Performance Evaluation of Real-Time Multivariate Data Reduction Models for Adaptive-Threshold in Wireless Sensor Networks
This article presents a new metric to assess the performance of different multivariate data reduction models in wireless sensor networks. The proposed metric is called updating frequency metric that is defined as the frequency of updating the model reference parameters during data collection. A meth...
Saved in:
Published in: | IEEE sensors letters Vol. 1; no. 6; pp. 1 - 4 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
IEEE
01-12-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This article presents a new metric to assess the performance of different multivariate data reduction models in wireless sensor networks. The proposed metric is called updating frequency metric that is defined as the frequency of updating the model reference parameters during data collection. A method for estimating the error threshold value during the training phase is also suggested. The proposed threshold of error is used to update the model reference parameters when it is necessary. Numerical analysis and simulation results show that the proposed metric validates its effectiveness in the performance of multivariate data reduction models in terms of the sensor node energy consumption. The adaptive threshold improves the frequency of updating the parameters by 80% and 52%, in comparison to the nonadaptive threshold for multivariate data reduction models of MLR-B and PCA-B, respectively. |
---|---|
AbstractList | This article presents a new metric to assess the performance of different multivariate data reduction models in wireless sensor networks. The proposed metric is called updating frequency metric that is defined as the frequency of updating the model reference parameters during data collection. A method for estimating the error threshold value during the training phase is also suggested. The proposed threshold of error is used to update the model reference parameters when it is necessary. Numerical analysis and simulation results show that the proposed metric validates its effectiveness in the performance of multivariate data reduction models in terms of the sensor node energy consumption. The adaptive threshold improves the frequency of updating the parameters by 80% and 52%, in comparison to the nonadaptive threshold for multivariate data reduction models of MLR-B and PCA-B, respectively. |
Author | Heidari, Hadi Abdullah, Jiwa Jamil, Ansar Alduais, N. A. M. |
Author_xml | – sequence: 1 givenname: N. A. M. surname: Alduais fullname: Alduais, N. A. M. organization: Wireless & Radio Sci. Centre, Univ. Tun Hussein Onn Malaysia, Batu Pahat, Malaysia – sequence: 2 givenname: Jiwa surname: Abdullah fullname: Abdullah, Jiwa email: naifalduais@gmail.com organization: Wireless & Radio Sci. Centre, Univ. Tun Hussein Onn Malaysia, Batu Pahat, Malaysia – sequence: 3 givenname: Ansar surname: Jamil fullname: Jamil, Ansar organization: Wireless & Radio Sci. Centre, Univ. Tun Hussein Onn Malaysia, Batu Pahat, Malaysia – sequence: 4 givenname: Hadi surname: Heidari fullname: Heidari, Hadi organization: Sch. of Eng., Univ. of Glasgow, Glasgow, UK |
BookMark | eNpNkM1OAjEUhRuDiYi8gG76AoNtZ4a2S4L4kwAawbicdNrbUB2mpB0wvL3DT4yre5L7nbP4rlGn9jUgdEvJgFIi76eLyXwxYITyAeNDwai4QF2W8TyhGWedf_kK9WP8IoRQwThJSRft3yBYH9aq1oAnO1VtVeN8jb3F76CqZOnWgGfbqnE7FZxqAD-oRrU_s9VHcOYNVBG3G3hk1KblIFmuAsSVrwx2Nf50ASqIES-gji01h-bHh-94gy6tqiL0z7eHPh4ny_FzMn19ehmPpolmGW0SLYiRoLnkujRaMhiWNmfa5EZwsLpkWjGhMyFtZkuueQa5KFMiRVZqUKVJe4iddnXwMQawxSa4tQr7gpLi4K84-isO_oqzv7Z0dyo5APgrCCJTKfP0F4GAcfA |
CODEN | ISLECD |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2926209 crossref_primary_10_1155_2021_6664324 crossref_primary_10_1109_JIOT_2018_2849655 crossref_primary_10_1155_2019_4182563 |
Cites_doi | 10.1109/IEMCON.2016.7746084 10.1109/LSENS.2017.2691677 10.1504/IJAHUC.2015.067756 10.1109/ISCC.2012.6249344 10.3390/s111110010 10.1109/JSEN.2015.2504106 10.3390/s130810087 10.1109/SURV.2010.021510.00088 10.1109/TPAMI.2003.1217609 10.1016/j.asoc.2012.11.041 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LSENS.2017.2768218 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1472 |
EndPage | 4 |
ExternalDocumentID | 10_1109_LSENS_2017_2768218 8093995 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFS AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE RIG AAYXX CITATION |
ID | FETCH-LOGICAL-c241t-c80d9ec797cbdc92e6bf52cd5d87efcb2ca28c489f4fb7c74e58b30984bceabd3 |
IEDL.DBID | RIE |
ISSN | 2475-1472 |
IngestDate | Fri Aug 23 02:58:08 EDT 2024 Wed Jun 26 19:28:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c241t-c80d9ec797cbdc92e6bf52cd5d87efcb2ca28c489f4fb7c74e58b30984bceabd3 |
ORCID | 0000-0003-1816-0152 0000-0001-8412-8164 0000-0002-7198-695X 0000-0002-9195-5368 |
OpenAccessLink | http://eprints.gla.ac.uk/150648/1/150648.pdf |
PageCount | 4 |
ParticipantIDs | ieee_primary_8093995 crossref_primary_10_1109_LSENS_2017_2768218 |
PublicationCentury | 2000 |
PublicationDate | 2017-Dec. 2017-12-00 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec. |
PublicationDecade | 2010 |
PublicationTitle | IEEE sensors letters |
PublicationTitleAbbrev | LSENS |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref12 ref11 ref10 strakosch (ref6) 0 ref2 ref1 ref8 ref9 ref4 ref3 arbi (ref7) 0 (ref13) 2007 ref5 |
References_xml | – ident: ref3 doi: 10.1109/IEMCON.2016.7746084 – ident: ref10 doi: 10.1109/LSENS.2017.2691677 – start-page: pp 859863 year: 0 ident: ref6 article-title: Fast and efficient dual-forecasting algorithm for wireless sensor networks publication-title: Proc Sensor contributor: fullname: strakosch – ident: ref9 doi: 10.1504/IJAHUC.2015.067756 – ident: ref4 doi: 10.1109/ISCC.2012.6249344 – ident: ref8 doi: 10.3390/s111110010 – ident: ref5 doi: 10.1109/JSEN.2015.2504106 – ident: ref2 doi: 10.3390/s130810087 – start-page: 1 year: 0 ident: ref7 article-title: Forecasting methods to reduce energy consumption in WSN publication-title: Proc IEEE Instrum Meas Technol Conf contributor: fullname: arbi – ident: ref1 doi: 10.1109/SURV.2010.021510.00088 – ident: ref12 doi: 10.1109/TPAMI.2003.1217609 – year: 2007 ident: ref13 article-title: Lausanne urban canopy experiment – ident: ref11 doi: 10.1016/j.asoc.2012.11.041 |
SSID | ssj0001827030 |
Score | 2.134313 |
Snippet | This article presents a new metric to assess the performance of different multivariate data reduction models in wireless sensor networks. The proposed metric... |
SourceID | crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Internet of Things multivariate data reduction Performance evaluation performance metric Principal component analysis Real-time systems Sensor networks threshold Wireless sensor networks |
Title | Performance Evaluation of Real-Time Multivariate Data Reduction Models for Adaptive-Threshold in Wireless Sensor Networks |
URI | https://ieeexplore.ieee.org/document/8093995 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxYeKojykgc2SOs6DrbHiqbqgCpEisQW2WdbQqpSRFsk_j22kz4GFrYocaLoPsu-833fHUJ3KR8AGTieSKayhDlDEiUZTSBUXjGaSB3TBZOCT9_FKA9lch62WhhrbSSf2V64jLl8s4B1OCrrCx9-S5m1UItLUWu1ducpgobJu9HFENl_LvJpEchbvEe9U01DX4-9vWevmUrcS8bH__uLE3TU-Ix4WIN8ig5s1UE_LzvKP863NbvxwuFX7_wlQduBo7z224fD3qPEI7VS_pmp68Xi0AVtvsT-G3ho1GdY9pKZR3YZElL4o8KBGDv3CyEufKjrR01rxvjyDL2N89nTJGn6KHiLs8EqAUGMtMAlB21AUvuoXUbBZEZw60BTUFQAE9IxpzlwZjOhUyIF02CVNuk5aleLyl4gTJ1SOtWaGsKYFpkS1EIaUrPAlQTdRfcbC5efdbmMMoYZRJYRjzLgUTZ4dFEnmHc7srHs5d-3r9BheLnmklyj9uprbW9Qa2nWt3Eq_AIKarcP |
link.rule.ids | 315,782,786,798,27935,27936,54770 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uHvTiB1Ocnzl4025ZmprkOFzHxFnETvBW8gnC6IbdBP97k7b7OHjxVtoQyvuF5L283_s9AG5D2lOoZ2nAiYgCYjUKBCc4UF55RUvEZZkuGKU0-WCD2Mvk3K9rYYwxJfnMdPxjmcvXM7X0V2Vd5sJvzqMG2I0Ipaiq1trcqDDsl--qMgbx7jiNk9TTt2gHO7ca-84eW6fPVjuV8jQZHv7vP47AQe01wn4F8zHYMXkL_LxuSP8wXqt2w5mFb879C3x1BywLbL9dQOx8SjgQC-G-6UoxFvo-aNMCujlgX4u53_iCicO28Ckp-JlDT42duq0Qpi7YdaOSijNenID3YTx5HAV1JwVnc9JbBIohzY2inCqpFcfmQdoIKx1pRo1VEiuBmSKMW2IlVZSYiMkQcUakMkLq8BQ081luzgDEVggZSok1IkSySDBsVOiTs4oKrmQb3K0snM0rwYysDDQQz0o8Mo9HVuPRBi1v3vXI2rLnf7--AXujycs4Gz8lzxdg309UMUsuQXPxtTRXoFHo5XW5LH4Bxl-6Wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+Real-Time+Multivariate+Data+Reduction+Models+for+Adaptive-Threshold+in+Wireless+Sensor+Networks&rft.jtitle=IEEE+sensors+letters&rft.au=Alduais%2C+N.+A.+M.&rft.au=Abdullah%2C+Jiwa&rft.au=Jamil%2C+Ansar&rft.au=Heidari%2C+Hadi&rft.date=2017-12-01&rft.pub=IEEE&rft.eissn=2475-1472&rft.volume=1&rft.issue=6&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FLSENS.2017.2768218&rft.externalDocID=8093995 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1472&client=summon |