title: A general review on the derivation of Clausius–Mossotti relation publication-title: Optik doi: 10.1016/j.ijleo.2012.06.090 contributor: fullname: Talebian – volume: 126 start-page: 110818 year: 2020 ident: ref_40 article-title: Modeling dielectric permittivity of polymer composites at microwave frequencies publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2020.110818 contributor: fullname: Drozdov – volume: 76 start-page: 29 year: 2013 ident: ref_41 article-title: Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2012.12.014 contributor: fullname: Wang – ident: ref_23 doi: 10.3390/engproc2023059095 – volume: 31 start-page: 401 year: 1965 ident: ref_19 article-title: Dielectric constants of heterogeneous mixtures publication-title: Physica doi: 10.1016/0031-8914(65)90045-5 contributor: fullname: Looyenga – ident: ref_30 doi: 10.3390/nano11010162 – volume: 42 start-page: 2027 year: 2008 ident: ref_44 article-title: Computational Approach of Dielectric Permitivities in BaTiO3—Epoxy Composites publication-title: J. Compos. Mater. doi: 10.1177/0021998308094543 contributor: fullname: Ramajo – volume: 191 start-page: 133 year: 2019 ident: ref_28 article-title: The importance of accurate determination of optical constants for the design of nanometallic light-trapping structures publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.11.008 contributor: fullname: Pearce – volume: 103 start-page: 724 year: 2016 ident: ref_43 article-title: Nonlinear dielectric properties of paraelectric-dielectric composites described by a 3D Finite Element Method based on Landau-Devonshire theory publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.11.008 contributor: fullname: Padurariu – ident: ref_12 – ident: ref_25 doi: 10.3390/act10070137 – ident: ref_8 doi: 10.3390/app122412592 – ident: ref_22 doi: 10.3390/s24113504 – ident: ref_32 doi: 10.3390/nano12193483 – ident: ref_38 doi: 10.1109/MIKON.2014.6899908 – volume: 6 start-page: 33508 year: 2016 ident: ref_1 article-title: Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles publication-title: Sci. Rep. doi: 10.1038/srep33508 contributor: fullname: Zhang – volume: 30 start-page: 548 year: 2011 ident: ref_2 article-title: Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2011.04.008 contributor: fullname: Ayatollahi – volume: 37 start-page: 1487 year: 2017 ident: ref_7 article-title: CAD-assisted modeling of high dielectric contrast composite materials publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.10.032 contributor: fullname: Wiens – volume: 58 start-page: 545 year: 2010 ident: ref_9 article-title: Derivation of lichtenecker’s logarithmic mixture formula from maxwell’s equations publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2010.2040406 contributor: fullname: Simpkin – ident: ref_13 doi: 10.3390/polym12040827 – ident: ref_4 doi: 10.3390/polym13173005 – volume: 315 start-page: 1 year: 2005 ident: ref_42 article-title: Modeling Permittivity and Tangent Loss in Dielectric Materials Using Finite Element Method and Monte Carlo Simulation publication-title: Ferroelectrics doi: 10.1080/001501990910258 contributor: fullname: Abraham – volume: 136 start-page: 47274 year: 2019 ident: ref_33 article-title: Electrical properties of polycarbonate/expanded graphite nanocomposites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47274 contributor: fullname: Gupta – volume: 12 start-page: 063003 year: 2023 ident: ref_36 article-title: Dielectric Characterization of Heterogeneous Composites Using Time Domain Spectroscopy and Microwave Test Benches in Microwave Frequency publication-title: ECS J. Solid. State Sci. Technol. doi: 10.1149/2162-8777/acdaf5 contributor: fullname: Djouada |
SSID | ssj0000331829 |
Score | 2.4329221 |
Snippet | Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach... |
SourceID | proquest gale crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 3837 |
SubjectTerms | Addition polymerization Barium Barium titanates Ceramic materials Ceramics Composite materials Dielectric properties Dimethylpolysiloxane Electric fields Electric properties Electrical properties Energy storage Fillers Finite element analysis Finite element method Mechanical properties Permittivity Polydimethylsiloxane Polymer matrix composites Polymers Pressure effects Sensors |
Title | Analysis of Polymer-Ceramic Composites Performance on Electrical and Mechanical Properties through Finite Element and Empirical Models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39124501 https://www.proquest.com/docview/3090954550 https://www.proquest.com/docview/3091285232 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6ywUOiDeFBRmBxAFFNLHTOMdq26qrpauKLohbZCcOrdimq6QF9Q_wu5mx0zhbIQQHLmnjxE7q-Tyemc6DkDcqlDzqZ7CQMMSHh0x6Mo0Cj8FprEKlewKDkyfz6OKLGI74qNPZl9lybf-V0tAGtMbI2X-gdjMoNMB3oDkcgepw_Cu6t7OMzNZXu5UuvVNdYtl5s_jRSUtX6PneBAwAAEamGk6TOWCqMSDYnM7QWl9i2tWmps94iYIq9mk81Eer66XtjsXVrqq2zDuVG_vDHXOvFjv51db2Ol-WDqATYMAgQhtTz3yx_C4reI1vspS7XbN9fF5Wix_S2PzNvunsuR-lsfvODOdaFBIN5LJt1gi4capzSvB0ODt7N7AptbRlzegu7cc2W2TDu6M2RsMWJ0bN-3dbBGMx-lSupB8hs7c33czDPRnMk9lwnHw4uzg_IrcCYGGsZQcyezwDXhjENt8tDvneDXhDwjnc5w-0FyPFXN4jd2v1gw4sbu6Tji4ekDutpJQPyc89gug6pwcIog5BtIUgui6oQxCFaacOQdQhiNYIohZBtEaQ6dAgiFoEPSKfxqPL04lXV-vw0oCzjReonKdaCKkV90WkhPRVlAchy8McxNRURT2ulcy1SLMMhHA_hs9Ysb6WoAWonD0mx8W60E8JjVKQagMp4jzVXGSByFiGlSNDkfZ5qliXvN7PcHJtk7IkoMwiHRJHhy55i5OfIPU3pUxlHXACz8CcZ8lAYG4lBhJtl5zs6ZPUS7lKWC8G9QOD_rvkVXMZmC_-oyYLvd6ae0C-C0Er6ZInlq7NCzG4xMOe_-zPgz8ntx38T8jxptzqF-SoyrYvDeR-Ab78sbk |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Polymer-Ceramic+Composites+Performance+on+Electrical+and+Mechanical+Properties+through+Finite+Element+and+Empirical+Models&rft.jtitle=Materials&rft.au=Keshyagol%2C+Kiran&rft.au=Hiremath%2C+Shivashankarayya&rft.au=Vishwanatha%2C+H+M&rft.au=Rao%2C+P+Krishnananda&rft.date=2024-08-02&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=17&rft.issue=15&rft.spage=3837&rft_id=info:doi/10.3390%2Fma17153837&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |