The future of amphibian immunology: Opportunities and challenges

Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the d...

Full description

Saved in:
Bibliographic Details
Published in:Developmental and comparative immunology Vol. 160; p. 105237
Main Author: Rollins-Smith, Louise A.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01-11-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or “information-deficit” areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians. •The future of amphibian immunology offers opportunities and challenges.•Amphibians are excellent models for mucosal immune and microbe interactions.•Amphibians are at continuing risk for declines.
AbstractList Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.
Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.
Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or “information-deficit” areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians. •The future of amphibian immunology offers opportunities and challenges.•Amphibians are excellent models for mucosal immune and microbe interactions.•Amphibians are at continuing risk for declines.
ArticleNumber 105237
Author Rollins-Smith, Louise A.
Author_xml – sequence: 1
  givenname: Louise A.
  orcidid: 0000-0002-5209-2459
  surname: Rollins-Smith
  fullname: Rollins-Smith, Louise A.
  email: louise.rollins-smith@vanderbilt.edu, louise.rollins-smith@vumc.org
  organization: Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39103004$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPwzAQhC1URB_wA7igHLmkrOM84QKqeEmVeikSN8txNq2rxA52gtR_j6sWjuxltdLMaOebkpE2Ggm5pjCnQNO73bySah5BFPs7iVh2RiY0z4oQIC9GZAI0TkIGyeeYTJ3bgZ-cwgUZs4ICA4gn5HG9xaAe-sFiYOpAtN1WlUroQLXtoE1jNvv7YNV1xvaDVr1CFwhdBXIrmgb1Bt0lOa9F4_DqtGfk4-V5vXgLl6vX98XTMpQRS_owkoyWgHVd-D_TLMUokayEXKSlgDTNMooyjrMo923yJMI4zdMqr0osM1qICtiM3B5zO2u-BnQ9b5WT2DRCoxkcZ75yAnFRZF5Kj1JpjXMWa95Z1Qq75xT4ARzfcQ-OH8DxIzjvuTnFD2WL1Z_jl5QXPBwF6Et-K7TcSYVaYqUsyp5XRv0T_wMf936R
Cites_doi 10.1016/j.mib.2021.04.002
10.4049/jimmunol.188.Supp.160.8
10.1186/s12864-020-06881-8
10.1111/1365-2656.13977
10.1126/science.1258268
10.1038/s41467-023-38979-4
10.1098/rsbl.2021.0166
10.1007/s007050200000
10.1126/sciimmunol.aau4594
10.1088/1748-9326/ac8e1d
10.1126/science.1176765
10.1111/j.1600-065X.1998.tb01265.x
10.1016/j.it.2017.01.006
10.1016/j.dci.2023.104733
10.1016/j.biocon.2021.109088
10.1016/j.virol.2017.06.007
10.1126/science.aay5733
10.1016/j.coi.2010.11.007
10.1007/s10530-019-01973-3
10.1098/rstb.2022.0123
10.1111/mec.15533
10.3354/dao03239
10.1002/eji.201747260
10.1128/IAI.00402-10
10.3390/v3112065
10.1016/j.dci.2014.01.022
10.1080/00275514.1999.12061011
10.1074/jbc.M117.794065
10.1126/science.aav0379
10.1038/s41598-017-10456-1
10.1016/j.dci.2023.104657
10.1111/mec.15452
10.1016/j.cub.2022.11.032
10.1073/pnas.1222023110
10.1002/JLB.1A0919-147R
10.1371/journal.ppat.1008107
10.3389/famrs.2024.1347541
10.1007/s00251-007-0268-9
10.1189/jlb.4A0614-295R
10.3390/toxins16030150
10.1189/jlb.4AB0315-117RR
10.3390/v4071075
10.1073/pnas.1307356110
10.1073/pnas.95.15.9031
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024. Published by Elsevier Ltd.
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024. Published by Elsevier Ltd.
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.dci.2024.105237
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1879-0089
ExternalDocumentID 10_1016_j_dci_2024_105237
39103004
S0145305X24001095
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEXOQ
AFKWA
AFRAH
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CJTIS
CNWQP
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMG
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LUGTX
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SIN
SNL
SPCBC
SSH
SSI
SSU
SSZ
T5K
TEORI
WUQ
ZGI
~G-
~KM
AAXKI
AFJKZ
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c235t-2c31b0eff9523676e25c3b08a6ba066771ec44728202852e4686d8dbeb719ad03
ISSN 0145-305X
1879-0089
IngestDate Sat Oct 26 04:33:35 EDT 2024
Thu Sep 26 20:36:10 EDT 2024
Sat Nov 02 12:31:07 EDT 2024
Sat Aug 24 15:41:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Frogs
Salamander
Caecilians
Newts
Amphibians
Toads
caecilians
newts
toads
salamander
frogs
amphibians
Language English
License Copyright © 2024. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c235t-2c31b0eff9523676e25c3b08a6ba066771ec44728202852e4686d8dbeb719ad03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5209-2459
PMID 39103004
PQID 3089504997
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3089504997
crossref_primary_10_1016_j_dci_2024_105237
pubmed_primary_39103004
elsevier_sciencedirect_doi_10_1016_j_dci_2024_105237
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental and comparative immunology
PublicationTitleAlternate Dev Comp Immunol
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chinchar, Waltzek, Subramaniam (bib10) 2017; 511
Ramsey, Reinert, Harper, Woodhams, Rollins-Smith (bib33) 2010; 78
Grayfer, Edholm, De Jesús Andino, Chinchar, Robert (bib19) 2015
McDonald, Longo, Lips, Zamudio (bib29) 2020; 29
Amatya, Garg, Gaffen (bib1) 2017; 38
Voyles, Young, Berger, Campbell, Voyles, Dinudom, Cook, Webb, Alford, Skerratt, Speare (bib45) 2009; 326
Chambouvet, Smilansky, Jirků, Isidoro-Ayza, Itoïz, Derelle, Monier, Gower, Wilkinson, Yabsley, Lukeš (bib7) 2020; 16
Yang, Bansal, Lopes, Benoist, Mathis (bib46) 2013; 110
Dimitrakopoulou, Khwatenge, James-Zorn, Paiola, Bellin, Tian (bib12) 2023; 104734
Gaffen, Moutsopoulos (bib14) 2020; 5
Berger, Speare, Daszak, Green, Cunningham, Goggin, Slocombe, Ragan, Hyatt, McDonald, Hines, Lips, Marantelli, Parkes (bib5) 1998; 95
Saltis, Criscitiello, Ohta, Keefe, Trede, Goitsuka, Flajnik (bib38) 2008; 60
Springborn, Weill, Lips, Ibáñez, Ghosh (bib43) 2022; 17
Isidoro-Ayza, Lorch, Grear, Winzeler, Calhoun, Barichivich (bib21) 2017; 7
Chen, Robert (bib8) 2011; 3
Rollins-Smith (bib35) 2023; 142
Chinchar (bib9) 2002; 147
Grayfer, Robert (bib17) 2015; 98
Martel, Blooi, Adriaensen, Van Rooij, Beukema, Fisher, Farrer, Schmidt, Tobler, Goka, Lips, Muletz, Zamudio, Bosch, Lötters, Wombwell, Garner, Cunningham, Spitzen-vander, Salvidio, Ducatelle, Nishikawa, Nĝuyen, Kolby, Van Bocxlaer, Bossuyt, Pasmans (bib28) 2014; 346
Dheilly, Adema, Raftos, Gourbal, Grunau, Du Pasquier (bib11) 2014; 45
Grayfer, Robert (bib16) 2014; 96
Douglas, Katzenback (bib13) 2023; 147
Longcore, Pessier, Nichols (bib25) 1999; 91
Popovic, Yaparla, Paquin-Proulx, Koubourli, Webb, Firmani, Grayfer (bib32) 2019; 106
Scheele, Pasmans, Skerratt, Berger, Martel, Beukema, Acevedo, Burrowes, Carvalho, Catenazzi, De la Riva, fisher, Flechas, Foster, Frías-Álvarez, Garner, Gratwicke, Guayasamin, Hirschfeld, Kolby, Kosch, La Marca, Lindenmayer, Lips, Longo, Maneyro, McDonald, Mendelson, Palacios-Rodriguez, Parra-Olea, Richards-Zawacki, Rödel, Rovito, Soto-Azat, Toledo, Voyles, Weldon, Whitfield, Wilkinson, Zamudio, Canessa (bib40) 2019; 363
Martel, Spitzen-van der Sluijs, Blooi, Bert, Ducatelle, Fisher, Woeltjes, Bosman, Chiers, Bossuyt, Pasmans (bib27) 2013; 110
Zipkin, DiRenzo, Ray, Rossman, Lips (bib48) 2020; 367
Atkinson, Savage (bib3) 2023; 92
Neely, Guo, Flowers, Criscitiello, Flajnik (bib30) 2018; 48
Smilansky, Jirků, Milner, Ibáñez, Gratwicke, Nicholls, Lukes, Chambouvet, Richards (bib42) 2021; 17
Torres-Sánchez, Wilkinson, Gower, Creevey, San Mauro (bib44) 2020; 21
Smilansky, Richards (bib41) 2023; 33
Yaparla, Popovic, Grayfer (bib47) 2018; 293
Jackson, Undieh, Steiner, Parra, Miller, Ohta, Flajnik (bib22) 2012; 188
Gray, Carter, Piovia-Scott, Cusaac, Peterson, Whetstone, Hertz, Muniz-Torres, Bletz, Woodhams, Romansic, Sutton, Sheley, Pessier, McCusker, Wilber, Miller (bib15) 2023; 14
Olson, Grant, Bletz, Piovia-Scott, Lesbarreres, Kerby, Adams, Breitman, Christman, Forzan, Gray, Hill, Koo, Milenkaya, Rebollar, Rollins-Smith, Serr, Shepack, Shirose, Sprague, Walke, Warwick, Mosher (bib31) 2024; 2
Ruiz, Robert (bib37) 2023; 378
Rollins-Smith, Le Sage (bib36) 2021; 64
Anderson, Su (bib2) 2011; 23
Benítez-Prián, Lorente-Martínez, Agorreta, Gower, Wilkinson, Roelants, San Mauro (bib4) 2024; 16
Grayfer, Andino, Chen, Chinchar, Robert (bib18) 2012; 4
Karwacki, Atkinson, Ossiboff, Savage (bib23) 2018; 129
Savage, Gratwicke, Hope, Bronikowski, Fleischer (bib39) 2020; 29
Karwacki, Martin, Savage (bib24) 2021; 257
Longo, Fleischer, Lips (bib26) 2019; 21
Chambouvet, Gower, Jirku, Yabsley, Davis, Leonard, Maguire, Doherty-Bone, Bittencourt-Silva, Wilkinson, Richards (bib6) 2015; E4743E4751
Rollins-Smith (bib34) 1998; 166
Hauser, Hossainey, Gentry, Garvey, Ranganathan, Kalia, Yaparla, Zelle, Jones, Duttargi, Rollins-Smith, Muletz-Wolz, Grayfer (bib20) 2024; 12
Rollins-Smith (10.1016/j.dci.2024.105237_bib35) 2023; 142
Ruiz (10.1016/j.dci.2024.105237_bib37) 2023; 378
Amatya (10.1016/j.dci.2024.105237_bib1) 2017; 38
Springborn (10.1016/j.dci.2024.105237_bib43) 2022; 17
Benítez-Prián (10.1016/j.dci.2024.105237_bib4) 2024; 16
Berger (10.1016/j.dci.2024.105237_bib5) 1998; 95
Olson (10.1016/j.dci.2024.105237_bib31) 2024; 2
Dheilly (10.1016/j.dci.2024.105237_bib11) 2014; 45
Longcore (10.1016/j.dci.2024.105237_bib25) 1999; 91
Douglas (10.1016/j.dci.2024.105237_bib13) 2023; 147
Zipkin (10.1016/j.dci.2024.105237_bib48) 2020; 367
Atkinson (10.1016/j.dci.2024.105237_bib3) 2023; 92
Hauser (10.1016/j.dci.2024.105237_bib20) 2024; 12
Yaparla (10.1016/j.dci.2024.105237_bib47) 2018; 293
Smilansky (10.1016/j.dci.2024.105237_bib42) 2021; 17
Chambouvet (10.1016/j.dci.2024.105237_bib7) 2020; 16
Yang (10.1016/j.dci.2024.105237_bib46) 2013; 110
Savage (10.1016/j.dci.2024.105237_bib39) 2020; 29
Longo (10.1016/j.dci.2024.105237_bib26) 2019; 21
McDonald (10.1016/j.dci.2024.105237_bib29) 2020; 29
Rollins-Smith (10.1016/j.dci.2024.105237_bib36) 2021; 64
Saltis (10.1016/j.dci.2024.105237_bib38) 2008; 60
Voyles (10.1016/j.dci.2024.105237_bib45) 2009; 326
Karwacki (10.1016/j.dci.2024.105237_bib23) 2018; 129
Gray (10.1016/j.dci.2024.105237_bib15) 2023; 14
Ramsey (10.1016/j.dci.2024.105237_bib33) 2010; 78
Chinchar (10.1016/j.dci.2024.105237_bib9) 2002; 147
Martel (10.1016/j.dci.2024.105237_bib28) 2014; 346
Torres-Sánchez (10.1016/j.dci.2024.105237_bib44) 2020; 21
Dimitrakopoulou (10.1016/j.dci.2024.105237_bib12) 2023; 104734
Karwacki (10.1016/j.dci.2024.105237_bib24) 2021; 257
Rollins-Smith (10.1016/j.dci.2024.105237_bib34) 1998; 166
Chinchar (10.1016/j.dci.2024.105237_bib10) 2017; 511
Isidoro-Ayza (10.1016/j.dci.2024.105237_bib21) 2017; 7
Smilansky (10.1016/j.dci.2024.105237_bib41) 2023; 33
Jackson (10.1016/j.dci.2024.105237_bib22) 2012; 188
Chambouvet (10.1016/j.dci.2024.105237_bib6) 2015; E4743E4751
Neely (10.1016/j.dci.2024.105237_bib30) 2018; 48
Popovic (10.1016/j.dci.2024.105237_bib32) 2019; 106
Grayfer (10.1016/j.dci.2024.105237_bib16) 2014; 96
Gaffen (10.1016/j.dci.2024.105237_bib14) 2020; 5
Martel (10.1016/j.dci.2024.105237_bib27) 2013; 110
Chen (10.1016/j.dci.2024.105237_bib8) 2011; 3
Grayfer (10.1016/j.dci.2024.105237_bib18) 2012; 4
Grayfer (10.1016/j.dci.2024.105237_bib19) 2015
Scheele (10.1016/j.dci.2024.105237_bib40) 2019; 363
Anderson (10.1016/j.dci.2024.105237_bib2) 2011; 23
Grayfer (10.1016/j.dci.2024.105237_bib17) 2015; 98
References_xml – volume: 38
  start-page: 310
  year: 2017
  end-page: 322
  ident: bib1
  article-title: IL-17 signaling: the yin and the yang
  publication-title: Trends Immunol.
  contributor:
    fullname: Gaffen
– volume: 142
  year: 2023
  ident: bib35
  article-title: The importance of antimicrobial peptides (AMPs) in amphibian skin defense
  publication-title: Dev. Comp. Immunol.
  contributor:
    fullname: Rollins-Smith
– volume: 21
  start-page: 515
  year: 2020
  ident: bib44
  article-title: Insights into the skin of caecilian amphibians from gene expression profiles
  publication-title: BMC Genom.
  contributor:
    fullname: San Mauro
– volume: 129
  start-page: 85
  year: 2018
  end-page: 98
  ident: bib23
  article-title: Novel quantitative PCR assay specific for the emerging Perkinsea amphibian pathogen reveals seasonal infection dynamics
  publication-title: Dis. Aquat. Org.
  contributor:
    fullname: Savage
– volume: 33
  start-page: R1
  year: 2023
  end-page: R15
  ident: bib41
  article-title: Amphibian Perkinsea
  publication-title: Curr. Biol.
  contributor:
    fullname: Richards
– volume: 98
  start-page: 641
  year: 2015
  end-page: 649
  ident: bib17
  article-title: Distinct functional roles of amphibian (
  publication-title: J. Leukoc. Biol.
  contributor:
    fullname: Robert
– volume: 12
  start-page: RP92168
  year: 2024
  ident: bib20
  article-title: Amphibian mast cells: barriers to deadly chytrid fungus infections
  publication-title: eLife 2024
  contributor:
    fullname: Grayfer
– volume: E4743E4751
  year: 2015
  ident: bib6
  article-title: Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  contributor:
    fullname: Richards
– volume: 7
  year: 2017
  ident: bib21
  article-title: Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States
  publication-title: Sci. Rep.
  contributor:
    fullname: Barichivich
– volume: 17
  year: 2021
  ident: bib42
  article-title: Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group
  publication-title: Biol. Lett.
  contributor:
    fullname: Richards
– volume: 14
  start-page: 3270
  year: 2023
  ident: bib15
  article-title: Broad host susceptibility of North American amphibian species to
  publication-title: Nat. Commun.
  contributor:
    fullname: Miller
– volume: 166
  start-page: 221
  year: 1998
  end-page: 230
  ident: bib34
  article-title: Metamorphosis and the amphibian immune system
  publication-title: Immunol. Rev.
  contributor:
    fullname: Rollins-Smith
– volume: 45
  start-page: 56
  year: 2014
  end-page: 66
  ident: bib11
  article-title: No more non-model species: the promise of next generation sequencing for comparative immunology
  publication-title: Dev. Comp. Immunol.
  contributor:
    fullname: Du Pasquier
– volume: 293
  start-page: 1736
  year: 2018
  end-page: 1744
  ident: bib47
  article-title: Differentiation-dependent antiviral capacities of amphibian (
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Grayfer
– volume: 257
  year: 2021
  ident: bib24
  article-title: One hundred years of infection with three global pathogens in frog populations of Florida, USA
  publication-title: Biol. Conserv.
  contributor:
    fullname: Savage
– volume: 29
  start-page: 3173
  year: 2020
  end-page: 3186
  ident: bib29
  article-title: Incapacitating effects of fungal coinfection in a novel pathogen system
  publication-title: Mol. Ecol.
  contributor:
    fullname: Zamudio
– volume: 48
  start-page: 430
  year: 2018
  end-page: 440
  ident: bib30
  article-title: “Double‐duty” conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells
  publication-title: Eur. J. Immunol.
  contributor:
    fullname: Flajnik
– volume: 60
  start-page: 105
  year: 2008
  end-page: 114
  ident: bib38
  article-title: Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis
  publication-title: Immunogenetics
  contributor:
    fullname: Flajnik
– volume: 16
  year: 2020
  ident: bib7
  article-title: Diverse alveolate infections of tadpoles, a new threat to frogs?
  publication-title: PLoS Pathog.
  contributor:
    fullname: Lukeš
– volume: 511
  start-page: 259
  year: 2017
  end-page: 271
  ident: bib10
  article-title: Ranaviruses and other members of the family
  publication-title: Virology
  contributor:
    fullname: Subramaniam
– start-page: 141
  year: 2015
  end-page: 170
  ident: bib19
  article-title: Ranavirus host immunity and immune evasion
  publication-title: Ranaviruses: Lethal pathogens of ectothermic vertebrates
  contributor:
    fullname: Robert
– volume: 326
  start-page: 582
  year: 2009
  end-page: 585
  ident: bib45
  article-title: Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines
  publication-title: Science
  contributor:
    fullname: Speare
– volume: 64
  start-page: 124
  year: 2021
  end-page: 132
  ident: bib36
  article-title: fungi: stealth invaders in amphibian skin
  publication-title: Curr. Opin. Microbiol.
  contributor:
    fullname: Le Sage
– volume: 16
  start-page: 150
  year: 2024
  ident: bib4
  article-title: Diversity and molecular evolution of antimicrobial peptides in caecilian amphibians
  publication-title: Toxins
  contributor:
    fullname: San Mauro
– volume: 4
  start-page: 1075
  year: 2012
  end-page: 1092
  ident: bib18
  article-title: Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens
  publication-title: Viruses
  contributor:
    fullname: Robert
– volume: 110
  start-page: 15325
  year: 2013
  end-page: 15329
  ident: bib27
  article-title: sp. nov. causes lethal chytridiomycosis in amphibians
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Pasmans
– volume: 363
  start-page: 1459
  year: 2019
  end-page: 1463
  ident: bib40
  article-title: Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity
  publication-title: Science
  contributor:
    fullname: Canessa
– volume: 17
  year: 2022
  ident: bib43
  article-title: Amphibian collapses increased malaria incidence in Central America
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Ghosh
– volume: 346
  start-page: 630
  year: 2014
  end-page: 631
  ident: bib28
  article-title: Recent introduction of a chytrid fungus endangers Western Palearctic salamanders
  publication-title: Science
  contributor:
    fullname: Pasmans
– volume: 188
  start-page: 160.8
  year: 2012
  ident: bib22
  article-title: Ontogenic analysis of
  publication-title: J. Immunol.
  contributor:
    fullname: Flajnik
– volume: 147
  start-page: 447
  year: 2002
  end-page: 470
  ident: bib9
  article-title: Ranaviruses (family Iridoviridae): emerging cold-blooded killers
  publication-title: Arch. Virol.
  contributor:
    fullname: Chinchar
– volume: 3
  start-page: 2065
  year: 2011
  end-page: 2086
  ident: bib8
  article-title: Antiviral immunity in amphibians
  publication-title: Viruses
  contributor:
    fullname: Robert
– volume: 378
  year: 2023
  ident: bib37
  article-title: The amphibian immune system
  publication-title: Philos. Trans. R. Soc. B, Biol. Sci.
  contributor:
    fullname: Robert
– volume: 110
  start-page: 1833
  year: 2013
  end-page: 1838
  ident: bib46
  article-title: Aire's plant homeodomain (PHD)-2 is critical for induction of immunological tolerance
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Mathis
– volume: 367
  start-page: 814
  year: 2020
  end-page: 816
  ident: bib48
  article-title: Tropical snake diversity collapses after widespread amphibian loss
  publication-title: Science
  contributor:
    fullname: Lips
– volume: 96
  start-page: 1143
  year: 2014
  end-page: 1153
  ident: bib16
  article-title: Divergent antiviral roles of amphibian (
  publication-title: J. Leukoc. Biol.
  contributor:
    fullname: Robert
– volume: 78
  start-page: 3981
  year: 2010
  end-page: 3992
  ident: bib33
  article-title: Immune defenses against a fungus linked to global amphibian declines in the South African clawed frog,
  publication-title: Infect. Immun.
  contributor:
    fullname: Rollins-Smith
– volume: 106
  start-page: 1257
  year: 2019
  end-page: 1269
  ident: bib32
  article-title: Colony-stimulating factor-1-and interleukin-34-derived macrophages differ in their susceptibility to
  publication-title: J. Leukoc. Biol.
  contributor:
    fullname: Grayfer
– volume: 104734
  year: 2023
  ident: bib12
  article-title: Advances in the
  publication-title: Dev. Comp. Immunol.
  contributor:
    fullname: Tian
– volume: 92
  start-page: 1856
  year: 2023
  end-page: 1868
  ident: bib3
  article-title: Widespread amphibian Perkinsea infections associated with Ranidae hosts, cooler months and Ranavirus co‐infection
  publication-title: J. Anim. Ecol.
  contributor:
    fullname: Savage
– volume: 147
  year: 2023
  ident: bib13
  article-title: The wood frog (
  publication-title: Dev. Comp. Immunol.
  contributor:
    fullname: Katzenback
– volume: 23
  start-page: 198
  year: 2011
  end-page: 206
  ident: bib2
  article-title: Aire and T cell development
  publication-title: Curr. Opin. Immunol.
  contributor:
    fullname: Su
– volume: 95
  start-page: 9031
  year: 1998
  end-page: 9036
  ident: bib5
  article-title: Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Parkes
– volume: 91
  start-page: 219
  year: 1999
  end-page: 227
  ident: bib25
  article-title: gen. et sp. nov., a chytrid pathogenic to amphibians
  publication-title: Mycologia
  contributor:
    fullname: Nichols
– volume: 2
  year: 2024
  ident: bib31
  article-title: Preparing for a
  publication-title: Front. Amphib. Reptile Sci.
  contributor:
    fullname: Mosher
– volume: 29
  start-page: 2889
  year: 2020
  end-page: 2903
  ident: bib39
  article-title: Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus
  publication-title: Mol. Ecol.
  contributor:
    fullname: Fleischer
– volume: 5
  year: 2020
  ident: bib14
  article-title: Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity
  publication-title: Sci. Immunol.
  contributor:
    fullname: Moutsopoulos
– volume: 21
  start-page: 2233
  year: 2019
  end-page: 2245
  ident: bib26
  article-title: Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts
  publication-title: Biol. Invasions
  contributor:
    fullname: Lips
– volume: 64
  start-page: 124
  year: 2021
  ident: 10.1016/j.dci.2024.105237_bib36
  article-title: Batrachochytrium fungi: stealth invaders in amphibian skin
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2021.04.002
  contributor:
    fullname: Rollins-Smith
– volume: 188
  start-page: 160.8
  issue: 1_Suppl. ment
  year: 2012
  ident: 10.1016/j.dci.2024.105237_bib22
  article-title: Ontogenic analysis of Xenopus γδ T cells: expressed T cell receptor (TCR) γ and δ chains and IL-17 family members (160.8)
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.188.Supp.160.8
  contributor:
    fullname: Jackson
– volume: 21
  start-page: 515
  year: 2020
  ident: 10.1016/j.dci.2024.105237_bib44
  article-title: Insights into the skin of caecilian amphibians from gene expression profiles
  publication-title: BMC Genom.
  doi: 10.1186/s12864-020-06881-8
  contributor:
    fullname: Torres-Sánchez
– volume: 92
  start-page: 1856
  year: 2023
  ident: 10.1016/j.dci.2024.105237_bib3
  article-title: Widespread amphibian Perkinsea infections associated with Ranidae hosts, cooler months and Ranavirus co‐infection
  publication-title: J. Anim. Ecol.
  doi: 10.1111/1365-2656.13977
  contributor:
    fullname: Atkinson
– volume: 346
  start-page: 630
  year: 2014
  ident: 10.1016/j.dci.2024.105237_bib28
  article-title: Recent introduction of a chytrid fungus endangers Western Palearctic salamanders
  publication-title: Science
  doi: 10.1126/science.1258268
  contributor:
    fullname: Martel
– volume: 14
  start-page: 3270
  year: 2023
  ident: 10.1016/j.dci.2024.105237_bib15
  article-title: Broad host susceptibility of North American amphibian species to Batrachochytrium salamandrivorans suggests high invasion potential and biodiversity risk
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38979-4
  contributor:
    fullname: Gray
– volume: 17
  year: 2021
  ident: 10.1016/j.dci.2024.105237_bib42
  article-title: Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2021.0166
  contributor:
    fullname: Smilansky
– volume: 147
  start-page: 447
  year: 2002
  ident: 10.1016/j.dci.2024.105237_bib9
  article-title: Ranaviruses (family Iridoviridae): emerging cold-blooded killers
  publication-title: Arch. Virol.
  doi: 10.1007/s007050200000
  contributor:
    fullname: Chinchar
– volume: 5
  year: 2020
  ident: 10.1016/j.dci.2024.105237_bib14
  article-title: Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aau4594
  contributor:
    fullname: Gaffen
– volume: 17
  year: 2022
  ident: 10.1016/j.dci.2024.105237_bib43
  article-title: Amphibian collapses increased malaria incidence in Central America
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac8e1d
  contributor:
    fullname: Springborn
– volume: 326
  start-page: 582
  year: 2009
  ident: 10.1016/j.dci.2024.105237_bib45
  article-title: Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines
  publication-title: Science
  doi: 10.1126/science.1176765
  contributor:
    fullname: Voyles
– volume: 166
  start-page: 221
  year: 1998
  ident: 10.1016/j.dci.2024.105237_bib34
  article-title: Metamorphosis and the amphibian immune system
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.1998.tb01265.x
  contributor:
    fullname: Rollins-Smith
– volume: 38
  start-page: 310
  year: 2017
  ident: 10.1016/j.dci.2024.105237_bib1
  article-title: IL-17 signaling: the yin and the yang
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.01.006
  contributor:
    fullname: Amatya
– volume: 147
  year: 2023
  ident: 10.1016/j.dci.2024.105237_bib13
  article-title: The wood frog (Rana sylvatica): an emerging comparative model for anuran immunity and host-ranavirus interactions
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2023.104733
  contributor:
    fullname: Douglas
– volume: 257
  year: 2021
  ident: 10.1016/j.dci.2024.105237_bib24
  article-title: One hundred years of infection with three global pathogens in frog populations of Florida, USA
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2021.109088
  contributor:
    fullname: Karwacki
– volume: 511
  start-page: 259
  year: 2017
  ident: 10.1016/j.dci.2024.105237_bib10
  article-title: Ranaviruses and other members of the family Iridoviridae: their place in the virosphere
  publication-title: Virology
  doi: 10.1016/j.virol.2017.06.007
  contributor:
    fullname: Chinchar
– volume: 104734
  year: 2023
  ident: 10.1016/j.dci.2024.105237_bib12
  article-title: Advances in the Xenopus immunome: diversification, expansion, and contraction
  publication-title: Dev. Comp. Immunol.
  contributor:
    fullname: Dimitrakopoulou
– volume: 367
  start-page: 814
  year: 2020
  ident: 10.1016/j.dci.2024.105237_bib48
  article-title: Tropical snake diversity collapses after widespread amphibian loss
  publication-title: Science
  doi: 10.1126/science.aay5733
  contributor:
    fullname: Zipkin
– start-page: 141
  year: 2015
  ident: 10.1016/j.dci.2024.105237_bib19
  article-title: Ranavirus host immunity and immune evasion
  publication-title: Ranaviruses: Lethal pathogens of ectothermic vertebrates
  contributor:
    fullname: Grayfer
– volume: E4743E4751
  year: 2015
  ident: 10.1016/j.dci.2024.105237_bib6
  article-title: Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  contributor:
    fullname: Chambouvet
– volume: 23
  start-page: 198
  year: 2011
  ident: 10.1016/j.dci.2024.105237_bib2
  article-title: Aire and T cell development
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2010.11.007
  contributor:
    fullname: Anderson
– volume: 21
  start-page: 2233
  year: 2019
  ident: 10.1016/j.dci.2024.105237_bib26
  article-title: Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts
  publication-title: Biol. Invasions
  doi: 10.1007/s10530-019-01973-3
  contributor:
    fullname: Longo
– volume: 378
  issue: 1882
  year: 2023
  ident: 10.1016/j.dci.2024.105237_bib37
  article-title: The amphibian immune system
  publication-title: Philos. Trans. R. Soc. B, Biol. Sci.
  doi: 10.1098/rstb.2022.0123
  contributor:
    fullname: Ruiz
– volume: 29
  start-page: 2889
  year: 2020
  ident: 10.1016/j.dci.2024.105237_bib39
  article-title: Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.15533
  contributor:
    fullname: Savage
– volume: 129
  start-page: 85
  year: 2018
  ident: 10.1016/j.dci.2024.105237_bib23
  article-title: Novel quantitative PCR assay specific for the emerging Perkinsea amphibian pathogen reveals seasonal infection dynamics
  publication-title: Dis. Aquat. Org.
  doi: 10.3354/dao03239
  contributor:
    fullname: Karwacki
– volume: 48
  start-page: 430
  year: 2018
  ident: 10.1016/j.dci.2024.105237_bib30
  article-title: “Double‐duty” conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201747260
  contributor:
    fullname: Neely
– volume: 78
  start-page: 3981
  year: 2010
  ident: 10.1016/j.dci.2024.105237_bib33
  article-title: Immune defenses against a fungus linked to global amphibian declines in the South African clawed frog, Xenopus laevis
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00402-10
  contributor:
    fullname: Ramsey
– volume: 12
  start-page: RP92168
  year: 2024
  ident: 10.1016/j.dci.2024.105237_bib20
  article-title: Amphibian mast cells: barriers to deadly chytrid fungus infections
  publication-title: eLife 2024
  contributor:
    fullname: Hauser
– volume: 3
  start-page: 2065
  year: 2011
  ident: 10.1016/j.dci.2024.105237_bib8
  article-title: Antiviral immunity in amphibians
  publication-title: Viruses
  doi: 10.3390/v3112065
  contributor:
    fullname: Chen
– volume: 45
  start-page: 56
  year: 2014
  ident: 10.1016/j.dci.2024.105237_bib11
  article-title: No more non-model species: the promise of next generation sequencing for comparative immunology
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2014.01.022
  contributor:
    fullname: Dheilly
– volume: 91
  start-page: 219
  year: 1999
  ident: 10.1016/j.dci.2024.105237_bib25
  article-title: Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians
  publication-title: Mycologia
  doi: 10.1080/00275514.1999.12061011
  contributor:
    fullname: Longcore
– volume: 293
  start-page: 1736
  year: 2018
  ident: 10.1016/j.dci.2024.105237_bib47
  article-title: Differentiation-dependent antiviral capacities of amphibian (Xenopus laevis) macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.794065
  contributor:
    fullname: Yaparla
– volume: 363
  start-page: 1459
  year: 2019
  ident: 10.1016/j.dci.2024.105237_bib40
  article-title: Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity
  publication-title: Science
  doi: 10.1126/science.aav0379
  contributor:
    fullname: Scheele
– volume: 7
  year: 2017
  ident: 10.1016/j.dci.2024.105237_bib21
  article-title: Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10456-1
  contributor:
    fullname: Isidoro-Ayza
– volume: 142
  year: 2023
  ident: 10.1016/j.dci.2024.105237_bib35
  article-title: The importance of antimicrobial peptides (AMPs) in amphibian skin defense
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2023.104657
  contributor:
    fullname: Rollins-Smith
– volume: 29
  start-page: 3173
  year: 2020
  ident: 10.1016/j.dci.2024.105237_bib29
  article-title: Incapacitating effects of fungal coinfection in a novel pathogen system
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.15452
  contributor:
    fullname: McDonald
– volume: 33
  start-page: R1
  year: 2023
  ident: 10.1016/j.dci.2024.105237_bib41
  article-title: Amphibian Perkinsea
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2022.11.032
  contributor:
    fullname: Smilansky
– volume: 110
  start-page: 1833
  year: 2013
  ident: 10.1016/j.dci.2024.105237_bib46
  article-title: Aire's plant homeodomain (PHD)-2 is critical for induction of immunological tolerance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1222023110
  contributor:
    fullname: Yang
– volume: 106
  start-page: 1257
  year: 2019
  ident: 10.1016/j.dci.2024.105237_bib32
  article-title: Colony-stimulating factor-1-and interleukin-34-derived macrophages differ in their susceptibility to Mycobacterium marinum
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.1A0919-147R
  contributor:
    fullname: Popovic
– volume: 16
  year: 2020
  ident: 10.1016/j.dci.2024.105237_bib7
  article-title: Diverse alveolate infections of tadpoles, a new threat to frogs?
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008107
  contributor:
    fullname: Chambouvet
– volume: 2
  year: 2024
  ident: 10.1016/j.dci.2024.105237_bib31
  article-title: Preparing for a Bsal invasion into North America has improved multi-sector readiness
  publication-title: Front. Amphib. Reptile Sci.
  doi: 10.3389/famrs.2024.1347541
  contributor:
    fullname: Olson
– volume: 60
  start-page: 105
  year: 2008
  ident: 10.1016/j.dci.2024.105237_bib38
  article-title: Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis
  publication-title: Immunogenetics
  doi: 10.1007/s00251-007-0268-9
  contributor:
    fullname: Saltis
– volume: 96
  start-page: 1143
  year: 2014
  ident: 10.1016/j.dci.2024.105237_bib16
  article-title: Divergent antiviral roles of amphibian (Xenopus laevis) macrophages elicited by colony-stimulating factor-1 and interleukin-34
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.4A0614-295R
  contributor:
    fullname: Grayfer
– volume: 16
  start-page: 150
  issue: 3
  year: 2024
  ident: 10.1016/j.dci.2024.105237_bib4
  article-title: Diversity and molecular evolution of antimicrobial peptides in caecilian amphibians
  publication-title: Toxins
  doi: 10.3390/toxins16030150
  contributor:
    fullname: Benítez-Prián
– volume: 98
  start-page: 641
  year: 2015
  ident: 10.1016/j.dci.2024.105237_bib17
  article-title: Distinct functional roles of amphibian (Xenopus laevis) colony-stimulating factor-1-and interleukin-34-derived macrophages
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.4AB0315-117RR
  contributor:
    fullname: Grayfer
– volume: 4
  start-page: 1075
  year: 2012
  ident: 10.1016/j.dci.2024.105237_bib18
  article-title: Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens
  publication-title: Viruses
  doi: 10.3390/v4071075
  contributor:
    fullname: Grayfer
– volume: 110
  start-page: 15325
  year: 2013
  ident: 10.1016/j.dci.2024.105237_bib27
  article-title: Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307356110
  contributor:
    fullname: Martel
– volume: 95
  start-page: 9031
  year: 1998
  ident: 10.1016/j.dci.2024.105237_bib5
  article-title: Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.15.9031
  contributor:
    fullname: Berger
SSID ssj0000810
Score 2.4716847
SecondaryResourceType review_article
Snippet Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 105237
SubjectTerms Amphibians
Caecilians
Frogs
Newts
Salamander
Toads
Title The future of amphibian immunology: Opportunities and challenges
URI https://dx.doi.org/10.1016/j.dci.2024.105237
https://www.ncbi.nlm.nih.gov/pubmed/39103004
https://www.proquest.com/docview/3089504997
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4VIlAvVXk2tEWLxInIkb0PP3pq1AYVxOMASLmt7PVaCgcHNfGh_54Zr-0NIBBU4mJZq2TXms-enZmd-YaQQ52bCHZm48Fml3kilKAHkyz0wojxIpdawyeFoYur6GIS_x6LsWsP5sbeFWkYA6yxcvYNaHeTwgDcA-ZwBdTh-mrcLVFIfcQPYGFRSDmYYiGILU3ho8HlHdrdVVnzqdratrarynzZXl3KKWpIBfQSXbib053bIMf33OsCNmezaorcJ8Pl8AITTZ1dF_Nq615ckpENQ0oPNMXkgR61jQGe6GQbHrgd5no6xBWwtTCzTC-PqK4x00zitJjYGoDxt0J6DBQI6K_e6GQ8OXV7bFzzTHTP0Z5X15l7jxZ6zuJ4zqOoLYvrz-RT4xLQkcVyg3ww5SZZs01C_22S9fMm_WGL_ARwqQWXzgragUsdED_oA2gpQEYdtNvk5nh8_euP17TA8DTjcuExzYPMN0WRSKTaCw2Tmmd-nIZZiunJUWC0EBH4zWAnSmZEGId5nGcmi4IkzX2-Q1bLWWm-ECqixGcp08iOJAwLUq6lyCSPcvAYgoL3yVErJnVnmU5UmwJ4q0CmCmWqrEz7RLSCVI2pZk0wBai_9LeDVugK1BieTaWlmVVzxf04keh-w292LRrdU_AEe-H5Yu__Fv1KProX-xtZXfytzHeyMs-r_ea1ugf_TnId
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+future+of+amphibian+immunology%3A+Opportunities+and+challenges&rft.jtitle=Developmental+and+comparative+immunology&rft.au=Rollins-Smith%2C+Louise+A.&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0145-305X&rft.volume=160&rft_id=info:doi/10.1016%2Fj.dci.2024.105237&rft.externalDocID=S0145305X24001095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-305X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-305X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-305X&client=summon