Performance Evaluation of Real-Time Multivariate Data Reduction Models for Adaptive-Threshold in Wireless Sensor Networks

This article presents a new metric to assess the performance of different multivariate data reduction models in wireless sensor networks. The proposed metric is called updating frequency metric that is defined as the frequency of updating the model reference parameters during data collection. A meth...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors letters Vol. 1; no. 6; pp. 1 - 4
Main Authors: Alduais, N. A. M., Abdullah, Jiwa, Jamil, Ansar, Heidari, Hadi
Format: Journal Article
Language:English
Published: IEEE 01-12-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article presents a new metric to assess the performance of different multivariate data reduction models in wireless sensor networks. The proposed metric is called updating frequency metric that is defined as the frequency of updating the model reference parameters during data collection. A method for estimating the error threshold value during the training phase is also suggested. The proposed threshold of error is used to update the model reference parameters when it is necessary. Numerical analysis and simulation results show that the proposed metric validates its effectiveness in the performance of multivariate data reduction models in terms of the sensor node energy consumption. The adaptive threshold improves the frequency of updating the parameters by 80% and 52%, in comparison to the nonadaptive threshold for multivariate data reduction models of MLR-B and PCA-B, respectively.
AbstractList This article presents a new metric to assess the performance of different multivariate data reduction models in wireless sensor networks. The proposed metric is called updating frequency metric that is defined as the frequency of updating the model reference parameters during data collection. A method for estimating the error threshold value during the training phase is also suggested. The proposed threshold of error is used to update the model reference parameters when it is necessary. Numerical analysis and simulation results show that the proposed metric validates its effectiveness in the performance of multivariate data reduction models in terms of the sensor node energy consumption. The adaptive threshold improves the frequency of updating the parameters by 80% and 52%, in comparison to the nonadaptive threshold for multivariate data reduction models of MLR-B and PCA-B, respectively.
Author Heidari, Hadi
Abdullah, Jiwa
Jamil, Ansar
Alduais, N. A. M.
Author_xml – sequence: 1
  givenname: N. A. M.
  surname: Alduais
  fullname: Alduais, N. A. M.
  organization: Wireless & Radio Sci. Centre, Univ. Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
– sequence: 2
  givenname: Jiwa
  surname: Abdullah
  fullname: Abdullah, Jiwa
  email: naifalduais@gmail.com
  organization: Wireless & Radio Sci. Centre, Univ. Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
– sequence: 3
  givenname: Ansar
  surname: Jamil
  fullname: Jamil, Ansar
  organization: Wireless & Radio Sci. Centre, Univ. Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
– sequence: 4
  givenname: Hadi
  surname: Heidari
  fullname: Heidari, Hadi
  organization: Sch. of Eng., Univ. of Glasgow, Glasgow, UK
BookMark eNpNkM1OAjEUhRuDiYi8gG76AoNtZ4a2S4L4kwAawbicdNrbUB2mpB0wvL3DT4yre5L7nbP4rlGn9jUgdEvJgFIi76eLyXwxYITyAeNDwai4QF2W8TyhGWedf_kK9WP8IoRQwThJSRft3yBYH9aq1oAnO1VtVeN8jb3F76CqZOnWgGfbqnE7FZxqAD-oRrU_s9VHcOYNVBG3G3hk1KblIFmuAsSVrwx2Nf50ASqIES-gji01h-bHh-94gy6tqiL0z7eHPh4ny_FzMn19ehmPpolmGW0SLYiRoLnkujRaMhiWNmfa5EZwsLpkWjGhMyFtZkuueQa5KFMiRVZqUKVJe4iddnXwMQawxSa4tQr7gpLi4K84-isO_oqzv7Z0dyo5APgrCCJTKfP0F4GAcfA
CODEN ISLECD
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2926209
crossref_primary_10_1155_2021_6664324
crossref_primary_10_1109_JIOT_2018_2849655
crossref_primary_10_1155_2019_4182563
Cites_doi 10.1109/IEMCON.2016.7746084
10.1109/LSENS.2017.2691677
10.1504/IJAHUC.2015.067756
10.1109/ISCC.2012.6249344
10.3390/s111110010
10.1109/JSEN.2015.2504106
10.3390/s130810087
10.1109/SURV.2010.021510.00088
10.1109/TPAMI.2003.1217609
10.1016/j.asoc.2012.11.041
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LSENS.2017.2768218
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1472
EndPage 4
ExternalDocumentID 10_1109_LSENS_2017_2768218
8093995
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFS
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
RIG
AAYXX
CITATION
ID FETCH-LOGICAL-c241t-c80d9ec797cbdc92e6bf52cd5d87efcb2ca28c489f4fb7c74e58b30984bceabd3
IEDL.DBID RIE
ISSN 2475-1472
IngestDate Fri Aug 23 02:58:08 EDT 2024
Wed Jun 26 19:28:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c241t-c80d9ec797cbdc92e6bf52cd5d87efcb2ca28c489f4fb7c74e58b30984bceabd3
ORCID 0000-0003-1816-0152
0000-0001-8412-8164
0000-0002-7198-695X
0000-0002-9195-5368
OpenAccessLink http://eprints.gla.ac.uk/150648/1/150648.pdf
PageCount 4
ParticipantIDs ieee_primary_8093995
crossref_primary_10_1109_LSENS_2017_2768218
PublicationCentury 2000
PublicationDate 2017-Dec.
2017-12-00
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationTitle IEEE sensors letters
PublicationTitleAbbrev LSENS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref11
ref10
strakosch (ref6) 0
ref2
ref1
ref8
ref9
ref4
ref3
arbi (ref7) 0
(ref13) 2007
ref5
References_xml – ident: ref3
  doi: 10.1109/IEMCON.2016.7746084
– ident: ref10
  doi: 10.1109/LSENS.2017.2691677
– start-page: pp 859863
  year: 0
  ident: ref6
  article-title: Fast and efficient dual-forecasting algorithm for wireless sensor networks
  publication-title: Proc Sensor
  contributor:
    fullname: strakosch
– ident: ref9
  doi: 10.1504/IJAHUC.2015.067756
– ident: ref4
  doi: 10.1109/ISCC.2012.6249344
– ident: ref8
  doi: 10.3390/s111110010
– ident: ref5
  doi: 10.1109/JSEN.2015.2504106
– ident: ref2
  doi: 10.3390/s130810087
– start-page: 1
  year: 0
  ident: ref7
  article-title: Forecasting methods to reduce energy consumption in WSN
  publication-title: Proc IEEE Instrum Meas Technol Conf
  contributor:
    fullname: arbi
– ident: ref1
  doi: 10.1109/SURV.2010.021510.00088
– ident: ref12
  doi: 10.1109/TPAMI.2003.1217609
– year: 2007
  ident: ref13
  article-title: Lausanne urban canopy experiment
– ident: ref11
  doi: 10.1016/j.asoc.2012.11.041
SSID ssj0001827030
Score 2.134313
Snippet This article presents a new metric to assess the performance of different multivariate data reduction models in wireless sensor networks. The proposed metric...
SourceID crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Internet of Things
multivariate data reduction
Performance evaluation
performance metric
Principal component analysis
Real-time systems
Sensor networks
threshold
Wireless sensor networks
Title Performance Evaluation of Real-Time Multivariate Data Reduction Models for Adaptive-Threshold in Wireless Sensor Networks
URI https://ieeexplore.ieee.org/document/8093995
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxYeKojykgc2SOs6DrbHiqbqgCpEisQW2WdbQqpSRFsk_j22kz4GFrYocaLoPsu-833fHUJ3KR8AGTieSKayhDlDEiUZTSBUXjGaSB3TBZOCT9_FKA9lch62WhhrbSSf2V64jLl8s4B1OCrrCx9-S5m1UItLUWu1ducpgobJu9HFENl_LvJpEchbvEe9U01DX4-9vWevmUrcS8bH__uLE3TU-Ix4WIN8ig5s1UE_LzvKP863NbvxwuFX7_wlQduBo7z224fD3qPEI7VS_pmp68Xi0AVtvsT-G3ho1GdY9pKZR3YZElL4o8KBGDv3CyEufKjrR01rxvjyDL2N89nTJGn6KHiLs8EqAUGMtMAlB21AUvuoXUbBZEZw60BTUFQAE9IxpzlwZjOhUyIF02CVNuk5aleLyl4gTJ1SOtWaGsKYFpkS1EIaUrPAlQTdRfcbC5efdbmMMoYZRJYRjzLgUTZ4dFEnmHc7srHs5d-3r9BheLnmklyj9uprbW9Qa2nWt3Eq_AIKarcP
link.rule.ids 315,782,786,798,27935,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uHvTiB1Ocnzl4025ZmprkOFzHxFnETvBW8gnC6IbdBP97k7b7OHjxVtoQyvuF5L283_s9AG5D2lOoZ2nAiYgCYjUKBCc4UF55RUvEZZkuGKU0-WCD2Mvk3K9rYYwxJfnMdPxjmcvXM7X0V2Vd5sJvzqMG2I0Ipaiq1trcqDDsl--qMgbx7jiNk9TTt2gHO7ca-84eW6fPVjuV8jQZHv7vP47AQe01wn4F8zHYMXkL_LxuSP8wXqt2w5mFb879C3x1BywLbL9dQOx8SjgQC-G-6UoxFvo-aNMCujlgX4u53_iCicO28Ckp-JlDT42duq0Qpi7YdaOSijNenID3YTx5HAV1JwVnc9JbBIohzY2inCqpFcfmQdoIKx1pRo1VEiuBmSKMW2IlVZSYiMkQcUakMkLq8BQ081luzgDEVggZSok1IkSySDBsVOiTs4oKrmQb3K0snM0rwYysDDQQz0o8Mo9HVuPRBi1v3vXI2rLnf7--AXujycs4Gz8lzxdg309UMUsuQXPxtTRXoFHo5XW5LH4Bxl-6Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+Real-Time+Multivariate+Data+Reduction+Models+for+Adaptive-Threshold+in+Wireless+Sensor+Networks&rft.jtitle=IEEE+sensors+letters&rft.au=Alduais%2C+N.+A.+M.&rft.au=Abdullah%2C+Jiwa&rft.au=Jamil%2C+Ansar&rft.au=Heidari%2C+Hadi&rft.date=2017-12-01&rft.pub=IEEE&rft.eissn=2475-1472&rft.volume=1&rft.issue=6&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FLSENS.2017.2768218&rft.externalDocID=8093995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1472&client=summon