Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides
In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also e...
Saved in:
Published in: | Angewandte Chemie Vol. 128; no. 38; pp. 11734 - 11738 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Blackwell Publishing Ltd
12-09-2016
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion‐like fibrils that are capable of propagation. A time‐dependent NMR aggregation assay of a slow fibril forming R3‐S316P peptide revealed a trans to cis equilibrium shift in the peptide‐bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3‐S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease.
So kommt man zusammen: Strukturstudien an von Tau‐Peptiden abgeleiteten Verbindungen ergaben, dass die Turn‐Konformation oberhalb des Hexapeptids entscheidend für die Ausbreitung von Fibrillen durch reißverschlussartige Assoziation ist. Die Aggregation einer Tau‐Peptid‐Mutante verläuft über die bevorzugte Wahl einer cis‐Peptidbindung vor der Aminosäure an Position 316. |
---|---|
AbstractList | In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion‐like fibrils that are capable of propagation. A time‐dependent NMR aggregation assay of a slow fibril forming R3‐S316P peptide revealed a
trans
to
cis
equilibrium shift in the peptide‐bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3‐S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion‐like fibrils that are capable of propagation. A time‐dependent NMR aggregation assay of a slow fibril forming R3‐S316P peptide revealed a trans to cis equilibrium shift in the peptide‐bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3‐S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. So kommt man zusammen: Strukturstudien an von Tau‐Peptiden abgeleiteten Verbindungen ergaben, dass die Turn‐Konformation oberhalb des Hexapeptids entscheidend für die Ausbreitung von Fibrillen durch reißverschlussartige Assoziation ist. Die Aggregation einer Tau‐Peptid‐Mutante verläuft über die bevorzugte Wahl einer cis‐Peptidbindung vor der Aminosäure an Position 316. In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion-like fibrils that are capable of propagation. A time-dependent NMR aggregation assay of a slow fibril forming R3-S316P peptide revealed a trans to cis equilibrium shift in the peptide-bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3-S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion-like fibrils that are capable of propagation. A time-dependent NMR aggregation assay of a slow fibril forming R3-S316P peptide revealed a trans to cis equilibrium shift in the peptide-bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3-S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease.Original Abstract: So kommt man zusammen: Strukturstudien an von Tau-Peptiden abgeleiteten Verbindungen ergaben, dass die Turn-Konformation oberhalb des Hexapeptids entscheidend fuer die Ausbreitung von Fibrillen durch reisverschlussartige Assoziation ist. Die Aggregation einer Tau-Peptid-Mutante verlaeuft ueber die bevorzugte Wahl einer cis-Peptidbindung vor der Aminosaeure an Position316. |
Author | Shine, A. Vijayan, Vinesh Jiji, A. C. |
Author_xml | – sequence: 1 givenname: A. C. surname: Jiji fullname: Jiji, A. C. organization: School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), CET campus, 695016, Trivandrum-, India – sequence: 2 givenname: A. surname: Shine fullname: Shine, A. organization: School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), CET campus, 695016, Trivandrum-, India – sequence: 3 givenname: Vinesh surname: Vijayan fullname: Vijayan, Vinesh email: vinesh@iisertvm.ac.in organization: School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), CET campus, 695016, Trivandrum-, India |
BookMark | eNqFkU1v00AQQFeoSKSFK-eVuHBxmP3w2nsMaQmVSluhEsRpNV6Pg1vHm-7aQP89ToMqxIXTaDTvzWhmjtlRH3pi7LWAuQCQ77Df0FyCMGByrZ-xmcilyFSRF0dsBqB1VkptX7DjlG4BwMjCzti30zaSH_hVlSj-wKENPQ8NX2w2kTaPaXbe16Onmr9Hf1dNI_ky9E2I28cqdnz5fT858bbnNzjya9oNbU3pJXveYJfo1Z94wr58OLtZfswurlbny8VF5qVSOmty0VTYiLyuLSBqkEVhjNZljQKwQS91RSRUXSGiFbUtUZuqBA_aqwKVOmFvD313MdyPlAa3bZOnrsOewpicKFVuDGhlJ_TNP-htGOO0w0RZKHSprcgnan6gfAwpRWrcLrZbjA9OgNtf2u33dU-XngR7EH62HT38h3aLy9XZ3252cNs00K8nF-OdM8X0O_f1cuXWq7X8dL0-dZ_VbzOHk3c |
CitedBy_id | crossref_primary_10_1002_chem_201704555 |
Cites_doi | 10.1021/bi800783d 10.1016/j.bbadis.2004.08.014 10.1002/ange.201508968 10.1038/383550a0 10.1091/mbc.6.12.1887 10.1016/0022-2836(77)90214-5 10.1002/pro.5560031206 10.1073/pnas.1310414110 10.1021/bi052530j 10.1021/bi00164a008 10.1002/anie.201508968 10.1002/1521-3773(20010302)40:5<923::AID-ANIE923>3.0.CO;2-# 10.1073/pnas.95.26.15712 10.1073/pnas.85.11.4051 10.1016/0005-2795(73)90350-4 10.1074/jbc.M105196200 10.1007/BF03404909 10.1146/annurev.biochem.72.121801.161837 10.1146/annurev.neuro.24.1.1121 10.1073/pnas.1212100110 10.1002/ange.201308473 10.1021/acs.jpcb.5b00175 10.1371/journal.pone.0038903 10.1021/ja0690159 10.1074/jbc.M402379200 10.1021/ja303498q 10.1016/j.neuron.2012.11.021 10.1093/jb/mvi142 10.1038/nature05695 10.1021/acschemneuro.5b00322 10.1021/ja305470p 10.1529/biophysj.107.125211 10.1021/ja7100517 10.1073/pnas.97.10.5129 10.1002/1521-3757(20010302)113:5<949::AID-ANGE949>3.0.CO;2-L 10.1002/anie.201308473 10.1016/j.molcel.2010.11.028 10.1073/pnas.1218402110 10.1146/annurev.biochem.66.1.385 10.1021/jo951788k 10.1038/nchembio.131 10.1038/nrm2873 10.1016/j.neuron.2014.04.047 10.1016/j.bbadis.2004.09.008 10.1126/science.1899488 10.1074/jbc.M206334200 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.201606544 |
DatabaseName | Istex CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 11738 |
ExternalDocumentID | 10_1002_ange_201606544 ANGE201606544 ark_67375_WNG_VGV2MPVD_R |
Genre | shortCommunication |
GrantInformation_xml | – fundername: IISER Thiruvananthapuram – fundername: SERB funderid: EMR/2015/000111 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAMNL AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c2334-f51fbaf15dd90aa4027766448da10afac24bee13dbaaa91d98a46b80c04c37a33 |
IEDL.DBID | 33P |
ISSN | 0044-8249 |
IngestDate | Sat Aug 17 02:11:45 EDT 2024 Thu Oct 10 18:05:24 EDT 2024 Thu Nov 21 22:27:42 EST 2024 Sat Aug 24 00:48:03 EDT 2024 Wed Oct 30 09:52:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2334-f51fbaf15dd90aa4027766448da10afac24bee13dbaaa91d98a46b80c04c37a33 |
Notes | SERB - No. EMR/2015/000111 ark:/67375/WNG-VGV2MPVD-R istex:F9037F8BA4EAAC5EB08912A21C42659B89B3C4E2 ArticleID:ANGE201606544 IISER Thiruvananthapuram ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1907484915 |
PQPubID | 866336 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1835660439 proquest_journals_1907484915 crossref_primary_10_1002_ange_201606544 wiley_primary_10_1002_ange_201606544_ANGE201606544 istex_primary_ark_67375_WNG_VGV2MPVD_R |
PublicationCentury | 2000 |
PublicationDate | September 12, 2016 |
PublicationDateYYYYMMDD | 2016-09-12 |
PublicationDate_xml | – month: 09 year: 2016 text: September 12, 2016 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationTitleAlternate | Angew. Chem |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | M. von Bergen, S. Barghorn, S. A. Muller, M. Pickhardt, J. Biernat, E. M. Mandelkow, P. Davies, U. Aebi, E. Mandelkow, Biochemistry 2006, 45, 6446-6457 M. S. Celej, E. A. Jares-Erijman, T. M. Jovin, Biophys. J. 2008, 94, 4867-4879. M. Goedert, R. Jakes, M. G. Spillantini, M. Hasegawa, M. J. Smith, R. A. Crowther, Nature 1996, 383, 550-553 V. Y. Torbeev, D. Hilvert, Proc. Natl. Acad. Sci. USA 2013, 110, 20051-20056. P. Chien, J. S. Weissman, A. H. DePace, Annu. Rev. Biochem. 2004, 73, 617-656 C. Renner, S. Alefelder, J. H. Bae, N. Budisa, R. Huber, L. Moroder, Angew. Chem. Int. Ed. 2001, 40, 923-925 Angew. Chem. 2014, 126, 1616-1619. D. W. Cleveland, S. Y. Hwo, M. W. Kirschner, J. Mol. Biol. 1977, 116, 227-247. V. M. Y. Lee, M. Goedert, J. Q. Trojanowski, Annu. Rev. Neurosci. 2001, 24, 1121-1159 P. Friedhoff, M. von Bergen, E.-M. Mandelkow, P. Davies, E. Mandelkow, Proc. Natl. Acad. Sci. USA 1998, 95, 15712-15717 S. Wegmann, I. D. Medalsy, E. Mandelkow, D. J. Muller, Proc. Natl. Acad. Sci. USA 2013, 110, E313-E321. W. J. Goux, L. Kopplin, A. D. Nguyen, K. Leak, M. Rutkofsky, V. D. Shanmuganandam, D. Sharma, H. Inouye, D. A. Kirschner, J. Biol. Chem. 2004, 279, 26868-26875 V. Meyer, P. D. Dinkel, Y. Luo, X. Yu, G. Wei, J. Zheng, G. R. Eaton, B. Ma, R. Nussinov, S. S. Eaton, M. Margittai, Angew. Chem. Int. Ed. 2014, 53, 1590-1593 J. D. Harper, P. T. Lansbury, Jr., Annu. Rev. Biochem. 1997, 66, 385-407. M. von Bergen, P. Friedhoff, J. Biernat, J. Heberle, E. M. Mandelkow, E. Mandelkow, Proc. Natl. Acad. Sci. USA 2000, 97, 5129-5134 P. Ganguly, T. D. Do, L. Larini, N. E. LaPointe, A. J. Sercel, M. F. Shade, S. C. Feinstein, M. T. Bowers, J. E. Shea, J. Phys. Chem. B 2015, 119, 4582-4593. A. Sidhu, I. Segers-Nolten, V. Subramaniam, ACS Chem. Neurosci. 2016, 7, 719. A. Siddiqua, Y. Luo, V. Meyer, M. A. Swanson, X. Yu, G. Wei, J. Zheng, G. R. Eaton, B. Ma, R. Nussinov, S. S. Eaton, M. Margittai, J. Am. Chem. Soc. 2012, 134, 10271-10278. K. Tomoo, T.-M. Yao, K. Minoura, S. Hiraoka, M. Sumida, T. Taniguchi, T. Ishida, J. Biochem. 2005, 138, 413-423. L. I. Binder, A. L. Guillozet-Bongaarts, F. Garcia-Sierra, R. W. Berry, Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1739, 216-223 Angew. Chem. 2016, 128, 628-632. M. D. Mukrasch, P. Markwick, J. Biernat, M. von Bergen, P. Bernado, C. Griesinger, E. Mandelkow, M. Zweckstetter, M. Blackledge, J. Am. Chem. Soc. 2007, 129, 5235-5243. J. Adamcik, A. Sanchez-Ferrer, N. Ait-Bouziad, N. P. Reynolds, H. A. Lashuel, R. Mezzenga, Angew. Chem. Int. Ed. 2016, 55, 618-622 M. Goedert, C. M. Wischik, R. A. Crowther, J. E. Walker, A. Klug, Proc. Natl. Acad. Sci. USA 1988, 85, 4051-4055 J. T. Jarrett, P. T. Lansbury, Jr., Biochemistry 1992, 31, 12345-12352 O. C. Andronesi, M. von Bergen, J. Biernat, K. Seidel, C. Griesinger, E. Mandelkow, M. Baldus, J. Am. Chem. Soc. 2008, 130, 5922-5928 V. Daebel, S. Chinnathambi, J. Biernat, M. Schwalbe, B. Habenstein, A. Loquet, E. Akoury, K. Tepper, H. Muller, M. Baldus, C. Griesinger, M. Zweckstetter, E. Mandelkow, V. Vijayan, A. Lange, J. Am. Chem. Soc. 2012, 134, 13982-13989. D. Q. McDonald, W. C. Still, J. Org. Chem. 1996, 61, 1385-1391. P. Brundin, R. Melki, R. Kopito, Nat. Rev. Mol. Cell Biol. 2010, 11, 301-307 S. R. Meng, Y. Z. Zhu, T. Guo, X. L. Liu, J. Chen, Y. Liang, PLoS One 2012, 7, e38903. M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers, M. I. Apostol, M. J. Thompson, M. Balbirnie, J. J. W. Wiltzius, H. T. McFarlane, A. O. Madsen, C. Riekel, D. Eisenberg, Nature 2007, 447, 453-457. P. N. Lewis, F. A. Momany, H. A. Scheraga, Biochim. Biophys. Acta Protein Struct. 1973, 303, 211-229. S. Jeganathan, M. von Bergen, E. M. Mandelkow, E. Mandelkow, Biochemistry 2008, 47, 10526-10539. S. I. Cohen, S. Linse, L. M. Luheshi, E. Hellstrand, D. A. White, L. Rajah, D. E. Otzen, M. Vendruscolo, C. M. Dobson, T. P. Knowles, Proc. Natl. Acad. Sci. USA 2013, 110, 9758-9763. D. W. Sanders, S. K. Kaufman, S. L. DeVos, A. M. Sharma, H. Mirbaha, A. Li, S. J. Barker, A. C. Foley, J. R. Thorpe, L. C. Serpell, T. M. Miller, L. T. Grinberg, W. W. Seeley, M. I. Diamond, Neuron 2014, 82, 1271-1288 Angew. Chem. 2001, 113, 949-951 B. Trinczek, J. Biernat, K. Baumann, E. M. Mandelkow, E. Mandelkow, Mol. Biol. Cell 1995, 6, 222. M. von Bergen, S. Barghorn, L. Li, A. Marx, J. Biernat, E. M. Mandelkow, E. Mandelkow, J. Biol. Chem. 2001, 276, 48165-48174. V. M. Y. Lee, B. J. Balin, L. Otvos, J. Q. Trojanowski, Science 1991, 251, 675-678. K. Blennow, J. Hardy, H. Zetterberg, Neuron 2012, 76, 886-899. K. Iqbal, A. D. C. Alonso, S. Chen, M. O. Chohan, E. El-Akkad, C. X. Gong, S. Khatoon, B. Li, F. Liu, A. Rahman, H. Tanimukai, I. Grundke-Iqbal, Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1739, 198-210. E. G. Hutchinson, J. M. Thornton, Protein Sci. 1994, 3, 2207-2216 K. Guruprasad, S. Rajkumar, J. Biosci. 2000, 25, 143-156 T. Eichner, A. P. Kalverda, G. S. Thompson, S. W. Homans, S. E. Radford, Mol. Cell 2011, 41, 161-172 L. Li, M. von Bergen, E.-M. Mandelkow, E. Mandelkow, J. Biol. Chem. 2002, 277, 41390-41400 F. Chiti, C. M. Dobson, Nat. Chem. Biol. 2009, 5, 15-22. 2014 2014; 53 126 2010; 11 1991; 251 2005; 1739 2007; 129 1973; 303 2007; 447 2000; 25 1997; 66 2005; 138 2002; 277 1996; 383 2008; 94 1992; 31 2001; 24 2014; 82 2012; 76 1995; 6 2001; 276 2016; 7 2016 2016; 55 128 2004; 73 2004; 279 2012; 134 2006; 45 2000; 97 1996; 61 2008; 47 2011; 41 2015; 119 1977; 116 1988; 85 2009; 5 2013; 110 1998; 95 2012; 7 1994; 3 2001 2001; 40 113 2008; 130 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_51_2 e_1_2_2_30_1 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_55_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_42_3 e_1_2_2_44_1 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_52_1 e_1_2_2_50_2 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_54_2 e_1_2_2_35_2 |
References_xml | – volume: 85 start-page: 4051 year: 1988 end-page: 4055 publication-title: Proc. Natl. Acad. Sci. USA – volume: 110 start-page: 20051 year: 2013 end-page: 20056 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 222 year: 1995 publication-title: Mol. Biol. Cell – volume: 276 start-page: 48165 year: 2001 end-page: 48174 publication-title: J. Biol. Chem. – volume: 134 start-page: 10271 year: 2012 end-page: 10278 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 413 year: 2005 end-page: 423 publication-title: J. Biochem. – volume: 82 start-page: 1271 year: 2014 end-page: 1288 publication-title: Neuron – volume: 53 126 start-page: 1590 1616 year: 2014 2014 end-page: 1593 1619 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 4582 year: 2015 end-page: 4593 publication-title: J. Phys. Chem. B – volume: 110 start-page: 313 year: 2013 end-page: 321 publication-title: Proc. Natl. Acad. Sci. USA – volume: 130 start-page: 5922 year: 2008 end-page: 5928 publication-title: J. Am. Chem. Soc. – volume: 66 start-page: 385 year: 1997 end-page: 407 publication-title: Annu. Rev. Biochem. – volume: 95 start-page: 15712 year: 1998 end-page: 15717 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 719 year: 2016 publication-title: ACS Chem. Neurosci. – volume: 24 start-page: 1121 year: 2001 end-page: 1159 publication-title: Annu. Rev. Neurosci. – volume: 45 start-page: 6446 year: 2006 end-page: 6457 publication-title: Biochemistry – volume: 116 start-page: 227 year: 1977 end-page: 247 publication-title: J. Mol. Biol. – volume: 25 start-page: 143 year: 2000 end-page: 156 publication-title: J. Biosci. – volume: 47 start-page: 10526 year: 2008 end-page: 10539 publication-title: Biochemistry – volume: 61 start-page: 1385 year: 1996 end-page: 1391 publication-title: J. Org. Chem. – volume: 1739 start-page: 216 year: 2005 end-page: 223 publication-title: Biochim. Biophys. Acta Mol. Basis Dis. – volume: 447 start-page: 453 year: 2007 end-page: 457 publication-title: Nature – volume: 3 start-page: 2207 year: 1994 end-page: 2216 publication-title: Protein Sci. – volume: 5 start-page: 15 year: 2009 end-page: 22 publication-title: Nat. Chem. Biol. – volume: 129 start-page: 5235 year: 2007 end-page: 5243 publication-title: J. Am. Chem. Soc. – volume: 73 start-page: 617 year: 2004 end-page: 656 publication-title: Annu. Rev. Biochem. – volume: 303 start-page: 211 year: 1973 end-page: 229 publication-title: Biochim. Biophys. Acta Protein Struct. – volume: 7 start-page: 38903 year: 2012 publication-title: PLoS One – volume: 94 start-page: 4867 year: 2008 end-page: 4879 publication-title: Biophys. J. – volume: 251 start-page: 675 year: 1991 end-page: 678 publication-title: Science – volume: 55 128 start-page: 618 628 year: 2016 2016 end-page: 622 632 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 301 year: 2010 end-page: 307 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 1739 start-page: 198 year: 2005 end-page: 210 publication-title: Biochim. Biophys. Acta Mol. Basis Dis. – volume: 277 start-page: 41390 year: 2002 end-page: 41400 publication-title: J. Biol. Chem. – volume: 40 113 start-page: 923 949 year: 2001 2001 end-page: 925 951 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 97 start-page: 5129 year: 2000 end-page: 5134 publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 start-page: 161 year: 2011 end-page: 172 publication-title: Mol. Cell – volume: 134 start-page: 13982 year: 2012 end-page: 13989 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 9758 year: 2013 end-page: 9763 publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 12345 year: 1992 end-page: 12352 publication-title: Biochemistry – volume: 383 start-page: 550 year: 1996 end-page: 553 publication-title: Nature – volume: 279 start-page: 26868 year: 2004 end-page: 26875 publication-title: J. Biol. Chem. – volume: 76 start-page: 886 year: 2012 end-page: 899 publication-title: Neuron – ident: e_1_2_2_39_1 doi: 10.1021/bi800783d – ident: e_1_2_2_46_1 – ident: e_1_2_2_5_2 doi: 10.1016/j.bbadis.2004.08.014 – ident: e_1_2_2_30_2 doi: 10.1002/ange.201508968 – ident: e_1_2_2_8_2 doi: 10.1038/383550a0 – ident: e_1_2_2_13_2 doi: 10.1091/mbc.6.12.1887 – ident: e_1_2_2_10_2 doi: 10.1016/0022-2836(77)90214-5 – ident: e_1_2_2_34_2 doi: 10.1002/pro.5560031206 – ident: e_1_2_2_43_2 doi: 10.1073/pnas.1310414110 – ident: e_1_2_2_16_2 doi: 10.1021/bi052530j – ident: e_1_2_2_47_2 doi: 10.1021/bi00164a008 – ident: e_1_2_2_11_1 – ident: e_1_2_2_30_1 doi: 10.1002/anie.201508968 – ident: e_1_2_2_3_1 – ident: e_1_2_2_33_1 – ident: e_1_2_2_42_2 doi: 10.1002/1521-3773(20010302)40:5<923::AID-ANIE923>3.0.CO;2-# – ident: e_1_2_2_9_2 doi: 10.1073/pnas.95.26.15712 – ident: e_1_2_2_14_1 – ident: e_1_2_2_12_2 doi: 10.1073/pnas.85.11.4051 – ident: e_1_2_2_44_1 doi: 10.1016/0005-2795(73)90350-4 – ident: e_1_2_2_18_1 doi: 10.1074/jbc.M105196200 – ident: e_1_2_2_41_1 – ident: e_1_2_2_35_2 doi: 10.1007/BF03404909 – ident: e_1_2_2_52_1 – ident: e_1_2_2_50_2 doi: 10.1146/annurev.biochem.72.121801.161837 – ident: e_1_2_2_4_2 doi: 10.1146/annurev.neuro.24.1.1121 – ident: e_1_2_2_49_1 – ident: e_1_2_2_7_1 – ident: e_1_2_2_31_1 doi: 10.1073/pnas.1212100110 – ident: e_1_2_2_45_2 doi: 10.1002/ange.201308473 – ident: e_1_2_2_38_1 doi: 10.1021/acs.jpcb.5b00175 – ident: e_1_2_2_22_2 doi: 10.1371/journal.pone.0038903 – ident: e_1_2_2_32_1 doi: 10.1021/ja0690159 – ident: e_1_2_2_27_1 – ident: e_1_2_2_20_2 doi: 10.1074/jbc.M402379200 – ident: e_1_2_2_55_2 doi: 10.1021/ja303498q – ident: e_1_2_2_2_1 doi: 10.1016/j.neuron.2012.11.021 – ident: e_1_2_2_17_2 doi: 10.1093/jb/mvi142 – ident: e_1_2_2_23_1 doi: 10.1038/nature05695 – ident: e_1_2_2_51_2 doi: 10.1021/acschemneuro.5b00322 – ident: e_1_2_2_26_2 doi: 10.1021/ja305470p – ident: e_1_2_2_37_1 doi: 10.1529/biophysj.107.125211 – ident: e_1_2_2_25_2 doi: 10.1021/ja7100517 – ident: e_1_2_2_21_2 doi: 10.1073/pnas.97.10.5129 – ident: e_1_2_2_42_3 doi: 10.1002/1521-3757(20010302)113:5<949::AID-ANGE949>3.0.CO;2-L – ident: e_1_2_2_45_1 doi: 10.1002/anie.201308473 – ident: e_1_2_2_28_2 doi: 10.1016/j.molcel.2010.11.028 – ident: e_1_2_2_40_1 doi: 10.1073/pnas.1218402110 – ident: e_1_2_2_48_2 doi: 10.1146/annurev.biochem.66.1.385 – ident: e_1_2_2_36_2 doi: 10.1021/jo951788k – ident: e_1_2_2_29_2 doi: 10.1038/nchembio.131 – ident: e_1_2_2_19_1 – ident: e_1_2_2_53_2 doi: 10.1038/nrm2873 – ident: e_1_2_2_54_2 doi: 10.1016/j.neuron.2014.04.047 – ident: e_1_2_2_24_1 – ident: e_1_2_2_6_2 doi: 10.1016/j.bbadis.2004.09.008 – ident: e_1_2_2_1_1 doi: 10.1126/science.1899488 – ident: e_1_2_2_15_2 doi: 10.1074/jbc.M206334200 |
SSID | ssj0006279 |
Score | 2.014252 |
Snippet | In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 11734 |
SubjectTerms | Agglomeration Alzheimer's disease Alzheimer-Krankheit Chemistry cis-trans-Isomerie Conformation Fibrillenbildung Fibrils Intervention Neurodegenerative diseases Neurological diseases NMR NMR-Spektroskopie Nuclear magnetic resonance Peptide Peptides Proteins Residues Tau protein Time dependence Upstream |
Title | Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides |
URI | https://api.istex.fr/ark:/67375/WNG-VGV2MPVD-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.201606544 https://www.proquest.com/docview/1907484915 https://search.proquest.com/docview/1835660439 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOcCF8hQpBRkJwcmqYzuv47bdbi8sKygLEgdr_EiFKmVR05U48hP4jf0l9SSbwJ6Q4BYrtjUa2-OZ8cw3AK_RZuhc5XlW6YJrV1pupSq4q5QTNVLyJPk7Tj8W8y_l8ZRgcsYs_h4fYnS40cno5DUdcLTtwW_QUIq9p9CsnNIjCRA0mgpdDodajKI4lz3YntCal9HQGFAbhTzYHr51K90hBv_YUjn_VFy7m-dk9_9pfgD3N1onm_Tb5CHcCs0juHs0FHt7DF970cfe29FLy1Y1m5xHc_y8a17__EVlPlzw7BDdhV01gVG64JD8GKfvMxVa9q1hZ7hmCwqY8aF9Ap9OpmdHp3xTd4E7qZTmdZbWFus0874SiJqeeXOy4zymAmt0UtsQUuUtIlapr0rUuS2FE9qpApV6CjtNpOIZMF1gSOOsKK3QIa8sFjavrY1GVhQmwibwduC7-d7Da5geSFkaItmMzErgTbcsYze8vKCgtCIzn-czs5wt5bvF8th8SGB_WDezOY-tSckHUOoqzRJ4Nf6OPKbnEWzCah37RGU0zylVOAHZreJfSDKT-Ww6tvb-ZdBzuEffvKtJsQ87V5fr8AJut379stvJNxhG88E |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7R9lAu_KMGWjASgpNVJ3Gc5Lhtt7uIdlnBsiBxsMY_qVClLOqyEkcegWfkSfAkm7R7QkIcndjWaGyPZ8bzzQC8RJOhtaXjWSlzLm1huEnSnNsytaJCAk-Sv2P8IZ98Lk6GlCZn0GFh2vwQvcONTkYjr-mAk0P68DprKAXfU2yWInyk3IIdqcJuJBRHOu2FsUradHtCSl4EU6PL2yiSw83xG_fSDrH4x4bSeVN1be6e07v_gep7cGeteLJBu1Puwy1fP4Dd467e20P40ko_9s70jlq2qNjgIljkF03z989fVOnDeseO0F6aRe0ZIQY7_GOYvgUrLNnXms1wxaYUM-P88hF8PB3Ojsd8XXqB2yRNJa-yuDJYxZlzpUCU9NKryJRzGAus0CbSeB-nziBiGbuyQKlMIayQNs0xTR_Ddh2o2AMmc_RxmBUTI6RXpcHcqMqYYGcFeSJMBK87xutvbYYN3eZSTjSRrHtmRfCqWZe-G15dUlxanulPk5Gej-bJ-XR-ot9HsN8tnF4fyaWOyQ1QyDLOInjR_w48phcSrP1iFfoEfVQpQgtHkDTL-BeS9GAyGvatJ_8y6DnsjmfnZ_rszeTtU7hN33lTomIftr9frfwBbC3d6lmzrf8AhiL36Q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVoJeeKOmFDASglNUx3Zex6X7KAKWFZQFiYM1fqSqKmWrLitx5CfwG_tL6kk2gT0hwS1O7Gg0tscz45lvAF6gSdHa0sVpqfJY2cLERsg8tqW0vEJKniR_x_GnfPq1GI4IJqfP4m_xIXqHG-2MRl7TBr9w1eFv0FCKvafQrIzSI9UW7KjwROj5Us56WZyJFm2PKxUXwdLoYBu5ONwcv3Es7RCHf2zonH9qrs3RM77z_0TfhdtrtZMN2nVyD274-j7cOuqqvT2Ab63sYx9M76Zli4oNToM9fto0r37-ojof1jv2Gu25WdSeUb5gl_0Yft-mKizZWc1OcMVmFDHj_PIhfB6PTo6O43XhhdgKKVVcpUllsEpS50qOqOieNyNDzmHCsUIrlPE-kc4gYpm4skCVmYJbrqzMUcpHsF0HKvaAqRx9Ev6KwnDls9JgbrLKmGBlBWnCTQSvOr7rixZfQ7dIykITybpnVgQvm2npu-HlOUWl5an-Mp3o-WQu3s_mQ_0xgoNu3vR6Qy51Qk6AQpVJGsHz_nPgMd2PYO0Xq9AnaKNZRrnCEYhmFv9Ckh5MJ6O-tf8vg57BzdlwrN-9mb59DLv0Om7qUxzA9vfLlX8CW0u3etos6muDvvaP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Observation+of+Aggregation%E2%80%90Induced+Backbone+Conformational+Changes+in+Tau+Peptides&rft.jtitle=Angewandte+Chemie&rft.au=Jiji%2C+A.+C.&rft.au=Shine%2C+A.&rft.au=Vijayan%2C+Vinesh&rft.date=2016-09-12&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=128&rft.issue=38&rft.spage=11734&rft.epage=11738&rft_id=info:doi/10.1002%2Fange.201606544&rft.externalDBID=10.1002%252Fange.201606544&rft.externalDocID=ANGE201606544 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |