The future of amphibian immunology: Opportunities and challenges
Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the d...
Saved in:
Published in: | Developmental and comparative immunology Vol. 160; p. 105237 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Ltd
01-11-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or “information-deficit” areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.
•The future of amphibian immunology offers opportunities and challenges.•Amphibians are excellent models for mucosal immune and microbe interactions.•Amphibians are at continuing risk for declines. |
---|---|
AbstractList | Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians. Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians. Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or “information-deficit” areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians. •The future of amphibian immunology offers opportunities and challenges.•Amphibians are excellent models for mucosal immune and microbe interactions.•Amphibians are at continuing risk for declines. |
ArticleNumber | 105237 |
Author | Rollins-Smith, Louise A. |
Author_xml | – sequence: 1 givenname: Louise A. orcidid: 0000-0002-5209-2459 surname: Rollins-Smith fullname: Rollins-Smith, Louise A. email: louise.rollins-smith@vanderbilt.edu, louise.rollins-smith@vumc.org organization: Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39103004$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtPwzAQhC1URB_wA7igHLmkrOM84QKqeEmVeikSN8txNq2rxA52gtR_j6sWjuxltdLMaOebkpE2Ggm5pjCnQNO73bySah5BFPs7iVh2RiY0z4oQIC9GZAI0TkIGyeeYTJ3bgZ-cwgUZs4ICA4gn5HG9xaAe-sFiYOpAtN1WlUroQLXtoE1jNvv7YNV1xvaDVr1CFwhdBXIrmgb1Bt0lOa9F4_DqtGfk4-V5vXgLl6vX98XTMpQRS_owkoyWgHVd-D_TLMUokayEXKSlgDTNMooyjrMo923yJMI4zdMqr0osM1qICtiM3B5zO2u-BnQ9b5WT2DRCoxkcZ75yAnFRZF5Kj1JpjXMWa95Z1Qq75xT4ARzfcQ-OH8DxIzjvuTnFD2WL1Z_jl5QXPBwF6Et-K7TcSYVaYqUsyp5XRv0T_wMf936R |
Cites_doi | 10.1016/j.mib.2021.04.002 10.4049/jimmunol.188.Supp.160.8 10.1186/s12864-020-06881-8 10.1111/1365-2656.13977 10.1126/science.1258268 10.1038/s41467-023-38979-4 10.1098/rsbl.2021.0166 10.1007/s007050200000 10.1126/sciimmunol.aau4594 10.1088/1748-9326/ac8e1d 10.1126/science.1176765 10.1111/j.1600-065X.1998.tb01265.x 10.1016/j.it.2017.01.006 10.1016/j.dci.2023.104733 10.1016/j.biocon.2021.109088 10.1016/j.virol.2017.06.007 10.1126/science.aay5733 10.1016/j.coi.2010.11.007 10.1007/s10530-019-01973-3 10.1098/rstb.2022.0123 10.1111/mec.15533 10.3354/dao03239 10.1002/eji.201747260 10.1128/IAI.00402-10 10.3390/v3112065 10.1016/j.dci.2014.01.022 10.1080/00275514.1999.12061011 10.1074/jbc.M117.794065 10.1126/science.aav0379 10.1038/s41598-017-10456-1 10.1016/j.dci.2023.104657 10.1111/mec.15452 10.1016/j.cub.2022.11.032 10.1073/pnas.1222023110 10.1002/JLB.1A0919-147R 10.1371/journal.ppat.1008107 10.3389/famrs.2024.1347541 10.1007/s00251-007-0268-9 10.1189/jlb.4A0614-295R 10.3390/toxins16030150 10.1189/jlb.4AB0315-117RR 10.3390/v4071075 10.1073/pnas.1307356110 10.1073/pnas.95.15.9031 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024. Published by Elsevier Ltd. Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024. Published by Elsevier Ltd. – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.dci.2024.105237 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1879-0089 |
ExternalDocumentID | 10_1016_j_dci_2024_105237 39103004 S0145305X24001095 |
Genre | Journal Article |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABBQC ABFNM ABGSF ABJNI ABKYH ABMAC ABMZM ABRWV ABUDA ABXDB ACDAQ ACGFO ACGFS ACIUM ACPRK ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEXOQ AFKWA AFRAH AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CJTIS CNWQP CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMG HVGLF HZ~ IHE J1W K-O KOM L7B LUGTX LW9 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SIN SNL SPCBC SSH SSI SSU SSZ T5K TEORI WUQ ZGI ~G- ~KM AAXKI AFJKZ NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c235t-2c31b0eff9523676e25c3b08a6ba066771ec44728202852e4686d8dbeb719ad03 |
ISSN | 0145-305X 1879-0089 |
IngestDate | Sat Oct 26 04:33:35 EDT 2024 Thu Sep 26 20:36:10 EDT 2024 Sat Nov 02 12:31:07 EDT 2024 Sat Aug 24 15:41:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Frogs Salamander Caecilians Newts Amphibians Toads caecilians newts toads salamander frogs amphibians |
Language | English |
License | Copyright © 2024. Published by Elsevier Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c235t-2c31b0eff9523676e25c3b08a6ba066771ec44728202852e4686d8dbeb719ad03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5209-2459 |
PMID | 39103004 |
PQID | 3089504997 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3089504997 crossref_primary_10_1016_j_dci_2024_105237 pubmed_primary_39103004 elsevier_sciencedirect_doi_10_1016_j_dci_2024_105237 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Developmental and comparative immunology |
PublicationTitleAlternate | Dev Comp Immunol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chinchar, Waltzek, Subramaniam (bib10) 2017; 511 Ramsey, Reinert, Harper, Woodhams, Rollins-Smith (bib33) 2010; 78 Grayfer, Edholm, De Jesús Andino, Chinchar, Robert (bib19) 2015 McDonald, Longo, Lips, Zamudio (bib29) 2020; 29 Amatya, Garg, Gaffen (bib1) 2017; 38 Voyles, Young, Berger, Campbell, Voyles, Dinudom, Cook, Webb, Alford, Skerratt, Speare (bib45) 2009; 326 Chambouvet, Smilansky, Jirků, Isidoro-Ayza, Itoïz, Derelle, Monier, Gower, Wilkinson, Yabsley, Lukeš (bib7) 2020; 16 Yang, Bansal, Lopes, Benoist, Mathis (bib46) 2013; 110 Dimitrakopoulou, Khwatenge, James-Zorn, Paiola, Bellin, Tian (bib12) 2023; 104734 Gaffen, Moutsopoulos (bib14) 2020; 5 Berger, Speare, Daszak, Green, Cunningham, Goggin, Slocombe, Ragan, Hyatt, McDonald, Hines, Lips, Marantelli, Parkes (bib5) 1998; 95 Saltis, Criscitiello, Ohta, Keefe, Trede, Goitsuka, Flajnik (bib38) 2008; 60 Springborn, Weill, Lips, Ibáñez, Ghosh (bib43) 2022; 17 Isidoro-Ayza, Lorch, Grear, Winzeler, Calhoun, Barichivich (bib21) 2017; 7 Chen, Robert (bib8) 2011; 3 Rollins-Smith (bib35) 2023; 142 Chinchar (bib9) 2002; 147 Grayfer, Robert (bib17) 2015; 98 Martel, Blooi, Adriaensen, Van Rooij, Beukema, Fisher, Farrer, Schmidt, Tobler, Goka, Lips, Muletz, Zamudio, Bosch, Lötters, Wombwell, Garner, Cunningham, Spitzen-vander, Salvidio, Ducatelle, Nishikawa, Nĝuyen, Kolby, Van Bocxlaer, Bossuyt, Pasmans (bib28) 2014; 346 Dheilly, Adema, Raftos, Gourbal, Grunau, Du Pasquier (bib11) 2014; 45 Grayfer, Robert (bib16) 2014; 96 Douglas, Katzenback (bib13) 2023; 147 Longcore, Pessier, Nichols (bib25) 1999; 91 Popovic, Yaparla, Paquin-Proulx, Koubourli, Webb, Firmani, Grayfer (bib32) 2019; 106 Scheele, Pasmans, Skerratt, Berger, Martel, Beukema, Acevedo, Burrowes, Carvalho, Catenazzi, De la Riva, fisher, Flechas, Foster, Frías-Álvarez, Garner, Gratwicke, Guayasamin, Hirschfeld, Kolby, Kosch, La Marca, Lindenmayer, Lips, Longo, Maneyro, McDonald, Mendelson, Palacios-Rodriguez, Parra-Olea, Richards-Zawacki, Rödel, Rovito, Soto-Azat, Toledo, Voyles, Weldon, Whitfield, Wilkinson, Zamudio, Canessa (bib40) 2019; 363 Martel, Spitzen-van der Sluijs, Blooi, Bert, Ducatelle, Fisher, Woeltjes, Bosman, Chiers, Bossuyt, Pasmans (bib27) 2013; 110 Zipkin, DiRenzo, Ray, Rossman, Lips (bib48) 2020; 367 Atkinson, Savage (bib3) 2023; 92 Neely, Guo, Flowers, Criscitiello, Flajnik (bib30) 2018; 48 Smilansky, Jirků, Milner, Ibáñez, Gratwicke, Nicholls, Lukes, Chambouvet, Richards (bib42) 2021; 17 Torres-Sánchez, Wilkinson, Gower, Creevey, San Mauro (bib44) 2020; 21 Smilansky, Richards (bib41) 2023; 33 Yaparla, Popovic, Grayfer (bib47) 2018; 293 Jackson, Undieh, Steiner, Parra, Miller, Ohta, Flajnik (bib22) 2012; 188 Gray, Carter, Piovia-Scott, Cusaac, Peterson, Whetstone, Hertz, Muniz-Torres, Bletz, Woodhams, Romansic, Sutton, Sheley, Pessier, McCusker, Wilber, Miller (bib15) 2023; 14 Olson, Grant, Bletz, Piovia-Scott, Lesbarreres, Kerby, Adams, Breitman, Christman, Forzan, Gray, Hill, Koo, Milenkaya, Rebollar, Rollins-Smith, Serr, Shepack, Shirose, Sprague, Walke, Warwick, Mosher (bib31) 2024; 2 Ruiz, Robert (bib37) 2023; 378 Rollins-Smith, Le Sage (bib36) 2021; 64 Anderson, Su (bib2) 2011; 23 Benítez-Prián, Lorente-Martínez, Agorreta, Gower, Wilkinson, Roelants, San Mauro (bib4) 2024; 16 Grayfer, Andino, Chen, Chinchar, Robert (bib18) 2012; 4 Karwacki, Atkinson, Ossiboff, Savage (bib23) 2018; 129 Savage, Gratwicke, Hope, Bronikowski, Fleischer (bib39) 2020; 29 Karwacki, Martin, Savage (bib24) 2021; 257 Longo, Fleischer, Lips (bib26) 2019; 21 Chambouvet, Gower, Jirku, Yabsley, Davis, Leonard, Maguire, Doherty-Bone, Bittencourt-Silva, Wilkinson, Richards (bib6) 2015; E4743E4751 Rollins-Smith (bib34) 1998; 166 Hauser, Hossainey, Gentry, Garvey, Ranganathan, Kalia, Yaparla, Zelle, Jones, Duttargi, Rollins-Smith, Muletz-Wolz, Grayfer (bib20) 2024; 12 Rollins-Smith (10.1016/j.dci.2024.105237_bib35) 2023; 142 Ruiz (10.1016/j.dci.2024.105237_bib37) 2023; 378 Amatya (10.1016/j.dci.2024.105237_bib1) 2017; 38 Springborn (10.1016/j.dci.2024.105237_bib43) 2022; 17 Benítez-Prián (10.1016/j.dci.2024.105237_bib4) 2024; 16 Berger (10.1016/j.dci.2024.105237_bib5) 1998; 95 Olson (10.1016/j.dci.2024.105237_bib31) 2024; 2 Dheilly (10.1016/j.dci.2024.105237_bib11) 2014; 45 Longcore (10.1016/j.dci.2024.105237_bib25) 1999; 91 Douglas (10.1016/j.dci.2024.105237_bib13) 2023; 147 Zipkin (10.1016/j.dci.2024.105237_bib48) 2020; 367 Atkinson (10.1016/j.dci.2024.105237_bib3) 2023; 92 Hauser (10.1016/j.dci.2024.105237_bib20) 2024; 12 Yaparla (10.1016/j.dci.2024.105237_bib47) 2018; 293 Smilansky (10.1016/j.dci.2024.105237_bib42) 2021; 17 Chambouvet (10.1016/j.dci.2024.105237_bib7) 2020; 16 Yang (10.1016/j.dci.2024.105237_bib46) 2013; 110 Savage (10.1016/j.dci.2024.105237_bib39) 2020; 29 Longo (10.1016/j.dci.2024.105237_bib26) 2019; 21 McDonald (10.1016/j.dci.2024.105237_bib29) 2020; 29 Rollins-Smith (10.1016/j.dci.2024.105237_bib36) 2021; 64 Saltis (10.1016/j.dci.2024.105237_bib38) 2008; 60 Voyles (10.1016/j.dci.2024.105237_bib45) 2009; 326 Karwacki (10.1016/j.dci.2024.105237_bib23) 2018; 129 Gray (10.1016/j.dci.2024.105237_bib15) 2023; 14 Ramsey (10.1016/j.dci.2024.105237_bib33) 2010; 78 Chinchar (10.1016/j.dci.2024.105237_bib9) 2002; 147 Martel (10.1016/j.dci.2024.105237_bib28) 2014; 346 Torres-Sánchez (10.1016/j.dci.2024.105237_bib44) 2020; 21 Dimitrakopoulou (10.1016/j.dci.2024.105237_bib12) 2023; 104734 Karwacki (10.1016/j.dci.2024.105237_bib24) 2021; 257 Rollins-Smith (10.1016/j.dci.2024.105237_bib34) 1998; 166 Chinchar (10.1016/j.dci.2024.105237_bib10) 2017; 511 Isidoro-Ayza (10.1016/j.dci.2024.105237_bib21) 2017; 7 Smilansky (10.1016/j.dci.2024.105237_bib41) 2023; 33 Jackson (10.1016/j.dci.2024.105237_bib22) 2012; 188 Chambouvet (10.1016/j.dci.2024.105237_bib6) 2015; E4743E4751 Neely (10.1016/j.dci.2024.105237_bib30) 2018; 48 Popovic (10.1016/j.dci.2024.105237_bib32) 2019; 106 Grayfer (10.1016/j.dci.2024.105237_bib16) 2014; 96 Gaffen (10.1016/j.dci.2024.105237_bib14) 2020; 5 Martel (10.1016/j.dci.2024.105237_bib27) 2013; 110 Chen (10.1016/j.dci.2024.105237_bib8) 2011; 3 Grayfer (10.1016/j.dci.2024.105237_bib18) 2012; 4 Grayfer (10.1016/j.dci.2024.105237_bib19) 2015 Scheele (10.1016/j.dci.2024.105237_bib40) 2019; 363 Anderson (10.1016/j.dci.2024.105237_bib2) 2011; 23 Grayfer (10.1016/j.dci.2024.105237_bib17) 2015; 98 |
References_xml | – volume: 38 start-page: 310 year: 2017 end-page: 322 ident: bib1 article-title: IL-17 signaling: the yin and the yang publication-title: Trends Immunol. contributor: fullname: Gaffen – volume: 142 year: 2023 ident: bib35 article-title: The importance of antimicrobial peptides (AMPs) in amphibian skin defense publication-title: Dev. Comp. Immunol. contributor: fullname: Rollins-Smith – volume: 21 start-page: 515 year: 2020 ident: bib44 article-title: Insights into the skin of caecilian amphibians from gene expression profiles publication-title: BMC Genom. contributor: fullname: San Mauro – volume: 129 start-page: 85 year: 2018 end-page: 98 ident: bib23 article-title: Novel quantitative PCR assay specific for the emerging Perkinsea amphibian pathogen reveals seasonal infection dynamics publication-title: Dis. Aquat. Org. contributor: fullname: Savage – volume: 33 start-page: R1 year: 2023 end-page: R15 ident: bib41 article-title: Amphibian Perkinsea publication-title: Curr. Biol. contributor: fullname: Richards – volume: 98 start-page: 641 year: 2015 end-page: 649 ident: bib17 article-title: Distinct functional roles of amphibian ( publication-title: J. Leukoc. Biol. contributor: fullname: Robert – volume: 12 start-page: RP92168 year: 2024 ident: bib20 article-title: Amphibian mast cells: barriers to deadly chytrid fungus infections publication-title: eLife 2024 contributor: fullname: Grayfer – volume: E4743E4751 year: 2015 ident: bib6 article-title: Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists publication-title: Proc. Natl. Acad. Sci. U.S.A. contributor: fullname: Richards – volume: 7 year: 2017 ident: bib21 article-title: Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States publication-title: Sci. Rep. contributor: fullname: Barichivich – volume: 17 year: 2021 ident: bib42 article-title: Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group publication-title: Biol. Lett. contributor: fullname: Richards – volume: 14 start-page: 3270 year: 2023 ident: bib15 article-title: Broad host susceptibility of North American amphibian species to publication-title: Nat. Commun. contributor: fullname: Miller – volume: 166 start-page: 221 year: 1998 end-page: 230 ident: bib34 article-title: Metamorphosis and the amphibian immune system publication-title: Immunol. Rev. contributor: fullname: Rollins-Smith – volume: 45 start-page: 56 year: 2014 end-page: 66 ident: bib11 article-title: No more non-model species: the promise of next generation sequencing for comparative immunology publication-title: Dev. Comp. Immunol. contributor: fullname: Du Pasquier – volume: 293 start-page: 1736 year: 2018 end-page: 1744 ident: bib47 article-title: Differentiation-dependent antiviral capacities of amphibian ( publication-title: J. Biol. Chem. contributor: fullname: Grayfer – volume: 257 year: 2021 ident: bib24 article-title: One hundred years of infection with three global pathogens in frog populations of Florida, USA publication-title: Biol. Conserv. contributor: fullname: Savage – volume: 29 start-page: 3173 year: 2020 end-page: 3186 ident: bib29 article-title: Incapacitating effects of fungal coinfection in a novel pathogen system publication-title: Mol. Ecol. contributor: fullname: Zamudio – volume: 48 start-page: 430 year: 2018 end-page: 440 ident: bib30 article-title: “Double‐duty” conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells publication-title: Eur. J. Immunol. contributor: fullname: Flajnik – volume: 60 start-page: 105 year: 2008 end-page: 114 ident: bib38 article-title: Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis publication-title: Immunogenetics contributor: fullname: Flajnik – volume: 16 year: 2020 ident: bib7 article-title: Diverse alveolate infections of tadpoles, a new threat to frogs? publication-title: PLoS Pathog. contributor: fullname: Lukeš – volume: 511 start-page: 259 year: 2017 end-page: 271 ident: bib10 article-title: Ranaviruses and other members of the family publication-title: Virology contributor: fullname: Subramaniam – start-page: 141 year: 2015 end-page: 170 ident: bib19 article-title: Ranavirus host immunity and immune evasion publication-title: Ranaviruses: Lethal pathogens of ectothermic vertebrates contributor: fullname: Robert – volume: 326 start-page: 582 year: 2009 end-page: 585 ident: bib45 article-title: Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines publication-title: Science contributor: fullname: Speare – volume: 64 start-page: 124 year: 2021 end-page: 132 ident: bib36 article-title: fungi: stealth invaders in amphibian skin publication-title: Curr. Opin. Microbiol. contributor: fullname: Le Sage – volume: 16 start-page: 150 year: 2024 ident: bib4 article-title: Diversity and molecular evolution of antimicrobial peptides in caecilian amphibians publication-title: Toxins contributor: fullname: San Mauro – volume: 4 start-page: 1075 year: 2012 end-page: 1092 ident: bib18 article-title: Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens publication-title: Viruses contributor: fullname: Robert – volume: 110 start-page: 15325 year: 2013 end-page: 15329 ident: bib27 article-title: sp. nov. causes lethal chytridiomycosis in amphibians publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Pasmans – volume: 363 start-page: 1459 year: 2019 end-page: 1463 ident: bib40 article-title: Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity publication-title: Science contributor: fullname: Canessa – volume: 17 year: 2022 ident: bib43 article-title: Amphibian collapses increased malaria incidence in Central America publication-title: Environ. Res. Lett. contributor: fullname: Ghosh – volume: 346 start-page: 630 year: 2014 end-page: 631 ident: bib28 article-title: Recent introduction of a chytrid fungus endangers Western Palearctic salamanders publication-title: Science contributor: fullname: Pasmans – volume: 188 start-page: 160.8 year: 2012 ident: bib22 article-title: Ontogenic analysis of publication-title: J. Immunol. contributor: fullname: Flajnik – volume: 147 start-page: 447 year: 2002 end-page: 470 ident: bib9 article-title: Ranaviruses (family Iridoviridae): emerging cold-blooded killers publication-title: Arch. Virol. contributor: fullname: Chinchar – volume: 3 start-page: 2065 year: 2011 end-page: 2086 ident: bib8 article-title: Antiviral immunity in amphibians publication-title: Viruses contributor: fullname: Robert – volume: 378 year: 2023 ident: bib37 article-title: The amphibian immune system publication-title: Philos. Trans. R. Soc. B, Biol. Sci. contributor: fullname: Robert – volume: 110 start-page: 1833 year: 2013 end-page: 1838 ident: bib46 article-title: Aire's plant homeodomain (PHD)-2 is critical for induction of immunological tolerance publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Mathis – volume: 367 start-page: 814 year: 2020 end-page: 816 ident: bib48 article-title: Tropical snake diversity collapses after widespread amphibian loss publication-title: Science contributor: fullname: Lips – volume: 96 start-page: 1143 year: 2014 end-page: 1153 ident: bib16 article-title: Divergent antiviral roles of amphibian ( publication-title: J. Leukoc. Biol. contributor: fullname: Robert – volume: 78 start-page: 3981 year: 2010 end-page: 3992 ident: bib33 article-title: Immune defenses against a fungus linked to global amphibian declines in the South African clawed frog, publication-title: Infect. Immun. contributor: fullname: Rollins-Smith – volume: 106 start-page: 1257 year: 2019 end-page: 1269 ident: bib32 article-title: Colony-stimulating factor-1-and interleukin-34-derived macrophages differ in their susceptibility to publication-title: J. Leukoc. Biol. contributor: fullname: Grayfer – volume: 104734 year: 2023 ident: bib12 article-title: Advances in the publication-title: Dev. Comp. Immunol. contributor: fullname: Tian – volume: 92 start-page: 1856 year: 2023 end-page: 1868 ident: bib3 article-title: Widespread amphibian Perkinsea infections associated with Ranidae hosts, cooler months and Ranavirus co‐infection publication-title: J. Anim. Ecol. contributor: fullname: Savage – volume: 147 year: 2023 ident: bib13 article-title: The wood frog ( publication-title: Dev. Comp. Immunol. contributor: fullname: Katzenback – volume: 23 start-page: 198 year: 2011 end-page: 206 ident: bib2 article-title: Aire and T cell development publication-title: Curr. Opin. Immunol. contributor: fullname: Su – volume: 95 start-page: 9031 year: 1998 end-page: 9036 ident: bib5 article-title: Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Parkes – volume: 91 start-page: 219 year: 1999 end-page: 227 ident: bib25 article-title: gen. et sp. nov., a chytrid pathogenic to amphibians publication-title: Mycologia contributor: fullname: Nichols – volume: 2 year: 2024 ident: bib31 article-title: Preparing for a publication-title: Front. Amphib. Reptile Sci. contributor: fullname: Mosher – volume: 29 start-page: 2889 year: 2020 end-page: 2903 ident: bib39 article-title: Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus publication-title: Mol. Ecol. contributor: fullname: Fleischer – volume: 5 year: 2020 ident: bib14 article-title: Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity publication-title: Sci. Immunol. contributor: fullname: Moutsopoulos – volume: 21 start-page: 2233 year: 2019 end-page: 2245 ident: bib26 article-title: Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts publication-title: Biol. Invasions contributor: fullname: Lips – volume: 64 start-page: 124 year: 2021 ident: 10.1016/j.dci.2024.105237_bib36 article-title: Batrachochytrium fungi: stealth invaders in amphibian skin publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2021.04.002 contributor: fullname: Rollins-Smith – volume: 188 start-page: 160.8 issue: 1_Suppl. ment year: 2012 ident: 10.1016/j.dci.2024.105237_bib22 article-title: Ontogenic analysis of Xenopus γδ T cells: expressed T cell receptor (TCR) γ and δ chains and IL-17 family members (160.8) publication-title: J. Immunol. doi: 10.4049/jimmunol.188.Supp.160.8 contributor: fullname: Jackson – volume: 21 start-page: 515 year: 2020 ident: 10.1016/j.dci.2024.105237_bib44 article-title: Insights into the skin of caecilian amphibians from gene expression profiles publication-title: BMC Genom. doi: 10.1186/s12864-020-06881-8 contributor: fullname: Torres-Sánchez – volume: 92 start-page: 1856 year: 2023 ident: 10.1016/j.dci.2024.105237_bib3 article-title: Widespread amphibian Perkinsea infections associated with Ranidae hosts, cooler months and Ranavirus co‐infection publication-title: J. Anim. Ecol. doi: 10.1111/1365-2656.13977 contributor: fullname: Atkinson – volume: 346 start-page: 630 year: 2014 ident: 10.1016/j.dci.2024.105237_bib28 article-title: Recent introduction of a chytrid fungus endangers Western Palearctic salamanders publication-title: Science doi: 10.1126/science.1258268 contributor: fullname: Martel – volume: 14 start-page: 3270 year: 2023 ident: 10.1016/j.dci.2024.105237_bib15 article-title: Broad host susceptibility of North American amphibian species to Batrachochytrium salamandrivorans suggests high invasion potential and biodiversity risk publication-title: Nat. Commun. doi: 10.1038/s41467-023-38979-4 contributor: fullname: Gray – volume: 17 year: 2021 ident: 10.1016/j.dci.2024.105237_bib42 article-title: Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group publication-title: Biol. Lett. doi: 10.1098/rsbl.2021.0166 contributor: fullname: Smilansky – volume: 147 start-page: 447 year: 2002 ident: 10.1016/j.dci.2024.105237_bib9 article-title: Ranaviruses (family Iridoviridae): emerging cold-blooded killers publication-title: Arch. Virol. doi: 10.1007/s007050200000 contributor: fullname: Chinchar – volume: 5 year: 2020 ident: 10.1016/j.dci.2024.105237_bib14 article-title: Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aau4594 contributor: fullname: Gaffen – volume: 17 year: 2022 ident: 10.1016/j.dci.2024.105237_bib43 article-title: Amphibian collapses increased malaria incidence in Central America publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac8e1d contributor: fullname: Springborn – volume: 326 start-page: 582 year: 2009 ident: 10.1016/j.dci.2024.105237_bib45 article-title: Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines publication-title: Science doi: 10.1126/science.1176765 contributor: fullname: Voyles – volume: 166 start-page: 221 year: 1998 ident: 10.1016/j.dci.2024.105237_bib34 article-title: Metamorphosis and the amphibian immune system publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.1998.tb01265.x contributor: fullname: Rollins-Smith – volume: 38 start-page: 310 year: 2017 ident: 10.1016/j.dci.2024.105237_bib1 article-title: IL-17 signaling: the yin and the yang publication-title: Trends Immunol. doi: 10.1016/j.it.2017.01.006 contributor: fullname: Amatya – volume: 147 year: 2023 ident: 10.1016/j.dci.2024.105237_bib13 article-title: The wood frog (Rana sylvatica): an emerging comparative model for anuran immunity and host-ranavirus interactions publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2023.104733 contributor: fullname: Douglas – volume: 257 year: 2021 ident: 10.1016/j.dci.2024.105237_bib24 article-title: One hundred years of infection with three global pathogens in frog populations of Florida, USA publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2021.109088 contributor: fullname: Karwacki – volume: 511 start-page: 259 year: 2017 ident: 10.1016/j.dci.2024.105237_bib10 article-title: Ranaviruses and other members of the family Iridoviridae: their place in the virosphere publication-title: Virology doi: 10.1016/j.virol.2017.06.007 contributor: fullname: Chinchar – volume: 104734 year: 2023 ident: 10.1016/j.dci.2024.105237_bib12 article-title: Advances in the Xenopus immunome: diversification, expansion, and contraction publication-title: Dev. Comp. Immunol. contributor: fullname: Dimitrakopoulou – volume: 367 start-page: 814 year: 2020 ident: 10.1016/j.dci.2024.105237_bib48 article-title: Tropical snake diversity collapses after widespread amphibian loss publication-title: Science doi: 10.1126/science.aay5733 contributor: fullname: Zipkin – start-page: 141 year: 2015 ident: 10.1016/j.dci.2024.105237_bib19 article-title: Ranavirus host immunity and immune evasion publication-title: Ranaviruses: Lethal pathogens of ectothermic vertebrates contributor: fullname: Grayfer – volume: E4743E4751 year: 2015 ident: 10.1016/j.dci.2024.105237_bib6 article-title: Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists publication-title: Proc. Natl. Acad. Sci. U.S.A. contributor: fullname: Chambouvet – volume: 23 start-page: 198 year: 2011 ident: 10.1016/j.dci.2024.105237_bib2 article-title: Aire and T cell development publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2010.11.007 contributor: fullname: Anderson – volume: 21 start-page: 2233 year: 2019 ident: 10.1016/j.dci.2024.105237_bib26 article-title: Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts publication-title: Biol. Invasions doi: 10.1007/s10530-019-01973-3 contributor: fullname: Longo – volume: 378 issue: 1882 year: 2023 ident: 10.1016/j.dci.2024.105237_bib37 article-title: The amphibian immune system publication-title: Philos. Trans. R. Soc. B, Biol. Sci. doi: 10.1098/rstb.2022.0123 contributor: fullname: Ruiz – volume: 29 start-page: 2889 year: 2020 ident: 10.1016/j.dci.2024.105237_bib39 article-title: Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus publication-title: Mol. Ecol. doi: 10.1111/mec.15533 contributor: fullname: Savage – volume: 129 start-page: 85 year: 2018 ident: 10.1016/j.dci.2024.105237_bib23 article-title: Novel quantitative PCR assay specific for the emerging Perkinsea amphibian pathogen reveals seasonal infection dynamics publication-title: Dis. Aquat. Org. doi: 10.3354/dao03239 contributor: fullname: Karwacki – volume: 48 start-page: 430 year: 2018 ident: 10.1016/j.dci.2024.105237_bib30 article-title: “Double‐duty” conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.201747260 contributor: fullname: Neely – volume: 78 start-page: 3981 year: 2010 ident: 10.1016/j.dci.2024.105237_bib33 article-title: Immune defenses against a fungus linked to global amphibian declines in the South African clawed frog, Xenopus laevis publication-title: Infect. Immun. doi: 10.1128/IAI.00402-10 contributor: fullname: Ramsey – volume: 12 start-page: RP92168 year: 2024 ident: 10.1016/j.dci.2024.105237_bib20 article-title: Amphibian mast cells: barriers to deadly chytrid fungus infections publication-title: eLife 2024 contributor: fullname: Hauser – volume: 3 start-page: 2065 year: 2011 ident: 10.1016/j.dci.2024.105237_bib8 article-title: Antiviral immunity in amphibians publication-title: Viruses doi: 10.3390/v3112065 contributor: fullname: Chen – volume: 45 start-page: 56 year: 2014 ident: 10.1016/j.dci.2024.105237_bib11 article-title: No more non-model species: the promise of next generation sequencing for comparative immunology publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2014.01.022 contributor: fullname: Dheilly – volume: 91 start-page: 219 year: 1999 ident: 10.1016/j.dci.2024.105237_bib25 article-title: Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians publication-title: Mycologia doi: 10.1080/00275514.1999.12061011 contributor: fullname: Longcore – volume: 293 start-page: 1736 year: 2018 ident: 10.1016/j.dci.2024.105237_bib47 article-title: Differentiation-dependent antiviral capacities of amphibian (Xenopus laevis) macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.794065 contributor: fullname: Yaparla – volume: 363 start-page: 1459 year: 2019 ident: 10.1016/j.dci.2024.105237_bib40 article-title: Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity publication-title: Science doi: 10.1126/science.aav0379 contributor: fullname: Scheele – volume: 7 year: 2017 ident: 10.1016/j.dci.2024.105237_bib21 article-title: Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States publication-title: Sci. Rep. doi: 10.1038/s41598-017-10456-1 contributor: fullname: Isidoro-Ayza – volume: 142 year: 2023 ident: 10.1016/j.dci.2024.105237_bib35 article-title: The importance of antimicrobial peptides (AMPs) in amphibian skin defense publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2023.104657 contributor: fullname: Rollins-Smith – volume: 29 start-page: 3173 year: 2020 ident: 10.1016/j.dci.2024.105237_bib29 article-title: Incapacitating effects of fungal coinfection in a novel pathogen system publication-title: Mol. Ecol. doi: 10.1111/mec.15452 contributor: fullname: McDonald – volume: 33 start-page: R1 year: 2023 ident: 10.1016/j.dci.2024.105237_bib41 article-title: Amphibian Perkinsea publication-title: Curr. Biol. doi: 10.1016/j.cub.2022.11.032 contributor: fullname: Smilansky – volume: 110 start-page: 1833 year: 2013 ident: 10.1016/j.dci.2024.105237_bib46 article-title: Aire's plant homeodomain (PHD)-2 is critical for induction of immunological tolerance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1222023110 contributor: fullname: Yang – volume: 106 start-page: 1257 year: 2019 ident: 10.1016/j.dci.2024.105237_bib32 article-title: Colony-stimulating factor-1-and interleukin-34-derived macrophages differ in their susceptibility to Mycobacterium marinum publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.1A0919-147R contributor: fullname: Popovic – volume: 16 year: 2020 ident: 10.1016/j.dci.2024.105237_bib7 article-title: Diverse alveolate infections of tadpoles, a new threat to frogs? publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008107 contributor: fullname: Chambouvet – volume: 2 year: 2024 ident: 10.1016/j.dci.2024.105237_bib31 article-title: Preparing for a Bsal invasion into North America has improved multi-sector readiness publication-title: Front. Amphib. Reptile Sci. doi: 10.3389/famrs.2024.1347541 contributor: fullname: Olson – volume: 60 start-page: 105 year: 2008 ident: 10.1016/j.dci.2024.105237_bib38 article-title: Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis publication-title: Immunogenetics doi: 10.1007/s00251-007-0268-9 contributor: fullname: Saltis – volume: 96 start-page: 1143 year: 2014 ident: 10.1016/j.dci.2024.105237_bib16 article-title: Divergent antiviral roles of amphibian (Xenopus laevis) macrophages elicited by colony-stimulating factor-1 and interleukin-34 publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.4A0614-295R contributor: fullname: Grayfer – volume: 16 start-page: 150 issue: 3 year: 2024 ident: 10.1016/j.dci.2024.105237_bib4 article-title: Diversity and molecular evolution of antimicrobial peptides in caecilian amphibians publication-title: Toxins doi: 10.3390/toxins16030150 contributor: fullname: Benítez-Prián – volume: 98 start-page: 641 year: 2015 ident: 10.1016/j.dci.2024.105237_bib17 article-title: Distinct functional roles of amphibian (Xenopus laevis) colony-stimulating factor-1-and interleukin-34-derived macrophages publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.4AB0315-117RR contributor: fullname: Grayfer – volume: 4 start-page: 1075 year: 2012 ident: 10.1016/j.dci.2024.105237_bib18 article-title: Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens publication-title: Viruses doi: 10.3390/v4071075 contributor: fullname: Grayfer – volume: 110 start-page: 15325 year: 2013 ident: 10.1016/j.dci.2024.105237_bib27 article-title: Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1307356110 contributor: fullname: Martel – volume: 95 start-page: 9031 year: 1998 ident: 10.1016/j.dci.2024.105237_bib5 article-title: Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.15.9031 contributor: fullname: Berger |
SSID | ssj0000810 |
Score | 2.4716847 |
SecondaryResourceType | review_article |
Snippet | Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 105237 |
SubjectTerms | Amphibians Caecilians Frogs Newts Salamander Toads |
Title | The future of amphibian immunology: Opportunities and challenges |
URI | https://dx.doi.org/10.1016/j.dci.2024.105237 https://www.ncbi.nlm.nih.gov/pubmed/39103004 https://www.proquest.com/docview/3089504997 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4VIlAvVXk2tEWLxInIkb0PP3pq1AYVxOMASLmt7PVaCgcHNfGh_54Zr-0NIBBU4mJZq2TXms-enZmd-YaQQ52bCHZm48Fml3kilKAHkyz0wojxIpdawyeFoYur6GIS_x6LsWsP5sbeFWkYA6yxcvYNaHeTwgDcA-ZwBdTh-mrcLVFIfcQPYGFRSDmYYiGILU3ho8HlHdrdVVnzqdratrarynzZXl3KKWpIBfQSXbib053bIMf33OsCNmezaorcJ8Pl8AITTZ1dF_Nq615ckpENQ0oPNMXkgR61jQGe6GQbHrgd5no6xBWwtTCzTC-PqK4x00zitJjYGoDxt0J6DBQI6K_e6GQ8OXV7bFzzTHTP0Z5X15l7jxZ6zuJ4zqOoLYvrz-RT4xLQkcVyg3ww5SZZs01C_22S9fMm_WGL_ARwqQWXzgragUsdED_oA2gpQEYdtNvk5nh8_euP17TA8DTjcuExzYPMN0WRSKTaCw2Tmmd-nIZZiunJUWC0EBH4zWAnSmZEGId5nGcmi4IkzX2-Q1bLWWm-ECqixGcp08iOJAwLUq6lyCSPcvAYgoL3yVErJnVnmU5UmwJ4q0CmCmWqrEz7RLSCVI2pZk0wBai_9LeDVugK1BieTaWlmVVzxf04keh-w292LRrdU_AEe-H5Yu__Fv1KProX-xtZXfytzHeyMs-r_ea1ugf_TnId |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+future+of+amphibian+immunology%3A+Opportunities+and+challenges&rft.jtitle=Developmental+and+comparative+immunology&rft.au=Rollins-Smith%2C+Louise+A.&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0145-305X&rft.volume=160&rft_id=info:doi/10.1016%2Fj.dci.2024.105237&rft.externalDocID=S0145305X24001095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-305X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-305X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-305X&client=summon |