Quantitative Characterization of RCA‐Based DNA Hydrogels – Towards Rational Materials Design
DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This st...
Saved in:
Published in: | Chemistry : a European journal Vol. 30; no. 53; pp. e202401788 - n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
19-09-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems.
The impact of template sequences and reaction conditions on the synthesis of DNA hydrogels via Rolling Circle Amplification (RCA) was systematically investigated. The employed methodology is high‐throughput capable and facilitates the development of sequence‐property relationships by correlating reaction process parameters with synthesis efficiency and mechanical material properties. |
---|---|
AbstractList | DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems.
The impact of template sequences and reaction conditions on the synthesis of DNA hydrogels via Rolling Circle Amplification (RCA) was systematically investigated. The employed methodology is high‐throughput capable and facilitates the development of sequence‐property relationships by correlating reaction process parameters with synthesis efficiency and mechanical material properties. DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high-throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure-property relationships, aiding the rational design of DNA hydrogel material systems.DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high-throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure-property relationships, aiding the rational design of DNA hydrogel material systems. DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems. Abstract DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the exploratory nature of this emerging field, standardized RCA protocols specifying the impact of reaction parameters are currently lacking. This study varied template sequences and reagent concentrations, evaluating RCA synthesis efficiency and hydrogel mechanical properties through quantitative PCR (qPCR) and indentation measurements, respectively. Primer concentration and stabilizing additives showed minimal impact on RCA efficiency, while changes in polymerase and nucleotide concentrations had a stronger effect. Concentration of the circular template exerted the greatest influence on RCA productivity. An exponential correlation between hydrogel viscosity and DNA amplicon concentration was observed, with nucleobase sequence significantly affecting both amplification efficiency and material properties, particularly through secondary structures. This study suggests that combining high‐throughput experimental methods with structural folding prediction offers a viable approach for systematically establishing structure‐property relationships, aiding the rational design of DNA hydrogel material systems. |
Author | Niemeyer, Christof M. Rabe, Kersten S. Stoev, Iliya D. Moench, Svenja A. Weisser, Julia Lemke, Phillip Domínguez, Carmen M. |
Author_xml | – sequence: 1 givenname: Svenja A. orcidid: 0000-0002-3193-5963 surname: Moench fullname: Moench, Svenja A. organization: Karlsruhe Institute of Technology (KIT) – sequence: 2 givenname: Phillip orcidid: 0000-0002-0726-5023 surname: Lemke fullname: Lemke, Phillip organization: Karlsruhe Institute of Technology (KIT) – sequence: 3 givenname: Julia surname: Weisser fullname: Weisser, Julia organization: Karlsruhe Institute of Technology (KIT) – sequence: 4 givenname: Iliya D. orcidid: 0000-0003-3053-3548 surname: Stoev fullname: Stoev, Iliya D. organization: Karlsruhe Institute of Technology (KIT) – sequence: 5 givenname: Kersten S. orcidid: 0000-0001-7909-8191 surname: Rabe fullname: Rabe, Kersten S. organization: Karlsruhe Institute of Technology (KIT) – sequence: 6 givenname: Carmen M. orcidid: 0000-0002-0918-5473 surname: Domínguez fullname: Domínguez, Carmen M. organization: Karlsruhe Institute of Technology (KIT) – sequence: 7 givenname: Christof M. orcidid: 0000-0002-8837-081X surname: Niemeyer fullname: Niemeyer, Christof M. email: niemeyer@kit.edu organization: Karlsruhe Institute of Technology (KIT) |
BookMark | eNqFkD1PwzAQhi0EEuVjZbbEwpJy_orjsYRCkVoQCOZgkgsEpTHYKahM_AQk_iG_hJQikFiYrPM9z93p3SCrjWuQkB0GfQbA9_M7nPY5cAlMJ8kK6THFWSR0rFZJD4zUUayEWScbIdwDgImF6JHr85lt2qq1bfWENL2z3uYt-uql-3ANdSW9SAcfr28HNmBBD08HdDQvvLvFOtCP13d66Z6tLwK9-OJtTSd2oduufYihum22yFrZVbj9_W6Sq6PhZTqKxmfHJ-lgHOVcqCTSIucxKMWTRKBUptBcayEF6hwUas1jlBaT8qbQRoG2hnFZJlYyayTavBSbZG8598G7xxmGNptWIce6tg26WcgEaJOoGGLZobt_0Hs3893xHcUYcOh2L6j-ksq9C8FjmT34amr9PGOQLQLPFoFnP4F3glkKz1WN83_oLB0NJ7_uJ8NNhrQ |
Cites_doi | 10.1021/ja406115e 10.1088/0031-9120/3/3/307 10.1039/C8SC02952K 10.1038/s41467-019-13381-1 10.1093/nar/gky735 10.1016/j.tim.2009.02.004 10.1093/nar/gkg595 10.1039/D3CC04374F 10.1002/adma.201701086 10.1016/j.jnnfm.2011.01.001 10.1039/C8RA02804D 10.1111/j.1365-2621.2004.00742.x 10.1002/smtd.202400251 10.1039/D2AN00556E 10.1021/acsami.9b22116 10.1039/C5CS00586H 10.1039/C9SM01398A 10.1021/acs.chemrev.0c00294 10.1021/acsbiomaterials.0c01125 10.1006/jmbi.1995.0570 10.1093/nar/gkx553 10.1038/s41467-019-08428-2 10.1093/nar/gkx1238 10.1038/nrg3296 10.1039/C9TB02861G 10.1016/j.polymer.2006.04.054 10.1021/acsami.9b04663 10.1021/cr300225q 10.1093/nar/gkp026 10.1016/j.jmoldx.2014.01.006 10.1002/ange.201400323 10.1016/S0021-9258(18)81883-X 10.1021/acs.accounts.6b00581 10.1002/anie.201907670 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH. |
DBID | 24P WIN AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202401788 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Open Access CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 10_1002_chem_202401788 CHEM202401788 |
Genre | article |
GrantInformation_xml | – fundername: Helmholtz-Gemeinschaft funderid: Adaptive and Bioinstructive Materials Systems |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c2358-73c260552883e459d7277343e7c05e7726e4ae8fbd79507a9124f8a41a94eacf3 |
IEDL.DBID | 33P |
ISSN | 0947-6539 1521-3765 |
IngestDate | Sat Oct 26 02:08:09 EDT 2024 Thu Oct 10 21:09:46 EDT 2024 Thu Sep 12 20:31:07 EDT 2024 Fri Sep 27 10:01:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 53 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2358-73c260552883e459d7277343e7c05e7726e4ae8fbd79507a9124f8a41a94eacf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3053-3548 0000-0002-0918-5473 0000-0002-0726-5023 0000-0001-7909-8191 0000-0002-3193-5963 0000-0002-8837-081X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202401788 |
PQID | 3110207274 |
PQPubID | 986340 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3079856064 proquest_journals_3110207274 crossref_primary_10_1002_chem_202401788 wiley_primary_10_1002_chem_202401788_CHEM202401788 |
PublicationCentury | 2000 |
PublicationDate | September 19, 2024 |
PublicationDateYYYYMMDD | 2024-09-19 |
PublicationDate_xml | – month: 09 year: 2024 text: September 19, 2024 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 120 2019; 11 2023; 59 2019; 10 1968; 3 2017; 45 2020; 16 2020; 59 2017; 29 2020; 12 2024 1995; 253 2012; 13 2003; 31 2018; 46 2020; 8 2017; 50 2020; 6 2018; 9 2018; 8 2004; 39 1989; 264 2006; 47 2014; 16 2013; 135 2013; 113 2014; 126 2009; 37 2011; 166 2016; 45 2022; 147 2009; 17 Hu R. (e_1_2_9_7_2) 2014; 126 e_1_2_9_31_1 Liu C. (e_1_2_9_22_1) 2006; 47 Galindo-Rosales F. J. (e_1_2_9_30_2) 2011; 166 e_1_2_9_13_1 An R. (e_1_2_9_39_2) 2017; 45 Doluca O. (e_1_2_9_25_1) 2013; 113 Montgomery J. L. (e_1_2_9_33_2) 2014; 16 Bochman M. L. (e_1_2_9_34_1) 2012; 13 Cui Y. (e_1_2_9_41_2) 2018; 8 Gao Y.-p. (e_1_2_9_12_1) 2022; 147 Chen J. (e_1_2_9_40_2) 2018; 9 Kypr J. (e_1_2_9_26_1) 2009; 37 Merindol R. (e_1_2_9_16_1) 2019; 10 Thammakiti S. (e_1_2_9_29_2) 2004; 39 Blanco L. (e_1_2_9_11_1) 1989; 264 Soengas M. a. S. (e_1_2_9_32_2) 1995; 253 Abou Assi H. (e_1_2_9_35_1) 2018; 46 Li J. (e_1_2_9_8_2) 2016; 45 Davenport T. C. (e_1_2_9_28_2) 1968; 3 Stoev I. D. (e_1_2_9_37_1) 2020; 16 e_1_2_9_38_1 Kim E. (e_1_2_9_9_2) 2017; 29 e_1_2_9_18_1 Johne R. (e_1_2_9_36_1) 2009; 17 Wang D. (e_1_2_9_3_2) 2017; 50 Hu Y. (e_1_2_9_19_2) 2019; 10 Zuker M. (e_1_2_9_24_1) 2003; 31 Hu Y. (e_1_2_9_21_2) 2020; 12 e_1_2_9_6_1 Schneider L. (e_1_2_9_15_2) 2023; 59 e_1_2_9_1_1 Lemke P. (e_1_2_9_23_1) 2024 Joffroy B. (e_1_2_9_14_2) 2018; 46 Vázquez-González M. (e_1_2_9_4_2) 2020; 59 Dong Y. (e_1_2_9_2_2) 2020; 120 Morya V. (e_1_2_9_5_2) 2020; 6 Wang Y. (e_1_2_9_10_2) 2019; 11 Zhu G. (e_1_2_9_17_1) 2013; 135 e_1_2_9_27_1 Hu Y. (e_1_2_9_20_2) 2020; 8 |
References_xml | – volume: 264 start-page: 8935 year: 1989 end-page: 8940 publication-title: J. Biol. Chem. – volume: 120 start-page: 9420 year: 2020 end-page: 9481 publication-title: Chem. Rev. – volume: 12 start-page: 14806 year: 2020 end-page: 14813 publication-title: ACS Appl. Mater. Interfaces – volume: 39 start-page: 21 year: 2004 end-page: 29 publication-title: Int. J. Food Sci. Technol. – volume: 47 start-page: 4461 year: 2006 end-page: 4479 publication-title: Polymer – volume: 166 start-page: 321 year: 2011 end-page: 325 publication-title: J. Non-Newton. Fluid Mech. – volume: 59 start-page: 15342 year: 2020 end-page: 15377 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 5522 year: 2019 publication-title: Nat. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 135 start-page: 16438 year: 2013 end-page: 16445 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 18972 year: 2018 end-page: 18979 publication-title: RSC Adv. – volume: 113 start-page: 3044 year: 2013 end-page: 3083 publication-title: Chem. Rev. – volume: 37 start-page: 1713 year: 2009 end-page: 1725 publication-title: Nucleic Acids Res. – volume: 17 start-page: 205 year: 2009 end-page: 211 publication-title: Trends Microbiol. – volume: 253 start-page: 517 year: 1995 end-page: 529 publication-title: J. Mol. Biol. – volume: 46 start-page: 8038 year: 2018 end-page: 8056 publication-title: Nucleic Acids Res. – volume: 8 start-page: 2250 year: 2020 end-page: 2255 publication-title: J. Mater. Chem. B – volume: 3 start-page: 139 year: 1968 publication-title: Phys. Educ. – volume: 59 start-page: 12184 year: 2023 end-page: 12187 publication-title: Chem. Commun. – volume: 9 start-page: 8110 year: 2018 end-page: 8120 publication-title: Chem. Sci. – volume: 45 start-page: e139 year: 2017 end-page: e139 publication-title: Nucleic Acids Res. – volume: 13 start-page: 770 year: 2012 end-page: 780 publication-title: Nat. Rev. Genet. – volume: 31 start-page: 3406 year: 2003 end-page: 3415 publication-title: Nucleic Acids Res. – volume: 45 start-page: 1410 year: 2016 end-page: 1431 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 6021 year: 2020 end-page: 6035 publication-title: ACS Biomater. Sci. Eng. – volume: 46 start-page: 538 year: 2018 end-page: 545 publication-title: Nucleic Acids Res. – volume: 147 start-page: 3396 year: 2022 end-page: 3414 publication-title: Analyst – volume: 10 start-page: 528 year: 2019 publication-title: Nat. Commun. – volume: 50 start-page: 733 year: 2017 end-page: 739 publication-title: Acc. Chem. Res. – volume: 126 start-page: 5931 year: 2014 end-page: 5936 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 990 year: 2020 end-page: 1001 publication-title: Soft Matter – volume: 11 start-page: 22932 year: 2019 end-page: 22940 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 305 year: 2014 end-page: 313 publication-title: J. Mol. Diagnostics – year: 2024 publication-title: Small Methods – volume: 135 start-page: 16438 year: 2013 ident: e_1_2_9_17_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406115e contributor: fullname: Zhu G. – volume: 3 start-page: 139 year: 1968 ident: e_1_2_9_28_2 publication-title: Phys. Educ. doi: 10.1088/0031-9120/3/3/307 contributor: fullname: Davenport T. C. – volume: 9 start-page: 8110 year: 2018 ident: e_1_2_9_40_2 publication-title: Chem. Sci. doi: 10.1039/C8SC02952K contributor: fullname: Chen J. – volume: 10 start-page: 5522 year: 2019 ident: e_1_2_9_19_2 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13381-1 contributor: fullname: Hu Y. – ident: e_1_2_9_31_1 – volume: 46 start-page: 8038 year: 2018 ident: e_1_2_9_35_1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky735 contributor: fullname: Abou Assi H. – volume: 17 start-page: 205 year: 2009 ident: e_1_2_9_36_1 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2009.02.004 contributor: fullname: Johne R. – volume: 31 start-page: 3406 year: 2003 ident: e_1_2_9_24_1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg595 contributor: fullname: Zuker M. – volume: 59 start-page: 12184 year: 2023 ident: e_1_2_9_15_2 publication-title: Chem. Commun. doi: 10.1039/D3CC04374F contributor: fullname: Schneider L. – ident: e_1_2_9_6_1 – ident: e_1_2_9_1_1 – volume: 29 year: 2017 ident: e_1_2_9_9_2 publication-title: Adv. Mater. doi: 10.1002/adma.201701086 contributor: fullname: Kim E. – volume: 166 start-page: 321 year: 2011 ident: e_1_2_9_30_2 publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/j.jnnfm.2011.01.001 contributor: fullname: Galindo-Rosales F. J. – volume: 8 start-page: 18972 year: 2018 ident: e_1_2_9_41_2 publication-title: RSC Adv. doi: 10.1039/C8RA02804D contributor: fullname: Cui Y. – volume: 39 start-page: 21 year: 2004 ident: e_1_2_9_29_2 publication-title: Int. J. Food Sci. Technol. doi: 10.1111/j.1365-2621.2004.00742.x contributor: fullname: Thammakiti S. – ident: e_1_2_9_13_1 – year: 2024 ident: e_1_2_9_23_1 publication-title: Small Methods doi: 10.1002/smtd.202400251 contributor: fullname: Lemke P. – volume: 147 start-page: 3396 year: 2022 ident: e_1_2_9_12_1 publication-title: Analyst doi: 10.1039/D2AN00556E contributor: fullname: Gao Y.-p. – volume: 12 start-page: 14806 year: 2020 ident: e_1_2_9_21_2 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22116 contributor: fullname: Hu Y. – volume: 45 start-page: 1410 year: 2016 ident: e_1_2_9_8_2 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00586H contributor: fullname: Li J. – volume: 16 start-page: 990 year: 2020 ident: e_1_2_9_37_1 publication-title: Soft Matter doi: 10.1039/C9SM01398A contributor: fullname: Stoev I. D. – ident: e_1_2_9_38_1 – volume: 120 start-page: 9420 year: 2020 ident: e_1_2_9_2_2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00294 contributor: fullname: Dong Y. – ident: e_1_2_9_27_1 – volume: 6 start-page: 6021 year: 2020 ident: e_1_2_9_5_2 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c01125 contributor: fullname: Morya V. – volume: 253 start-page: 517 year: 1995 ident: e_1_2_9_32_2 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0570 contributor: fullname: Soengas M. a. S. – volume: 45 start-page: e139 year: 2017 ident: e_1_2_9_39_2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx553 contributor: fullname: An R. – volume: 10 start-page: 528 year: 2019 ident: e_1_2_9_16_1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08428-2 contributor: fullname: Merindol R. – volume: 46 start-page: 538 year: 2018 ident: e_1_2_9_14_2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1238 contributor: fullname: Joffroy B. – volume: 13 start-page: 770 year: 2012 ident: e_1_2_9_34_1 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3296 contributor: fullname: Bochman M. L. – volume: 8 start-page: 2250 year: 2020 ident: e_1_2_9_20_2 publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02861G contributor: fullname: Hu Y. – volume: 47 start-page: 4461 year: 2006 ident: e_1_2_9_22_1 publication-title: Polymer doi: 10.1016/j.polymer.2006.04.054 contributor: fullname: Liu C. – volume: 11 start-page: 22932 year: 2019 ident: e_1_2_9_10_2 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04663 contributor: fullname: Wang Y. – ident: e_1_2_9_18_1 – volume: 113 start-page: 3044 year: 2013 ident: e_1_2_9_25_1 publication-title: Chem. Rev. doi: 10.1021/cr300225q contributor: fullname: Doluca O. – volume: 37 start-page: 1713 year: 2009 ident: e_1_2_9_26_1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp026 contributor: fullname: Kypr J. – volume: 16 start-page: 305 year: 2014 ident: e_1_2_9_33_2 publication-title: J. Mol. Diagnostics doi: 10.1016/j.jmoldx.2014.01.006 contributor: fullname: Montgomery J. L. – volume: 126 start-page: 5931 year: 2014 ident: e_1_2_9_7_2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201400323 contributor: fullname: Hu R. – volume: 264 start-page: 8935 year: 1989 ident: e_1_2_9_11_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)81883-X contributor: fullname: Blanco L. – volume: 50 start-page: 733 year: 2017 ident: e_1_2_9_3_2 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00581 contributor: fullname: Wang D. – volume: 59 start-page: 15342 year: 2020 ident: e_1_2_9_4_2 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201907670 contributor: fullname: Vázquez-González M. |
SSID | ssj0009633 |
Score | 2.503536 |
Snippet | DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to the... Abstract DNA hydrogels hold significant promise for biomedical applications and can be synthesized through enzymatic Rolling Circle Amplification (RCA). Due to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202401788 |
SubjectTerms | Biomedical materials Chemical synthesis Deoxyribonucleic acid Design standards DNA DNA hydrogels DNA structure Efficiency Experimental methods Gels Gene sequencing Hydrogels Material properties Mechanical properties Nucleotide sequence Nucleotides Reagents Rolling circle amplification Viscosity |
Title | Quantitative Characterization of RCA‐Based DNA Hydrogels – Towards Rational Materials Design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202401788 https://www.proquest.com/docview/3110207274 https://www.proquest.com/docview/3079856064 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EYGCjITEFDUPJ07GkrbqQgWlSGzBiW22BDXNwNafgMQ_7C_h7DxKJyTYEsVWnLPv7jvH9x1CN9QKKMRctskSJkySSKVSqmSYSH0qOOGJ0KUTnujkJRgMFU1Om8Vf8UO0G25KM7S9VgrOkqK3Jg2Fb1KZ5OCRbAjjwAhDqKBzONyHNeuuX9eSJ9RUHKwNa6Pl9Da7b3qlNdT8CVi1xxnt_3-sB2ivRpu4Xy2PQ7QlsiO0EzVF3o7R62PJMp1nBlYPRy17c5WciXOJp1F_tfy8A2fH8WDSx-MPPs_fwKPi1fILz_Sp2wJP6z1FfM8W1ZrGA3025AQ9j4azaGzWRRfMVGXNmtRNVYjjqSrEgnghB4BDXeIKmlqeACzuC8JEIBNOQ8CSLASAIANGbBYSMOLSPUWdLM_EGcKWEMwjKXe8AMI2lyeSEUkkY04gJWW-gW4bocfvFbdGXLEoO7GSWNxKzEDdZk7iWseK2AXk4lgwPGKg6_YxyE_98mCZyEtoY9EwAFDnQxtHz9Avb4oVE0V7d_6XThdoV12rQyV22EWdxbwUl2i74OWVXp3fJn_lbw |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMpSFN6I8jYTEFDVNnDgZSwsqAiooRWILTmyzpYjSga0_AYl_yC_hLq_ChIQYk9iKc_b5vrv4vgM4FnYg0OdqWzKW2uKxIZWikmE68YVWXMU6K51wJwYPQe-MaHI6ZS5Mzg9RBdxIM7L9mhScAtKtOWsofhSlkqNJaqMfV4NF7vOQqje47s2cd9cvqslzYRELa8nbaDutn_1_2qU52PwOWTObc77yD6NdheUCcLJOvkLWYEGn69DolnXeNuDxdirTLNUMNz7WrQic8_xMNjZs2O18zt5P0d4p1ht0WP9NvYyf0Kiyz9kHG2UHbydsWIQV2bV8zZc162XHQzbh_vxs1O1bRd0FK6HEWUu4CXk5HhUi1twLFWIc4XJXi8T2NMJxX3OpAxMrESKclCFiBBNI3pYhx33cuFtQT8ep3gZmay09nijHC9Bzc1VsJDfcSOkExgjpN-GklHr0nNNrRDmRshORxKJKYk3YKyclKtRsErkIXhwbh8ebcFQ9RvnRXw-Z6vEU29giDBDX-djGyabolzdFREZRXe38pdMhNPqj66vo6mJwuQtLdJ_OmLTDPai_vkz1PtQmanqQLdUvoGnpkA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYALO6KsRkLiFJHFiZNjaalAQMUqcQtObHNLqy4Hbv0EJP6wX8JMkqZwQoJjEltxxjOeN47nDcCJsEOBMZdjyURqiyeGTIpKhuk0EFpxlei8dMKj6LyErQuiyamy-At-iGrDjSwjX6_JwHvKnM1IQ_GbKJMcPZKDYdw8LHDC4pTE4d3NaHeDspg8FxaRsE5pG2337Gf_n25phjW_I9bc5bRX_z_YNVgp4SZrFPqxDnM624Cl5rTK2ya83o9kliea4bLHmhV9c5GdybqGPTQbk_HHOXo7xVqdBrt8V_3uG7pUNhl_sqf82O2APZSbiuxWDgulZq38cMgWPLcvnpqXVll1wUopbdYSXkoxjk9liDX3I4UIR3jc0yK1fY1gPNBc6tAkSkQIJmWECMGEkjsy4riKG28balk30zvAbK2lz1Pl-iHGbZ5KjOSGGynd0BghgzqcToUe9wpyjbigUXZjklhcSawO-9M5iUsjG8QeQhfXxuHxOhxXj1F-9M9DZro7wja2iEJEdQG2cfMZ-uVNMVFRVFe7f-l0BIt3rXZ8c9W53oNluk0HTJxoH2rD_kgfwPxAjQ5zRf0C7qLoPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Characterization+of+RCA%E2%80%90Based+DNA+Hydrogels+%E2%80%93+Towards+Rational+Materials+Design&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Moench%2C+Svenja+A.&rft.au=Lemke%2C+Phillip&rft.au=Weisser%2C+Julia&rft.au=Stoev%2C+Iliya+D.&rft.date=2024-09-19&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=53&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fchem.202401788&rft.externalDBID=10.1002%252Fchem.202401788&rft.externalDocID=CHEM202401788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |