Cross-Subject Activity Detection for COVID-19 Infection Avoidance Based on Automatically Annotated IMU Data
The World Health Organization reported that face touching is a primary source of infection transmission of viral diseases, including COVID-19, seasonal Influenza, Swine flu, Ebola virus, etc. Thus, people have been advised to avoid such activity to break the viral transmission chain. However, empiri...
Saved in:
Published in: | IEEE sensors journal Vol. 22; no. 13; pp. 13125 - 13135 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-07-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The World Health Organization reported that face touching is a primary source of infection transmission of viral diseases, including COVID-19, seasonal Influenza, Swine flu, Ebola virus, etc. Thus, people have been advised to avoid such activity to break the viral transmission chain. However, empirical studies showed that it is either impossible or difficult to avoid as it is unconsciously a human habit. This gives rise to the need to develop means enabling the automatic prediction of the occurrence of such activity. In this paper, we propose SafeSense , a cross-subject face-touch prediction system that combines the sensing capability of smartwatches and smartphones. The system includes innovative modules for automatically labeling the smartwatches' sensor measurements using smartphones' proximity sensors during normal phone use. Additionally, SafeSense uses a multi-task learning approach based on autoencoders for learning a subject-invariant representation without any assumptions about the target subjects. SafeSense also improves the deep model's generalization ability and incorporates different modules to boost the per-subject system's accuracy and robustness at run-time. We evaluated the proposed system on ten subjects using three different smartwatches and their connected phones. Results show that SafeSense can obtain as high as 97.9% prediction accuracy with a F1-score of 0.98. This outperforms the state-of-the-art techniques in all the considered scenarios without extra data collection overhead. These results highlight the feasibility of the proposed system for boosting public safety. |
---|---|
AbstractList | The World Health Organization reported that face touching is a primary source of infection transmission of viral diseases, including COVID-19, seasonal Influenza, Swine flu, Ebola virus, etc. Thus, people have been advised to avoid such activity to break the viral transmission chain. However, empirical studies showed that it is either impossible or difficult to avoid as it is unconsciously a human habit. This gives rise to the need to develop means enabling the automatic prediction of the occurrence of such activity. In this paper, we propose SafeSense , a cross-subject face-touch prediction system that combines the sensing capability of smartwatches and smartphones. The system includes innovative modules for automatically labeling the smartwatches’ sensor measurements using smartphones’ proximity sensors during normal phone use. Additionally, SafeSense uses a multi-task learning approach based on autoencoders for learning a subject-invariant representation without any assumptions about the target subjects. SafeSense also improves the deep model’s generalization ability and incorporates different modules to boost the per-subject system’s accuracy and robustness at run-time. We evaluated the proposed system on ten subjects using three different smartwatches and their connected phones. Results show that SafeSense can obtain as high as 97.9% prediction accuracy with a F1-score of 0.98. This outperforms the state-of-the-art techniques in all the considered scenarios without extra data collection overhead. These results highlight the feasibility of the proposed system for boosting public safety. |
Author | Yamaguchi, Hirozumi Youssef, Moustafa Rizk, Hamada Amano, Tatsuya |
Author_xml | – sequence: 1 givenname: Hamada orcidid: 0000-0002-8278-8801 surname: Rizk fullname: Rizk, Hamada email: hamada_rizk@f-eng.tanta.edu.eg organization: Department of Computer and Control Engineering, Tanta University, Tanta, Egypt – sequence: 2 givenname: Tatsuya orcidid: 0000-0002-8011-247X surname: Amano fullname: Amano, Tatsuya email: t-amano@ist.osaka-u.ac.jp organization: Osaka University, Suita, Japan – sequence: 3 givenname: Hirozumi surname: Yamaguchi fullname: Yamaguchi, Hirozumi email: h-yamagu@ist.osaka-u.ac.jp organization: Osaka University, Suita, Japan – sequence: 4 givenname: Moustafa orcidid: 0000-0002-2063-4364 surname: Youssef fullname: Youssef, Moustafa email: moustafa-youssef@aucegypt.edu organization: Department of Computer Science and Engineering, AUC, Cairo, Egypt |
BookMark | eNo9kM1OwzAQhC1UJErhARAXS5xTvM6P7WNICwQVemhB3CLHsaWUNi6JU6lvj6NWnHZ3dmZX-q7RqLGNRugOyBSAiMe31fxjSgml0xBYQgVcoDHEMQ-ARXw09CEJopB9X6HrrtsQAoLFbIx-stZ2XbDqy41WDqfK1YfaHfFMOz_XtsHGtjhbfuWzAATOG3OW04OtK9kojZ9kpys8SL2zO-lqJbfbI06bxjrp_Cp__8Qz6eQNujRy2-nbc52g9fN8nb0Gi-VLnqWLQNEIXAAVBwKm4kQkUnEWR8oA0WGlVaKEFzUlBkwpTFVyLULOvYvoSEQMZBmFE_RwOrtv7W-vO1dsbN82_mNBE-7RJFGYeBecXGoA0GpT7Nt6J9tjAaQYkBYD0mJAWpyR-sz9KVNrrf_9gjEmOA3_AL6Bc7I |
CODEN | ISJEAZ |
Cites_doi | 10.1080/15459620802003896 10.1145/3397536.3422202 10.1007/978-3-319-26561-2_6 10.1109/WCNC.2019.8886005 10.1145/3397536.3422207 10.1109/IE54923.2022.9826758 10.1109/PerComWorkshops53856.2022.9767256 10.1145/3161174 10.1145/3347146.3363460 10.1145/3397536.3428349 10.1145/3474717.3486808 10.1109/TMC.2018.2879075 10.1109/MedComNet55087.2022.9810400 10.1145/3386901.3396603 10.1109/PerCom45495.2020.9127366 10.1109/SAHCN.2016.7732967 10.1109/PERCOM.2019.8767421 10.3390/s16010115 10.1016/j.ajic.2014.10.015 10.1109/PerComWorkshops53856.2022.9767322 10.1145/3474717.3483958 10.1038/s41598-020-67521-5 10.1109/5.726791 10.1007/978-3-642-21257-4_36 10.3389/frobt.2021.612392 10.1145/3338286.3340143 10.1109/5.58337 10.1109/PERCOM.2015.7146523 10.1145/2820783.2820824 10.1109/IE54923.2022.9826773 10.1145/3325425.3329940 10.1007/s12519-020-00343-7 10.1145/3411764.3445484 10.1016/j.eswa.2016.04.032 10.1109/9780470544037.ch14 10.4108/icst.mobicase.2014.257786 10.1145/2733373.2806333 10.1145/3423423.3423433 10.1007/978-3-642-35289-8_26 10.3390/s18041055 10.1007/978-3-030-94822-1_29 10.1109/PerComWorkshops53856.2022.9767292 10.3390/s140406474 10.3390/s22072700 10.4108/icst.mobiquitous.2014.257920 10.1016/j.pmcj.2021.101420 10.1145/3347146.3359065 10.3390/s17112556 10.1016/j.brainres.2014.02.002 10.3390/ijerph19010237 10.1145/3427477.3429459 10.1109/JSEN.2018.2885958 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2022.3176291 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 13135 |
ExternalDocumentID | 10_1109_JSEN_2022_3176291 9777982 |
Genre | orig-research |
GrantInformation_xml | – fundername: “Research and Development of Information and Communication Technologies that Contribute to Countermeasures against Infectious Diseases,” the Commissioned Research of the National Institute of Information and Communications Technology (NICT), Japan grantid: 222-C03 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AJQPL AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c241t-1d8101fd8096ac8754cf10e3dec6c9096e20f1fb9fdb8e9388ac80e49471ab43 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Thu Oct 10 16:48:47 EDT 2024 Fri Aug 23 02:27:40 EDT 2024 Wed Jun 26 19:25:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c241t-1d8101fd8096ac8754cf10e3dec6c9096e20f1fb9fdb8e9388ac80e49471ab43 |
ORCID | 0000-0002-8278-8801 0000-0002-8011-247X 0000-0002-2063-4364 |
PQID | 2682916436 |
PQPubID | 75733 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9777982 crossref_primary_10_1109_JSEN_2022_3176291 proquest_journals_2682916436 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 Shokry (ref23) 2021 ref58 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref41 ref44 ref43 ref8 ref7 ref9 ref4 (ref30) 2020 ref3 ref6 ref5 Glorot (ref60) ref40 ref35 Krizhevsky (ref42) ref37 Schlüter (ref50) ref36 ref31 ref33 ref32 ref2 McFee (ref49) ref1 ref39 ref38 Kingma (ref55) 2014 Srivastava (ref61) 2014; 15 Roy (ref34) 2021 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Srivastava (ref53) ref62 |
References_xml | – ident: ref1 doi: 10.1080/15459620802003896 – ident: ref11 doi: 10.1145/3397536.3422202 – ident: ref6 doi: 10.1007/978-3-319-26561-2_6 – ident: ref44 doi: 10.1109/WCNC.2019.8886005 – ident: ref57 doi: 10.1145/3397536.3422207 – ident: ref27 doi: 10.1109/IE54923.2022.9826758 – ident: ref58 doi: 10.1109/PerComWorkshops53856.2022.9767256 – year: 2021 ident: ref23 article-title: Quantum computing for location determination publication-title: arXiv:2106.11751 contributor: fullname: Shokry – ident: ref5 doi: 10.1145/3161174 – ident: ref46 doi: 10.1145/3347146.3363460 – ident: ref17 doi: 10.1145/3397536.3428349 – ident: ref48 doi: 10.1145/3474717.3486808 – ident: ref21 doi: 10.1109/TMC.2018.2879075 – ident: ref26 doi: 10.1109/MedComNet55087.2022.9810400 – ident: ref9 doi: 10.1145/3386901.3396603 – ident: ref47 doi: 10.1109/PerCom45495.2020.9127366 – ident: ref20 doi: 10.1109/SAHCN.2016.7732967 – ident: ref52 doi: 10.1109/PERCOM.2019.8767421 – ident: ref41 doi: 10.3390/s16010115 – ident: ref2 doi: 10.1016/j.ajic.2014.10.015 – ident: ref13 doi: 10.1109/PerComWorkshops53856.2022.9767322 – ident: ref22 doi: 10.1145/3474717.3483958 – ident: ref31 doi: 10.1038/s41598-020-67521-5 – ident: ref43 doi: 10.1109/5.726791 – ident: ref35 doi: 10.1007/978-3-642-21257-4_36 – ident: ref8 doi: 10.3389/frobt.2021.612392 – start-page: 248 volume-title: Proc. ISMIR ident: ref49 article-title: A software framework for musical data augmentation contributor: fullname: McFee – ident: ref32 doi: 10.1145/3338286.3340143 – ident: ref56 doi: 10.1109/5.58337 – ident: ref18 doi: 10.1109/PERCOM.2015.7146523 – ident: ref19 doi: 10.1145/2820783.2820824 – ident: ref28 doi: 10.1109/IE54923.2022.9826773 – ident: ref29 doi: 10.1145/3325425.3329940 – ident: ref3 doi: 10.1007/s12519-020-00343-7 – start-page: 121 volume-title: Proc. ISMIR ident: ref50 article-title: Exploring data augmentation for improved singing voice detection with neural networks contributor: fullname: Schlüter – ident: ref33 doi: 10.1145/3411764.3445484 – ident: ref7 doi: 10.1016/j.eswa.2016.04.032 – ident: ref51 doi: 10.1109/9780470544037.ch14 – ident: ref37 doi: 10.4108/icst.mobicase.2014.257786 – ident: ref39 doi: 10.1145/2733373.2806333 – ident: ref10 doi: 10.1145/3423423.3423433 – ident: ref62 doi: 10.1007/978-3-642-35289-8_26 – year: 2021 ident: ref34 article-title: CovidAlert—A wristwatch-based system to alert users from face touching publication-title: arXiv:2112.00131 contributor: fullname: Roy – ident: ref38 doi: 10.3390/s18041055 – ident: ref12 doi: 10.1007/978-3-030-94822-1_29 – ident: ref14 doi: 10.1109/PerComWorkshops53856.2022.9767292 – start-page: 315 volume-title: Proc. 14th Int. Conf. Artif. Intell. Statist. ident: ref60 article-title: Deep sparse rectifier neural networks contributor: fullname: Glorot – start-page: 843 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref53 article-title: Unsupervised learning of video representations using LSTMs contributor: fullname: Srivastava – ident: ref36 doi: 10.3390/s140406474 – year: 2014 ident: ref55 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 contributor: fullname: Kingma – volume-title: Is it Recommended to Use the Non-Dominant Hand to Avoid Contagion by Coronavirus? year: 2020 ident: ref30 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref61 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. contributor: fullname: Srivastava – ident: ref15 doi: 10.3390/s22072700 – ident: ref16 doi: 10.4108/icst.mobiquitous.2014.257920 – ident: ref54 doi: 10.1016/j.pmcj.2021.101420 – ident: ref45 doi: 10.1145/3347146.3359065 – ident: ref40 doi: 10.3390/s17112556 – ident: ref4 doi: 10.1016/j.brainres.2014.02.002 – ident: ref24 doi: 10.3390/ijerph19010237 – ident: ref25 doi: 10.1145/3427477.3429459 – ident: ref59 doi: 10.1109/JSEN.2018.2885958 – start-page: 1097 volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst. ident: ref42 article-title: ImageNet classification with deep convolutional neural networks contributor: fullname: Krizhevsky |
SSID | ssj0019757 |
Score | 2.4172194 |
Snippet | The World Health Organization reported that face touching is a primary source of infection transmission of viral diseases, including COVID-19, seasonal... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 13125 |
SubjectTerms | activity detection Convolutional neural networks Coronaviruses COVID-19 Covid-19 infection avoidance Data collection Data models Disease transmission Face recognition Face-touch prediction Feature extraction Influenza Learning Modules Public safety Sensors Smartphones smartwatch-based sensing Smartwatches Viral diseases Viruses Wearable computers |
Title | Cross-Subject Activity Detection for COVID-19 Infection Avoidance Based on Automatically Annotated IMU Data |
URI | https://ieeexplore.ieee.org/document/9777982 https://www.proquest.com/docview/2682916436 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4YF-DAYwMxXsqBEyKsabO2OY5tiCEBhw20W5XmIRBTi1iLtH-Pk3YTCC6cGkVJFdlxbMfOZ4TOuaDGcBAkwaQgjMddwpmXEkOZ8CRoBNl1RWzH0cM0HgwtTM7l6i2M1toln-kr23SxfJXL0l6VdcBWiXgMB24DPtVbrVXEgEcO1RME2CMsiKZ1BJN6vHM3Hj6AJ-j74KCC7HP6Qwe5oiq_TmKnXm52_rewXbRdm5G4V_F9D63prIm2voELNtFGXd_8ZdFCb327EAKnhL12wT1Z1YzAA124VKwMg-2K-4_PowGhHI_qDK0M9z7zV2U3Br4Gdaew7SqL3OG8itlsgXtZllt7VeHR_RMeiELso8nNcNK_JXWZBSJBfReEKgvyZVQM3oyQ4L8waainA6VlKDl0at8z1KTcqDTWwNcYRnmacdBrImXBAVrP8kwfIsxkoKOoKwJtJDiKgdAhNVL5VKg4TFXQRhdLuifvFZhG4pwQjyeWSYllUlIzqY1altCrgTWN2-hkyamkFrd54ocxzADjKjz6e9Yx2rT_rvJsT9B68VHqU9SYq_LMbaMvwvHFRA |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-Ccig7DNYy0THAB04Iszhxk_hY-qGWteXQDvUWOf4QiCmZ1nTS_nuenbTaNC7cIstWrPfz-_J7fg_gk5DMWoGMJLmSlIu0TwUPcmoZl4FCjaD6vontKllu0tHYlcn5cngLY4zxyWfmq_v0sXxdqp27KrtAWyURKQrcF32exEn9WusQMxCJr-uJLBxQHiWbJobJAnHxfTVeoi8YhuiiIvcL9kgL-bYqT2SxVzCTV_-3tddw3BiSZFAjfwLPTNGBowflBTvQbjqc_7rvwp-h2whFOeEuXshA1V0jyMhUPhmrIGi9kuGPn7MRZYLMmhytggzuyt_aHQ3yDRWeJm5oV5W-0qu8vr4ng6IoncWqyWxxRUaykm9gPRmvh1PaNFqgChV4RZl2Zb6sTtGfkQo9GK4sC0ykjYqVwEETBpbZXFidpwaRTXFWYLhAzSZzHp1CqygL8xYIV5FJkr6MjFXoKkbSxMwqHTKp0zjXUQ8-7-me3dTlNDLvhgQicyBlDqSsAakHXUfow8SGxj043yOVNQy3zcI4xRVoXsVn_171EdrT9WKezWfLy3fw0v2nzro9h1Z1uzPv4flW7z74I_UXTzPIlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Subject+Activity+Detection+for+COVID-19+Infection+Avoidance+Based+on+Automatically+Annotated+IMU+Data&rft.jtitle=IEEE+sensors+journal&rft.au=Rizk%2C+Hamada&rft.au=Amano%2C+Tatsuya&rft.au=Yamaguchi%2C+Hirozumi&rft.au=Youssef%2C+Moustafa&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=13&rft.spage=13125&rft.epage=13135&rft_id=info:doi/10.1109%2FJSEN.2022.3176291&rft.externalDocID=9777982 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |