Long‐Lived Acoustic Phonon and Carrier Dynamics in III–V Adiabatic Cavities

Evidence of strongly confined coherent acoustic phonons inside high quality factor phononic cavities that exhibit tailored phonon potentials is provided. Using GaAs/AlAs quasiperiodic superlattices, functional phonon potentials are realized by adiabatically changing the layer thicknesses along the g...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 34; no. 39
Main Authors: Hanif, Muhammad, Dubajic, Milos, Sreerag, Sujakala J., Kini, Rajeev N., Conibeer, Gavin J., Nielsen, Michael P., Bremner, Stephen P.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01-09-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Evidence of strongly confined coherent acoustic phonons inside high quality factor phononic cavities that exhibit tailored phonon potentials is provided. Using GaAs/AlAs quasiperiodic superlattices, functional phonon potentials are realized by adiabatically changing the layer thicknesses along the growth direction. Room temperature ultrafast vibrational spectroscopy reveals discrete phonon modes with frequencies in the range of ≈96–101 GHz. Additionally, it is confirmed that phononic cavities impact the energy loss rate of the photoexcited carriers, as evidenced by time‐resolved photoluminescence measurements. These results highlight the potential of concurrently engineering optoelectronic and phononic properties for a range of novel applications. Ultrafast vibrational spectroscopy shows that adiabatically changing layer thicknesses in GaAs/AlAs superlattices results in discrete phonon modes with coherence times on the order of nanoseconds, in the frequency range 96– 101 GHz. Time resolved photoluminescence suggest these phonon modes slow the energy loss of photoexcited carriers, highlighting the potential of concurrently engineering phononic and optoelectronic properties.
AbstractList Evidence of strongly confined coherent acoustic phonons inside high quality factor phononic cavities that exhibit tailored phonon potentials is provided. Using GaAs/AlAs quasiperiodic superlattices, functional phonon potentials are realized by adiabatically changing the layer thicknesses along the growth direction. Room temperature ultrafast vibrational spectroscopy reveals discrete phonon modes with frequencies in the range of ≈96–101 GHz. Additionally, it is confirmed that phononic cavities impact the energy loss rate of the photoexcited carriers, as evidenced by time‐resolved photoluminescence measurements. These results highlight the potential of concurrently engineering optoelectronic and phononic properties for a range of novel applications.
Evidence of strongly confined coherent acoustic phonons inside high quality factor phononic cavities that exhibit tailored phonon potentials is provided. Using GaAs/AlAs quasiperiodic superlattices, functional phonon potentials are realized by adiabatically changing the layer thicknesses along the growth direction. Room temperature ultrafast vibrational spectroscopy reveals discrete phonon modes with frequencies in the range of ≈96–101 GHz. Additionally, it is confirmed that phononic cavities impact the energy loss rate of the photoexcited carriers, as evidenced by time‐resolved photoluminescence measurements. These results highlight the potential of concurrently engineering optoelectronic and phononic properties for a range of novel applications. Ultrafast vibrational spectroscopy shows that adiabatically changing layer thicknesses in GaAs/AlAs superlattices results in discrete phonon modes with coherence times on the order of nanoseconds, in the frequency range 96– 101 GHz. Time resolved photoluminescence suggest these phonon modes slow the energy loss of photoexcited carriers, highlighting the potential of concurrently engineering phononic and optoelectronic properties.
Evidence of strongly confined coherent acoustic phonons inside high quality factor phononic cavities that exhibit tailored phonon potentials is provided. Using GaAs/AlAs quasiperiodic superlattices, functional phonon potentials are realized by adiabatically changing the layer thicknesses along the growth direction. Room temperature ultrafast vibrational spectroscopy reveals discrete phonon modes with frequencies in the range of ≈96–101 GHz. Additionally, it is confirmed that phononic cavities impact the energy loss rate of the photoexcited carriers, as evidenced by time‐resolved photoluminescence measurements. These results highlight the potential of concurrently engineering optoelectronic and phononic properties for a range of novel applications.
Author Bremner, Stephen P.
Hanif, Muhammad
Dubajic, Milos
Nielsen, Michael P.
Sreerag, Sujakala J.
Conibeer, Gavin J.
Kini, Rajeev N.
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Hanif
  fullname: Hanif, Muhammad
  organization: UNSW Sydney
– sequence: 2
  givenname: Milos
  surname: Dubajic
  fullname: Dubajic, Milos
  email: md942@cam.ac.uk
  organization: University of Cambridge
– sequence: 3
  givenname: Sujakala J.
  surname: Sreerag
  fullname: Sreerag, Sujakala J.
  organization: Indian Institute of Science Education and Research
– sequence: 4
  givenname: Rajeev N.
  surname: Kini
  fullname: Kini, Rajeev N.
  organization: Indian Institute of Science Education and Research
– sequence: 5
  givenname: Gavin J.
  surname: Conibeer
  fullname: Conibeer, Gavin J.
  organization: UNSW Sydney
– sequence: 6
  givenname: Michael P.
  orcidid: 0000-0002-0457-7208
  surname: Nielsen
  fullname: Nielsen, Michael P.
  email: michael.nielsen@unsw.edu.au
  organization: UNSW Sydney
– sequence: 7
  givenname: Stephen P.
  orcidid: 0000-0001-9308-2401
  surname: Bremner
  fullname: Bremner, Stephen P.
  email: stephen.bremner@unsw.edu.au
  organization: UNSW Sydney
BookMark eNqFkL1OwzAURi1UJNrCymyJOcV2nDgeo5RCpKAyAGKzXNsBV21c7P6oWx8BiTfsk5CqqIxM9w7f-e7V6YFO4xoDwDVGA4wQuZW6ng8IIhRRwvkZ6OIUp1GMSNY57fjtAvRCmCKEGYtpF4wr17zvd1-VXRsNc-VWYWkVfPpwbTuUjYaF9N4aD4fbRs6tCtA2sCzL_e77Febayok8AIVc26U14RKc13IWzNXv7IOX0d1z8RBV4_uyyKtIkfa7KCMUY5LEmSJpgnmqMOeMEqWoxppKrrOasZoQrYySNJGpNixLJkTXCTKxzOI-uDn2Lrz7XJmwFFO38k17UsQY8ZRmmKE2NTimlHcheFOLhbdz6bcCI3GQJg7SxElaC_AjsLEzs_0nLfLh6PGP_QEsqHKq
Cites_doi 10.1063/1.2988470
10.1103/PhysRevApplied.19.044002
10.1063/1.367411
10.1103/PhysRevLett.53.989
10.1002/bbpc.19930971227
10.1166/jnn.2005.175
10.1063/1.5000805
10.1140/epjb/e2015-60727-7
10.1002/pip.2890
10.1103/PhysRevLett.89.227402
10.1103/PhysRevLett.110.037403
10.1063/1.449708
10.1038/s41563-018-0262-7
10.1103/PhysRevLett.110.095503
10.1103/RevModPhys.86.1391
10.1063/1.3527930
10.1103/PhysRevB.75.024301
10.1063/5.0142925
10.1364/OL.30.000926
10.1088/0268-1242/9/5S/094
10.1007/s12274-010-1019-z
10.1103/PhysRevB.45.768
10.1103/PhysRevB.100.085430
10.1364/OPTICA.6.000854
10.1063/5.0093321
10.1038/nature11439
10.1103/PhysRevB.58.1544
10.1038/s41598-019-56847-4
10.1039/D2NR04100F
10.1103/PhysRevB.60.2627
10.1103/RevModPhys.84.1045
10.1063/1.5082728
10.1364/OL.40.000064
10.1103/PhysRevLett.45.298
10.1103/PhysRevB.97.165412
10.1038/s41467-020-20314-w
10.1103/PhysRevMaterials.6.L061001
10.1103/PhysRevB.97.155422
10.1088/1361-6641/ab20f5
10.1016/j.ultras.2014.05.017
10.1103/PhysRevLett.118.263901
10.1063/1.3295701
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202404299
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Free Content
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202404299
ADFM202404299
Genre article
GrantInformation_xml – fundername: Marie Skłodowska‐Curie Actions
  funderid: EP/Y024648/1
– fundername: Australian Research Council
  funderid: DP170102677
– fundername: University of New South Wales
– fundername: Australian Institute of Nuclear Science and Engineering
– fundername: Centre of Excellence in Exciton Science
  funderid: CE17100026
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAMNL
AAYXX
CITATION
LH4
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2429-824112538c265196c199742cc4d1d4a9d8f77f22dceca45a6de785b2df50e3a83
IEDL.DBID 33P
ISSN 1616-301X
IngestDate Thu Oct 10 21:11:36 EDT 2024
Fri Nov 22 03:04:56 EST 2024
Thu Sep 26 12:15:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2429-824112538c265196c199742cc4d1d4a9d8f77f22dceca45a6de785b2df50e3a83
ORCID 0000-0001-9308-2401
0000-0002-0457-7208
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202404299
PQID 3109648170
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_3109648170
crossref_primary_10_1002_adfm_202404299
wiley_primary_10_1002_adfm_202404299_ADFM202404299
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 56
2010; 97
2019; 4
2019; 6
2017; 25
2019; 34
1980; 45
2023; 122
2023; 19
2019; 18
1998; 83
2020; 10
1985; 83
2007; 75
2017; 111
1999; 60
2012; 489
2008; 93
2019; 100
2014; 86
2017; 118
1994; 9
2022; 120
1984; 53
2012; 253
2021; 12
2015; 40
2022; 6
2002; 89
1993; 97
2005; 5
2005; 30
2022; 14
2013; 110
2010; 3
2016; 29
2018; 97
1992; 45
2010; 96
2016; 89
1998; 58
2012; 84
Jiang M. (e_1_2_11_28_1) 2020; 10
Arregui G. (e_1_2_11_27_1) 2019; 4
Brockmann P. (e_1_2_11_42_1) 1994; 9
Makhfudz I. (e_1_2_11_43_1) 2023; 19
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_5_1
e_1_2_11_4_1
e_1_2_11_3_1
Wahlstrand J. K. (e_1_2_11_36_1) 2005; 30
e_1_2_11_2_1
e_1_2_11_1_1
Liu Y. (e_1_2_11_30_1) 2022; 120
Beeby J. L. (e_1_2_11_40_1) 2012
Huang Y. (e_1_2_11_44_1) 2022; 6
Gibelli F. (e_1_2_11_39_1) 2016; 29
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
Ríos Sommer A. (e_1_2_11_32_1) 2021; 12
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_19_1
Wu W. (e_1_2_11_26_1) 2015; 40
References_xml – volume: 14
  year: 2022
  publication-title: Nanoscale
– volume: 83
  start-page: 5391
  year: 1985
  publication-title: J. chem. phys.
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 89
  start-page: 1
  year: 2016
  publication-title: Eur. Phys. J. B
– volume: 19
  year: 2023
  publication-title: Phys. Rev. Appl.
– volume: 9
  start-page: 746
  year: 1994
  publication-title: Semicond. Sci. Technol.
– volume: 253
  year: 2012
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 489
  start-page: 414
  year: 2012
  publication-title: Nature
– volume: 60
  start-page: 2627
  year: 1999
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 854
  year: 2019
  publication-title: Optica
– volume: 29
  year: 2016
  publication-title: J. Phys.: Condens. Matter
– volume: 6
  year: 2022
  publication-title: Phys. Rev. Mater.
– volume: 93
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 97
  start-page: 1680
  year: 1993
  publication-title: Ber. Bunsen Ges. Phys. Chem.
– volume: 10
  start-page: 1
  year: 2020
  publication-title: Sci. Rep.
– volume: 83
  start-page: 1789
  year: 1998
  publication-title: J. Appl. Phys.
– volume: 30
  start-page: 926
  year: 2005
  publication-title: Opt. Lett.
– volume: 25
  start-page: 782
  year: 2017
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 45
  start-page: 298
  year: 1980
  publication-title: Phys. Rev. Lett.
– volume: 53
  start-page: 989
  year: 1984
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 768
  year: 1992
  publication-title: Phys. Rev. B
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 1045
  year: 2012
  publication-title: Rev. Mod. Phys.
– volume: 4
  year: 2019
  publication-title: APL Photonics
– volume: 56
  start-page: 80
  year: 2015
  publication-title: Ultrasonics
– volume: 97
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 58
  start-page: 1544
  year: 1998
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 1391
  year: 2014
  publication-title: Rev. Mod. Phys.
– volume: 34
  year: 2019
  publication-title: Semicond. Sci. Technol.
– volume: 3
  start-page: 147
  year: 2010
  publication-title: Nano Res.
– volume: 40
  start-page: 64
  year: 2015
  publication-title: Opt. Lett.
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 349
  year: 2019
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1
  year: 2021
  publication-title: Nat. Commun.
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 1015
  year: 2005
  publication-title: J. Nanosci. Nanotechnol.
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 122
  start-page: 14
  year: 2023
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_11_6_1
  doi: 10.1063/1.2988470
– volume: 19
  year: 2023
  ident: e_1_2_11_43_1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.19.044002
  contributor:
    fullname: Makhfudz I.
– ident: e_1_2_11_31_1
  doi: 10.1063/1.367411
– ident: e_1_2_11_24_1
  doi: 10.1103/PhysRevLett.53.989
– ident: e_1_2_11_34_1
  doi: 10.1002/bbpc.19930971227
– ident: e_1_2_11_13_1
  doi: 10.1166/jnn.2005.175
– ident: e_1_2_11_10_1
  doi: 10.1063/1.5000805
– ident: e_1_2_11_7_1
  doi: 10.1140/epjb/e2015-60727-7
– ident: e_1_2_11_41_1
  doi: 10.1002/pip.2890
– ident: e_1_2_11_12_1
  doi: 10.1103/PhysRevLett.89.227402
– ident: e_1_2_11_37_1
  doi: 10.1103/PhysRevLett.110.037403
– ident: e_1_2_11_35_1
  doi: 10.1063/1.449708
– ident: e_1_2_11_25_1
  doi: 10.1038/s41563-018-0262-7
– ident: e_1_2_11_29_1
  doi: 10.1103/PhysRevLett.110.095503
– ident: e_1_2_11_4_1
  doi: 10.1103/RevModPhys.86.1391
– ident: e_1_2_11_14_1
  doi: 10.1063/1.3527930
– ident: e_1_2_11_2_1
  doi: 10.1103/PhysRevB.75.024301
– ident: e_1_2_11_8_1
  doi: 10.1063/5.0142925
– volume: 30
  start-page: 926
  year: 2005
  ident: e_1_2_11_36_1
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.000926
  contributor:
    fullname: Wahlstrand J. K.
– volume: 9
  start-page: 746
  year: 1994
  ident: e_1_2_11_42_1
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/9/5S/094
  contributor:
    fullname: Brockmann P.
– ident: e_1_2_11_5_1
  doi: 10.1007/s12274-010-1019-z
– ident: e_1_2_11_33_1
  doi: 10.1103/PhysRevB.45.768
– volume: 29
  year: 2016
  ident: e_1_2_11_39_1
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Gibelli F.
– ident: e_1_2_11_19_1
  doi: 10.1103/PhysRevB.100.085430
– volume-title: Condensed Systems of Low Dimensionality
  year: 2012
  ident: e_1_2_11_40_1
  contributor:
    fullname: Beeby J. L.
– ident: e_1_2_11_17_1
  doi: 10.1364/OPTICA.6.000854
– volume: 120
  year: 2022
  ident: e_1_2_11_30_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0093321
  contributor:
    fullname: Liu Y.
– ident: e_1_2_11_3_1
  doi: 10.1038/nature11439
– ident: e_1_2_11_11_1
  doi: 10.1103/PhysRevB.58.1544
– volume: 10
  start-page: 1
  year: 2020
  ident: e_1_2_11_28_1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
  contributor:
    fullname: Jiang M.
– ident: e_1_2_11_23_1
  doi: 10.1039/D2NR04100F
– ident: e_1_2_11_38_1
  doi: 10.1103/PhysRevB.60.2627
– ident: e_1_2_11_20_1
  doi: 10.1103/RevModPhys.84.1045
– volume: 4
  year: 2019
  ident: e_1_2_11_27_1
  publication-title: APL Photonics
  doi: 10.1063/1.5082728
  contributor:
    fullname: Arregui G.
– volume: 40
  start-page: 64
  year: 2015
  ident: e_1_2_11_26_1
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.000064
  contributor:
    fullname: Wu W.
– ident: e_1_2_11_22_1
  doi: 10.1103/PhysRevLett.45.298
– ident: e_1_2_11_1_1
  doi: 10.1103/PhysRevB.97.165412
– volume: 12
  start-page: 1
  year: 2021
  ident: e_1_2_11_32_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
  contributor:
    fullname: Ríos Sommer A.
– volume: 6
  year: 2022
  ident: e_1_2_11_44_1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.6.L061001
  contributor:
    fullname: Huang Y.
– ident: e_1_2_11_21_1
  doi: 10.1103/PhysRevB.97.155422
– ident: e_1_2_11_18_1
  doi: 10.1088/1361-6641/ab20f5
– ident: e_1_2_11_15_1
  doi: 10.1016/j.ultras.2014.05.017
– ident: e_1_2_11_16_1
  doi: 10.1103/PhysRevLett.118.263901
– ident: e_1_2_11_9_1
  doi: 10.1063/1.3295701
SSID ssj0017734
Score 2.5041687
Snippet Evidence of strongly confined coherent acoustic phonons inside high quality factor phononic cavities that exhibit tailored phonon potentials is provided. Using...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms acoustic phonons
Adiabatic flow
III–V superlattice
Optoelectronics
phonon cavity
Phonons
Photoluminescence
Room temperature
Superlattices
Thickness
Title Long‐Lived Acoustic Phonon and Carrier Dynamics in III–V Adiabatic Cavities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202404299
https://www.proquest.com/docview/3109648170
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagGwNvRKEgD0hMURPHcZwx6kNUKlCJh7pF9jkBlgQ1lLk_AYl_2F-C7bRpOyHBGCWOrLPv7jv77juEroRkwIDqIAcYd7QmZk7kcnBAUo3vfWsPzdHFQ3g35t2eocmpq_grfoj6wM1ohrXXRsGFLNsr0lChMlNJrj2SManaCOtQwdZw-KP6GiEMq2tl5pkEL2-8ZG10SXtz-KZXWkHNdcBqPU5_7_9z3Ue7C7SJ42p7HKCtND9EO2schEfofljkL_PZ11CbPYVjKGx7Lzx6LfIixyJXuCMmpq0d7lbN60v8luPBYDCffT_j2JzdGtJX_dWnJWc9Rk_93mPnxll0WXBAu-fI4dqHa5TjcyBMwzkGJvWEEgCqPEVFpHgWhhkhClIQNBBMpSEPJFFZ4Ka-4P4JaugJpacIBxGRIFKgkodUMSIJMFcQ7qrI0y9UE10vpZy8V2QaSUWbTBIjoqQWURO1louQLJSqTAyJKaOGUbCJiBX3L39J4m7_tn46-8ugcxPI-1XWn9dCjY_JNL1A26WaXtqt9gOMZtLO
link.rule.ids 315,782,786,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMgADb0ShgAckpqiJ4zrOGPWhRrSlEgV1ixw7AZYEtZS5PwGJf9hfgp20aTshIcY8HFnne3w5n78DuOUhFVQQ9ZMjKDOUJcaGazJhiJAofG9n_lCnLh6d_og1W5omx1uehcn5IYqEm7aMzF9rA9cJ6dqKNZTLWB8lVyFJ-9QSbBNKmFZs2x4UGwmOk28sU0uXeFmjJW-jiWub4zfj0gpsrkPWLOa0D_5htoewvwCcyMs15Ai2ouQY9tZoCE_goZsmL_PZV1d5Pok8kWYdvtDgNU3SBPFEogYf6852qJn3r5-gtwT5vj-ffT8jT6dvNe-reusz42c9had2a9joGItGC4ZQEdo1mArjCujYTGCqEB0VuvqEYCGItCThrmSx48QYSxEJTuqcyshh9RDLuG5GNmf2GZTVhKJzQHUXh4JHgoTMIZLiEAtqcsxM6VrqgazA3VLMwXvOpxHkzMk40CIKChFVoLpchWBhV5NA85iqVbYcswI4k_cvXwm8ZrtXXF38ZdAN7HSGvW7Q9fv3l7Cr7-dFZlUof4yn0RWUJnJ6nendD_zL1wM
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RIiEYeCMKBTwgMUVNHcdxxqhpREUplXioW-TYCbAkVUuZ-xOQ-If9JdhJm7YTEox52LLOvrvP5_N3ANc8ooIKojY5gjJDaWJiuCYThoiIwvdWbg916OLR6Q2Y39Y0OeUt_oIfogy4ac3I7bVW8KFMGkvSUC4TfZNceSRtUiuwSRQW10l9ltUvzxEcpzhXpk2d4dUcLGgbTdxYb7_ulpZYcxWx5i4n2Pv_YPdhdw43kVesjwPYiNND2FkhITyCh26Wvs6mX11l9yTyRJbX90L9tyzNUsRTiVp8pOvaIb-oXj9G7ynqdDqz6fcL8nTwVrO-qr8-c3bWY3gO2k-tW2NeZsEQyj-7BlNOXMEciwlMFZ6jQueeECwEkU1JuCtZ4jgJxlLEghObUxk7zI6wTGwztjizTqCqBhSfArJdHAkeCxIxh0iKIyyoyTEzpdtUH2QNbhZSDocFm0ZY8CbjUIsoLEVUg_piEsK5Vo1DzWJKiaYUrAHOxf1LL6HnB_fl09lfGl3BVt8Pwm6nd3cO2_p1kWFWh-rHaBJfQGUsJ5f5qvsBeVLVqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long%E2%80%90Lived+Acoustic+Phonon+and+Carrier+Dynamics+in+III%E2%80%93V+Adiabatic+Cavities&rft.jtitle=Advanced+functional+materials&rft.au=Hanif%2C+Muhammad&rft.au=Dubajic%2C+Milos&rft.au=Sreerag%2C+Sujakala+J.&rft.au=Kini%2C+Rajeev+N.&rft.date=2024-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202404299&rft.externalDBID=10.1002%252Fadfm.202404299&rft.externalDocID=ADFM202404299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon