The method in the madness: Transcriptional control from stochastic action at the single-molecule scale
Cell states result from the ordered activation of gene expression by transcription factors. Transcription factors face opposing design constraints: they need to be dynamic to trigger rapid cell state transitions, but also stable enough to maintain terminal cell identities indefinitely. Recent progre...
Saved in:
Published in: | Current opinion in structural biology Vol. 87; p. 102873 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell states result from the ordered activation of gene expression by transcription factors. Transcription factors face opposing design constraints: they need to be dynamic to trigger rapid cell state transitions, but also stable enough to maintain terminal cell identities indefinitely. Recent progress in live-cell single-molecule microscopy has helped define the biophysical principles underlying this paradox. Beyond transcription factor activity, single-molecule experiments have revealed that at nearly every level of transcription regulation, control emerges from multiple short-lived stochastic interactions, rather than deterministic, stable interactions typical of other biochemical pathways. This architecture generates consistent outcomes that can be rapidly choreographed. Here, we highlight recent results that demonstrate how order in transcription regulation emerges from the apparent molecular-scale chaos and discuss remaining conceptual challenges. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0959-440X 1879-033X 1879-033X |
DOI: | 10.1016/j.sbi.2024.102873 |