Quantitative Characterization of RCA‐Based DNA Hydrogels – Towards Rational Materials Design

DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This st...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal Vol. 30; no. 53; pp. e202401788 - n/a
Main Authors: Moench, Svenja A., Lemke, Phillip, Weisser, Julia, Stoev, Iliya D., Rabe, Kersten S., Domínguez, Carmen M., Niemeyer, Christof M.
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 19-09-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems. The impact of template sequences and reaction conditions on the synthesis of DNA hydrogels via Rolling Circle Amplification (RCA) was systematically investigated. The employed methodology is high‐throughput capable and facilitates the development of sequence‐property relationships by correlating reaction process parameters with synthesis efficiency and mechanical material properties.
AbstractList DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems. The impact of template sequences and reaction conditions on the synthesis of DNA hydrogels via Rolling Circle Amplification (RCA) was systematically investigated. The employed methodology is high‐throughput capable and facilitates the development of sequence‐property relationships by correlating reaction process parameters with synthesis efficiency and mechanical material properties.
DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high-throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure-property relationships, aiding the rational design of DNA hydrogel material systems.DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high-throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure-property relationships, aiding the rational design of DNA hydrogel material systems.
DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems.
Abstract DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems.
Author Niemeyer, Christof M.
Rabe, Kersten S.
Stoev, Iliya D.
Moench, Svenja A.
Weisser, Julia
Lemke, Phillip
Domínguez, Carmen M.
Author_xml – sequence: 1
  givenname: Svenja A.
  orcidid: 0000-0002-3193-5963
  surname: Moench
  fullname: Moench, Svenja A.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 2
  givenname: Phillip
  orcidid: 0000-0002-0726-5023
  surname: Lemke
  fullname: Lemke, Phillip
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 3
  givenname: Julia
  surname: Weisser
  fullname: Weisser, Julia
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 4
  givenname: Iliya D.
  orcidid: 0000-0003-3053-3548
  surname: Stoev
  fullname: Stoev, Iliya D.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 5
  givenname: Kersten S.
  orcidid: 0000-0001-7909-8191
  surname: Rabe
  fullname: Rabe, Kersten S.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 6
  givenname: Carmen M.
  orcidid: 0000-0002-0918-5473
  surname: Domínguez
  fullname: Domínguez, Carmen M.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 7
  givenname: Christof M.
  orcidid: 0000-0002-8837-081X
  surname: Niemeyer
  fullname: Niemeyer, Christof M.
  email: niemeyer@kit.edu
  organization: Karlsruhe Institute of Technology (KIT)
BookMark eNqFkD1PwzAQhi0EEuVjZbbEwpJy_orjsYRCkVoQCOZgkgsEpTHYKahM_AQk_iG_hJQikFiYrPM9z93p3SCrjWuQkB0GfQbA9_M7nPY5cAlMJ8kK6THFWSR0rFZJD4zUUayEWScbIdwDgImF6JHr85lt2qq1bfWENL2z3uYt-uql-3ANdSW9SAcfr28HNmBBD08HdDQvvLvFOtCP13d66Z6tLwK9-OJtTSd2oduufYihum22yFrZVbj9_W6Sq6PhZTqKxmfHJ-lgHOVcqCTSIucxKMWTRKBUptBcayEF6hwUas1jlBaT8qbQRoG2hnFZJlYyayTavBSbZG8598G7xxmGNptWIce6tg26WcgEaJOoGGLZobt_0Hs3893xHcUYcOh2L6j-ksq9C8FjmT34amr9PGOQLQLPFoFnP4F3glkKz1WN83_oLB0NJ7_uJ8NNhrQ
Cites_doi 10.1021/ja406115e
10.1088/0031-9120/3/3/307
10.1039/C8SC02952K
10.1038/s41467-019-13381-1
10.1093/nar/gky735
10.1016/j.tim.2009.02.004
10.1093/nar/gkg595
10.1039/D3CC04374F
10.1002/adma.201701086
10.1016/j.jnnfm.2011.01.001
10.1039/C8RA02804D
10.1111/j.1365-2621.2004.00742.x
10.1002/smtd.202400251
10.1039/D2AN00556E
10.1021/acsami.9b22116
10.1039/C5CS00586H
10.1039/C9SM01398A
10.1021/acs.chemrev.0c00294
10.1021/acsbiomaterials.0c01125
10.1006/jmbi.1995.0570
10.1093/nar/gkx553
10.1038/s41467-019-08428-2
10.1093/nar/gkx1238
10.1038/nrg3296
10.1039/C9TB02861G
10.1016/j.polymer.2006.04.054
10.1021/acsami.9b04663
10.1021/cr300225q
10.1093/nar/gkp026
10.1016/j.jmoldx.2014.01.006
10.1002/ange.201400323
10.1016/S0021-9258(18)81883-X
10.1021/acs.accounts.6b00581
10.1002/anie.201907670
ContentType Journal Article
Copyright 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH.
Copyright_xml – notice: 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH.
DBID 24P
WIN
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202401788
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 10_1002_chem_202401788
CHEM202401788
Genre article
GrantInformation_xml – fundername: Helmholtz-Gemeinschaft
  funderid: Adaptive and Bioinstructive Materials Systems
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c2358-73c260552883e459d7277343e7c05e7726e4ae8fbd79507a9124f8a41a94eacf3
IEDL.DBID 33P
ISSN 0947-6539
1521-3765
IngestDate Sat Oct 26 02:08:09 EDT 2024
Thu Oct 10 21:09:46 EDT 2024
Thu Sep 12 20:31:07 EDT 2024
Fri Sep 27 10:01:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 53
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2358-73c260552883e459d7277343e7c05e7726e4ae8fbd79507a9124f8a41a94eacf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3053-3548
0000-0002-0918-5473
0000-0002-0726-5023
0000-0001-7909-8191
0000-0002-3193-5963
0000-0002-8837-081X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202401788
PQID 3110207274
PQPubID 986340
PageCount 10
ParticipantIDs proquest_miscellaneous_3079856064
proquest_journals_3110207274
crossref_primary_10_1002_chem_202401788
wiley_primary_10_1002_chem_202401788_CHEM202401788
PublicationCentury 2000
PublicationDate September 19, 2024
PublicationDateYYYYMMDD 2024-09-19
PublicationDate_xml – month: 09
  year: 2024
  text: September 19, 2024
  day: 19
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 120
2019; 11
2023; 59
2019; 10
1968; 3
2017; 45
2020; 16
2020; 59
2017; 29
2020; 12
2024
1995; 253
2012; 13
2003; 31
2018; 46
2020; 8
2017; 50
2020; 6
2018; 9
2018; 8
2004; 39
1989; 264
2006; 47
2014; 16
2013; 135
2013; 113
2014; 126
2009; 37
2011; 166
2016; 45
2022; 147
2009; 17
Hu R. (e_1_2_9_7_2) 2014; 126
e_1_2_9_31_1
Liu C. (e_1_2_9_22_1) 2006; 47
Galindo-Rosales F. J. (e_1_2_9_30_2) 2011; 166
e_1_2_9_13_1
An R. (e_1_2_9_39_2) 2017; 45
Doluca O. (e_1_2_9_25_1) 2013; 113
Montgomery J. L. (e_1_2_9_33_2) 2014; 16
Bochman M. L. (e_1_2_9_34_1) 2012; 13
Cui Y. (e_1_2_9_41_2) 2018; 8
Gao Y.-p. (e_1_2_9_12_1) 2022; 147
Chen J. (e_1_2_9_40_2) 2018; 9
Kypr J. (e_1_2_9_26_1) 2009; 37
Merindol R. (e_1_2_9_16_1) 2019; 10
Thammakiti S. (e_1_2_9_29_2) 2004; 39
Blanco L. (e_1_2_9_11_1) 1989; 264
Soengas M. a. S. (e_1_2_9_32_2) 1995; 253
Abou Assi H. (e_1_2_9_35_1) 2018; 46
Li J. (e_1_2_9_8_2) 2016; 45
Davenport T. C. (e_1_2_9_28_2) 1968; 3
Stoev I. D. (e_1_2_9_37_1) 2020; 16
e_1_2_9_38_1
Kim E. (e_1_2_9_9_2) 2017; 29
e_1_2_9_18_1
Johne R. (e_1_2_9_36_1) 2009; 17
Wang D. (e_1_2_9_3_2) 2017; 50
Hu Y. (e_1_2_9_19_2) 2019; 10
Zuker M. (e_1_2_9_24_1) 2003; 31
Hu Y. (e_1_2_9_21_2) 2020; 12
e_1_2_9_6_1
Schneider L. (e_1_2_9_15_2) 2023; 59
e_1_2_9_1_1
Lemke P. (e_1_2_9_23_1) 2024
Joffroy B. (e_1_2_9_14_2) 2018; 46
Vázquez-González M. (e_1_2_9_4_2) 2020; 59
Dong Y. (e_1_2_9_2_2) 2020; 120
Morya V. (e_1_2_9_5_2) 2020; 6
Wang Y. (e_1_2_9_10_2) 2019; 11
Zhu G. (e_1_2_9_17_1) 2013; 135
e_1_2_9_27_1
Hu Y. (e_1_2_9_20_2) 2020; 8
References_xml – volume: 264
  start-page: 8935
  year: 1989
  end-page: 8940
  publication-title: J. Biol. Chem.
– volume: 120
  start-page: 9420
  year: 2020
  end-page: 9481
  publication-title: Chem. Rev.
– volume: 12
  start-page: 14806
  year: 2020
  end-page: 14813
  publication-title: ACS Appl. Mater. Interfaces
– volume: 39
  start-page: 21
  year: 2004
  end-page: 29
  publication-title: Int. J. Food Sci. Technol.
– volume: 47
  start-page: 4461
  year: 2006
  end-page: 4479
  publication-title: Polymer
– volume: 166
  start-page: 321
  year: 2011
  end-page: 325
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 59
  start-page: 15342
  year: 2020
  end-page: 15377
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 10
  start-page: 5522
  year: 2019
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 135
  start-page: 16438
  year: 2013
  end-page: 16445
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 18972
  year: 2018
  end-page: 18979
  publication-title: RSC Adv.
– volume: 113
  start-page: 3044
  year: 2013
  end-page: 3083
  publication-title: Chem. Rev.
– volume: 37
  start-page: 1713
  year: 2009
  end-page: 1725
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 205
  year: 2009
  end-page: 211
  publication-title: Trends Microbiol.
– volume: 253
  start-page: 517
  year: 1995
  end-page: 529
  publication-title: J. Mol. Biol.
– volume: 46
  start-page: 8038
  year: 2018
  end-page: 8056
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 2250
  year: 2020
  end-page: 2255
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 139
  year: 1968
  publication-title: Phys. Educ.
– volume: 59
  start-page: 12184
  year: 2023
  end-page: 12187
  publication-title: Chem. Commun.
– volume: 9
  start-page: 8110
  year: 2018
  end-page: 8120
  publication-title: Chem. Sci.
– volume: 45
  start-page: e139
  year: 2017
  end-page: e139
  publication-title: Nucleic Acids Res.
– volume: 13
  start-page: 770
  year: 2012
  end-page: 780
  publication-title: Nat. Rev. Genet.
– volume: 31
  start-page: 3406
  year: 2003
  end-page: 3415
  publication-title: Nucleic Acids Res.
– volume: 45
  start-page: 1410
  year: 2016
  end-page: 1431
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 6021
  year: 2020
  end-page: 6035
  publication-title: ACS Biomater. Sci. Eng.
– volume: 46
  start-page: 538
  year: 2018
  end-page: 545
  publication-title: Nucleic Acids Res.
– volume: 147
  start-page: 3396
  year: 2022
  end-page: 3414
  publication-title: Analyst
– volume: 10
  start-page: 528
  year: 2019
  publication-title: Nat. Commun.
– volume: 50
  start-page: 733
  year: 2017
  end-page: 739
  publication-title: Acc. Chem. Res.
– volume: 126
  start-page: 5931
  year: 2014
  end-page: 5936
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  start-page: 990
  year: 2020
  end-page: 1001
  publication-title: Soft Matter
– volume: 11
  start-page: 22932
  year: 2019
  end-page: 22940
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 305
  year: 2014
  end-page: 313
  publication-title: J. Mol. Diagnostics
– year: 2024
  publication-title: Small Methods
– volume: 135
  start-page: 16438
  year: 2013
  ident: e_1_2_9_17_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406115e
  contributor:
    fullname: Zhu G.
– volume: 3
  start-page: 139
  year: 1968
  ident: e_1_2_9_28_2
  publication-title: Phys. Educ.
  doi: 10.1088/0031-9120/3/3/307
  contributor:
    fullname: Davenport T. C.
– volume: 9
  start-page: 8110
  year: 2018
  ident: e_1_2_9_40_2
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02952K
  contributor:
    fullname: Chen J.
– volume: 10
  start-page: 5522
  year: 2019
  ident: e_1_2_9_19_2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13381-1
  contributor:
    fullname: Hu Y.
– ident: e_1_2_9_31_1
– volume: 46
  start-page: 8038
  year: 2018
  ident: e_1_2_9_35_1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky735
  contributor:
    fullname: Abou Assi H.
– volume: 17
  start-page: 205
  year: 2009
  ident: e_1_2_9_36_1
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2009.02.004
  contributor:
    fullname: Johne R.
– volume: 31
  start-page: 3406
  year: 2003
  ident: e_1_2_9_24_1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg595
  contributor:
    fullname: Zuker M.
– volume: 59
  start-page: 12184
  year: 2023
  ident: e_1_2_9_15_2
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC04374F
  contributor:
    fullname: Schneider L.
– ident: e_1_2_9_6_1
– ident: e_1_2_9_1_1
– volume: 29
  year: 2017
  ident: e_1_2_9_9_2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701086
  contributor:
    fullname: Kim E.
– volume: 166
  start-page: 321
  year: 2011
  ident: e_1_2_9_30_2
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2011.01.001
  contributor:
    fullname: Galindo-Rosales F. J.
– volume: 8
  start-page: 18972
  year: 2018
  ident: e_1_2_9_41_2
  publication-title: RSC Adv.
  doi: 10.1039/C8RA02804D
  contributor:
    fullname: Cui Y.
– volume: 39
  start-page: 21
  year: 2004
  ident: e_1_2_9_29_2
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/j.1365-2621.2004.00742.x
  contributor:
    fullname: Thammakiti S.
– ident: e_1_2_9_13_1
– year: 2024
  ident: e_1_2_9_23_1
  publication-title: Small Methods
  doi: 10.1002/smtd.202400251
  contributor:
    fullname: Lemke P.
– volume: 147
  start-page: 3396
  year: 2022
  ident: e_1_2_9_12_1
  publication-title: Analyst
  doi: 10.1039/D2AN00556E
  contributor:
    fullname: Gao Y.-p.
– volume: 12
  start-page: 14806
  year: 2020
  ident: e_1_2_9_21_2
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b22116
  contributor:
    fullname: Hu Y.
– volume: 45
  start-page: 1410
  year: 2016
  ident: e_1_2_9_8_2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00586H
  contributor:
    fullname: Li J.
– volume: 16
  start-page: 990
  year: 2020
  ident: e_1_2_9_37_1
  publication-title: Soft Matter
  doi: 10.1039/C9SM01398A
  contributor:
    fullname: Stoev I. D.
– ident: e_1_2_9_38_1
– volume: 120
  start-page: 9420
  year: 2020
  ident: e_1_2_9_2_2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00294
  contributor:
    fullname: Dong Y.
– ident: e_1_2_9_27_1
– volume: 6
  start-page: 6021
  year: 2020
  ident: e_1_2_9_5_2
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c01125
  contributor:
    fullname: Morya V.
– volume: 253
  start-page: 517
  year: 1995
  ident: e_1_2_9_32_2
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0570
  contributor:
    fullname: Soengas M. a. S.
– volume: 45
  start-page: e139
  year: 2017
  ident: e_1_2_9_39_2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx553
  contributor:
    fullname: An R.
– volume: 10
  start-page: 528
  year: 2019
  ident: e_1_2_9_16_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08428-2
  contributor:
    fullname: Merindol R.
– volume: 46
  start-page: 538
  year: 2018
  ident: e_1_2_9_14_2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1238
  contributor:
    fullname: Joffroy B.
– volume: 13
  start-page: 770
  year: 2012
  ident: e_1_2_9_34_1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3296
  contributor:
    fullname: Bochman M. L.
– volume: 8
  start-page: 2250
  year: 2020
  ident: e_1_2_9_20_2
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB02861G
  contributor:
    fullname: Hu Y.
– volume: 47
  start-page: 4461
  year: 2006
  ident: e_1_2_9_22_1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.04.054
  contributor:
    fullname: Liu C.
– volume: 11
  start-page: 22932
  year: 2019
  ident: e_1_2_9_10_2
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04663
  contributor:
    fullname: Wang Y.
– ident: e_1_2_9_18_1
– volume: 113
  start-page: 3044
  year: 2013
  ident: e_1_2_9_25_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr300225q
  contributor:
    fullname: Doluca O.
– volume: 37
  start-page: 1713
  year: 2009
  ident: e_1_2_9_26_1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp026
  contributor:
    fullname: Kypr J.
– volume: 16
  start-page: 305
  year: 2014
  ident: e_1_2_9_33_2
  publication-title: J. Mol. Diagnostics
  doi: 10.1016/j.jmoldx.2014.01.006
  contributor:
    fullname: Montgomery J. L.
– volume: 126
  start-page: 5931
  year: 2014
  ident: e_1_2_9_7_2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201400323
  contributor:
    fullname: Hu R.
– volume: 264
  start-page: 8935
  year: 1989
  ident: e_1_2_9_11_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)81883-X
  contributor:
    fullname: Blanco L.
– volume: 50
  start-page: 733
  year: 2017
  ident: e_1_2_9_3_2
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00581
  contributor:
    fullname: Wang D.
– volume: 59
  start-page: 15342
  year: 2020
  ident: e_1_2_9_4_2
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201907670
  contributor:
    fullname: Vázquez-González M.
SSID ssj0009633
Score 2.503536
Snippet DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the...
Abstract DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage e202401788
SubjectTerms Biomedical materials
Chemical synthesis
Deoxyribonucleic acid
Design standards
DNA
DNA hydrogels
DNA structure
Efficiency
Experimental methods
Gels
Gene sequencing
Hydrogels
Material properties
Mechanical properties
Nucleotide sequence
Nucleotides
Reagents
Rolling circle amplification
Viscosity
Title Quantitative Characterization of RCA‐Based DNA Hydrogels – Towards Rational Materials Design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202401788
https://www.proquest.com/docview/3110207274
https://www.proquest.com/docview/3079856064
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EYGCjITEFDUPJ07GkrbqQgWlSGzBiW22BDXNwNafgMQ_7C_h7DxKJyTYEsVWnLPv7jvH9x1CN9QKKMRctskSJkySSKVSqmSYSH0qOOGJ0KUTnujkJRgMFU1Om8Vf8UO0G25KM7S9VgrOkqK3Jg2Fb1KZ5OCRbAjjwAhDqKBzONyHNeuuX9eSJ9RUHKwNa6Pl9Da7b3qlNdT8CVi1xxnt_3-sB2ivRpu4Xy2PQ7QlsiO0EzVF3o7R62PJMp1nBlYPRy17c5WciXOJp1F_tfy8A2fH8WDSx-MPPs_fwKPi1fILz_Sp2wJP6z1FfM8W1ZrGA3025AQ9j4azaGzWRRfMVGXNmtRNVYjjqSrEgnghB4BDXeIKmlqeACzuC8JEIBNOQ8CSLASAIANGbBYSMOLSPUWdLM_EGcKWEMwjKXe8AMI2lyeSEUkkY04gJWW-gW4bocfvFbdGXLEoO7GSWNxKzEDdZk7iWseK2AXk4lgwPGKg6_YxyE_98mCZyEtoY9EwAFDnQxtHz9Avb4oVE0V7d_6XThdoV12rQyV22EWdxbwUl2i74OWVXp3fJn_lbw
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMpSFN6I8jYTEFDVNnDgZSwsqAiooRWILTmyzpYjSga0_AYl_yC_hLq_ChIQYk9iKc_b5vrv4vgM4FnYg0OdqWzKW2uKxIZWikmE68YVWXMU6K51wJwYPQe-MaHI6ZS5Mzg9RBdxIM7L9mhScAtKtOWsofhSlkqNJaqMfV4NF7vOQqje47s2cd9cvqslzYRELa8nbaDutn_1_2qU52PwOWTObc77yD6NdheUCcLJOvkLWYEGn69DolnXeNuDxdirTLNUMNz7WrQic8_xMNjZs2O18zt5P0d4p1ht0WP9NvYyf0Kiyz9kHG2UHbydsWIQV2bV8zZc162XHQzbh_vxs1O1bRd0FK6HEWUu4CXk5HhUi1twLFWIc4XJXi8T2NMJxX3OpAxMrESKclCFiBBNI3pYhx33cuFtQT8ep3gZmay09nijHC9Bzc1VsJDfcSOkExgjpN-GklHr0nNNrRDmRshORxKJKYk3YKyclKtRsErkIXhwbh8ebcFQ9RvnRXw-Z6vEU29giDBDX-djGyabolzdFREZRXe38pdMhNPqj66vo6mJwuQtLdJ_OmLTDPai_vkz1PtQmanqQLdUvoGnpkA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYALO6KsRkLiFJHFiZNjaalAQMUqcQtObHNLqy4Hbv0EJP6wX8JMkqZwQoJjEltxxjOeN47nDcCJsEOBMZdjyURqiyeGTIpKhuk0EFpxlei8dMKj6LyErQuiyamy-At-iGrDjSwjX6_JwHvKnM1IQ_GbKJMcPZKDYdw8LHDC4pTE4d3NaHeDspg8FxaRsE5pG2337Gf_n25phjW_I9bc5bRX_z_YNVgp4SZrFPqxDnM624Cl5rTK2ya83o9kliea4bLHmhV9c5GdybqGPTQbk_HHOXo7xVqdBrt8V_3uG7pUNhl_sqf82O2APZSbiuxWDgulZq38cMgWPLcvnpqXVll1wUopbdYSXkoxjk9liDX3I4UIR3jc0yK1fY1gPNBc6tAkSkQIJmWECMGEkjsy4riKG28balk30zvAbK2lz1Pl-iHGbZ5KjOSGGynd0BghgzqcToUe9wpyjbigUXZjklhcSawO-9M5iUsjG8QeQhfXxuHxOhxXj1F-9M9DZro7wja2iEJEdQG2cfMZ-uVNMVFRVFe7f-l0BIt3rXZ8c9W53oNluk0HTJxoH2rD_kgfwPxAjQ5zRf0C7qLoPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Characterization+of+RCA%E2%80%90Based+DNA+Hydrogels+%E2%80%93+Towards+Rational+Materials+Design&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Moench%2C+Svenja+A.&rft.au=Lemke%2C+Phillip&rft.au=Weisser%2C+Julia&rft.au=Stoev%2C+Iliya+D.&rft.date=2024-09-19&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=53&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fchem.202401788&rft.externalDBID=10.1002%252Fchem.202401788&rft.externalDocID=CHEM202401788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon