Cardio-respiratory coupling and myocardial recovery in heart failure with reduced ejection fraction

The interaction between the cardiovascular and respiratory systems in healthy subjects is determined by the autonomic nervous system and reflected in respiratory sinus arrhythmia. Recently, another pattern of cardio-respiratory coupling (CRC) has been proposed linking synchronization of heart and re...

Full description

Saved in:
Bibliographic Details
Published in:Respiratory physiology & neurobiology Vol. 328; p. 104313
Main Authors: Nagai, Michiaki, Ewbank, Hallum, Po, Sunny S., Dasari, Tarun W.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interaction between the cardiovascular and respiratory systems in healthy subjects is determined by the autonomic nervous system and reflected in respiratory sinus arrhythmia. Recently, another pattern of cardio-respiratory coupling (CRC) has been proposed linking synchronization of heart and respiratory system. However, CRC has not been studied precisely in heart failure (HF) with reduced ejection fraction (EF) (HFrEF) according to the myocardial recovery. 10-min resting electrocardiography measurements were performed in persistent HFrEF patients (n=40) who had a subsequent left ventricular EF (LVEF) of ≤ 40 %, HF with recovered EF patients (HFrecEF) (n=41) who had a subsequent LVEF of > 40 % and healthy controls (n=40). Respiratory frequency, respiratory rate, CRC index, time-domain, frequency-domain and nonlinear heart rate variability indices were obtained using standardized software-Kubios™. CRC index was defined as respiratory high-frequency peak minus heart rate variability high-frequency peak. Respiratory rate was positively correlated with high-frequency (HF) peak (Hz) in both persistent HFrEF group (p<0.001) and HFrecEF group (p<0.001), while respiratory rate was negatively correlated with HF power (ms2) in the healthy controls (p<0.05). CRC index was lowest in the persistent HFrEF group followed by HFrecEF and was high in healthy controls (0.008 vs 0.012 vs 0.056 Hz, p=0.03). CRC index was lowest in patients with impaired myocardial recovery, which indicates that cardio-respiratory synchrony is stronger in persistent HFrEF. This may represent a higher HF peak (Hz)/lower HF power (ms2) and abnormal sympathovagal balance in persistent HFrEF group compared to healthy controls. Further work is underway to tests this hypothesis and determine the utility of CRC index in HF phenotypes and its utility as a potential biomarker of response with neuromodulation. •A novel pattern of cardio-respiratory coupling (CRC) linking synchronization of heart and respiratory system proposed in heart failure (HF).•Respiratory rate was positively correlated with high-frequency peak (Hz) in patients with HF with reduced ejection fraction (EF) (HFrEF).•CRC index was lowest in the persistent HFrEF group followed by HF with recovered EF and was high in healthy controls.•The lowest CRC index in patients with impaired myocardial recovery indicates that cardio-respiratory synchrony is stronger in persistent HFrEF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1569-9048
1878-1519
1878-1519
DOI:10.1016/j.resp.2024.104313