Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides

In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also e...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie Vol. 128; no. 38; pp. 11734 - 11738
Main Authors: Jiji, A. C., Shine, A., Vijayan, Vinesh
Format: Journal Article
Language:English
Published: Weinheim Blackwell Publishing Ltd 12-09-2016
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion‐like fibrils that are capable of propagation. A time‐dependent NMR aggregation assay of a slow fibril forming R3‐S316P peptide revealed a trans to cis equilibrium shift in the peptide‐bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3‐S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. So kommt man zusammen: Strukturstudien an von Tau‐Peptiden abgeleiteten Verbindungen ergaben, dass die Turn‐Konformation oberhalb des Hexapeptids entscheidend für die Ausbreitung von Fibrillen durch reißverschlussartige Assoziation ist. Die Aggregation einer Tau‐Peptid‐Mutante verläuft über die bevorzugte Wahl einer cis‐Peptidbindung vor der Aminosäure an Position 316.
AbstractList In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion‐like fibrils that are capable of propagation. A time‐dependent NMR aggregation assay of a slow fibril forming R3‐S316P peptide revealed a trans to cis equilibrium shift in the peptide‐bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3‐S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease.
In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion‐like fibrils that are capable of propagation. A time‐dependent NMR aggregation assay of a slow fibril forming R3‐S316P peptide revealed a trans to cis equilibrium shift in the peptide‐bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3‐S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. So kommt man zusammen: Strukturstudien an von Tau‐Peptiden abgeleiteten Verbindungen ergaben, dass die Turn‐Konformation oberhalb des Hexapeptids entscheidend für die Ausbreitung von Fibrillen durch reißverschlussartige Assoziation ist. Die Aggregation einer Tau‐Peptid‐Mutante verläuft über die bevorzugte Wahl einer cis‐Peptidbindung vor der Aminosäure an Position 316.
In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion-like fibrils that are capable of propagation. A time-dependent NMR aggregation assay of a slow fibril forming R3-S316P peptide revealed a trans to cis equilibrium shift in the peptide-bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3-S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease.
In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion-like fibrils that are capable of propagation. A time-dependent NMR aggregation assay of a slow fibril forming R3-S316P peptide revealed a trans to cis equilibrium shift in the peptide-bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3-S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease.Original Abstract: So kommt man zusammen: Strukturstudien an von Tau-Peptiden abgeleiteten Verbindungen ergaben, dass die Turn-Konformation oberhalb des Hexapeptids entscheidend fuer die Ausbreitung von Fibrillen durch reisverschlussartige Assoziation ist. Die Aggregation einer Tau-Peptid-Mutante verlaeuft ueber die bevorzugte Wahl einer cis-Peptidbindung vor der Aminosaeure an Position316.
Author Shine, A.
Vijayan, Vinesh
Jiji, A. C.
Author_xml – sequence: 1
  givenname: A. C.
  surname: Jiji
  fullname: Jiji, A. C.
  organization: School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), CET campus, 695016, Trivandrum-, India
– sequence: 2
  givenname: A.
  surname: Shine
  fullname: Shine, A.
  organization: School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), CET campus, 695016, Trivandrum-, India
– sequence: 3
  givenname: Vinesh
  surname: Vijayan
  fullname: Vijayan, Vinesh
  email: vinesh@iisertvm.ac.in
  organization: School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), CET campus, 695016, Trivandrum-, India
BookMark eNqFkU1v00AQQFeoSKSFK-eVuHBxmP3w2nsMaQmVSluhEsRpNV6Pg1vHm-7aQP89ToMqxIXTaDTvzWhmjtlRH3pi7LWAuQCQ77Df0FyCMGByrZ-xmcilyFSRF0dsBqB1VkptX7DjlG4BwMjCzti30zaSH_hVlSj-wKENPQ8NX2w2kTaPaXbe16Onmr9Hf1dNI_ky9E2I28cqdnz5fT858bbnNzjya9oNbU3pJXveYJfo1Z94wr58OLtZfswurlbny8VF5qVSOmty0VTYiLyuLSBqkEVhjNZljQKwQS91RSRUXSGiFbUtUZuqBA_aqwKVOmFvD313MdyPlAa3bZOnrsOewpicKFVuDGhlJ_TNP-htGOO0w0RZKHSprcgnan6gfAwpRWrcLrZbjA9OgNtf2u33dU-XngR7EH62HT38h3aLy9XZ3252cNs00K8nF-OdM8X0O_f1cuXWq7X8dL0-dZ_VbzOHk3c
CitedBy_id crossref_primary_10_1002_chem_201704555
Cites_doi 10.1021/bi800783d
10.1016/j.bbadis.2004.08.014
10.1002/ange.201508968
10.1038/383550a0
10.1091/mbc.6.12.1887
10.1016/0022-2836(77)90214-5
10.1002/pro.5560031206
10.1073/pnas.1310414110
10.1021/bi052530j
10.1021/bi00164a008
10.1002/anie.201508968
10.1002/1521-3773(20010302)40:5<923::AID-ANIE923>3.0.CO;2-#
10.1073/pnas.95.26.15712
10.1073/pnas.85.11.4051
10.1016/0005-2795(73)90350-4
10.1074/jbc.M105196200
10.1007/BF03404909
10.1146/annurev.biochem.72.121801.161837
10.1146/annurev.neuro.24.1.1121
10.1073/pnas.1212100110
10.1002/ange.201308473
10.1021/acs.jpcb.5b00175
10.1371/journal.pone.0038903
10.1021/ja0690159
10.1074/jbc.M402379200
10.1021/ja303498q
10.1016/j.neuron.2012.11.021
10.1093/jb/mvi142
10.1038/nature05695
10.1021/acschemneuro.5b00322
10.1021/ja305470p
10.1529/biophysj.107.125211
10.1021/ja7100517
10.1073/pnas.97.10.5129
10.1002/1521-3757(20010302)113:5<949::AID-ANGE949>3.0.CO;2-L
10.1002/anie.201308473
10.1016/j.molcel.2010.11.028
10.1073/pnas.1218402110
10.1146/annurev.biochem.66.1.385
10.1021/jo951788k
10.1038/nchembio.131
10.1038/nrm2873
10.1016/j.neuron.2014.04.047
10.1016/j.bbadis.2004.09.008
10.1126/science.1899488
10.1074/jbc.M206334200
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.201606544
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 11738
ExternalDocumentID 10_1002_ange_201606544
ANGE201606544
ark_67375_WNG_VGV2MPVD_R
Genre shortCommunication
GrantInformation_xml – fundername: IISER Thiruvananthapuram
– fundername: SERB
  funderid: EMR/2015/000111
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAMNL
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2334-f51fbaf15dd90aa4027766448da10afac24bee13dbaaa91d98a46b80c04c37a33
IEDL.DBID 33P
ISSN 0044-8249
IngestDate Sat Aug 17 02:11:45 EDT 2024
Thu Oct 10 18:05:24 EDT 2024
Thu Nov 21 22:27:42 EST 2024
Sat Aug 24 00:48:03 EDT 2024
Wed Oct 30 09:52:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2334-f51fbaf15dd90aa4027766448da10afac24bee13dbaaa91d98a46b80c04c37a33
Notes SERB - No. EMR/2015/000111
ark:/67375/WNG-VGV2MPVD-R
istex:F9037F8BA4EAAC5EB08912A21C42659B89B3C4E2
ArticleID:ANGE201606544
IISER Thiruvananthapuram
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1907484915
PQPubID 866336
PageCount 5
ParticipantIDs proquest_miscellaneous_1835660439
proquest_journals_1907484915
crossref_primary_10_1002_ange_201606544
wiley_primary_10_1002_ange_201606544_ANGE201606544
istex_primary_ark_67375_WNG_VGV2MPVD_R
PublicationCentury 2000
PublicationDate September 12, 2016
PublicationDateYYYYMMDD 2016-09-12
PublicationDate_xml – month: 09
  year: 2016
  text: September 12, 2016
  day: 12
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationTitleAlternate Angew. Chem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References M. von Bergen, S. Barghorn, S. A. Muller, M. Pickhardt, J. Biernat, E. M. Mandelkow, P. Davies, U. Aebi, E. Mandelkow, Biochemistry 2006, 45, 6446-6457
M. S. Celej, E. A. Jares-Erijman, T. M. Jovin, Biophys. J. 2008, 94, 4867-4879.
M. Goedert, R. Jakes, M. G. Spillantini, M. Hasegawa, M. J. Smith, R. A. Crowther, Nature 1996, 383, 550-553
V. Y. Torbeev, D. Hilvert, Proc. Natl. Acad. Sci. USA 2013, 110, 20051-20056.
P. Chien, J. S. Weissman, A. H. DePace, Annu. Rev. Biochem. 2004, 73, 617-656
C. Renner, S. Alefelder, J. H. Bae, N. Budisa, R. Huber, L. Moroder, Angew. Chem. Int. Ed. 2001, 40, 923-925
Angew. Chem. 2014, 126, 1616-1619.
D. W. Cleveland, S. Y. Hwo, M. W. Kirschner, J. Mol. Biol. 1977, 116, 227-247.
V. M. Y. Lee, M. Goedert, J. Q. Trojanowski, Annu. Rev. Neurosci. 2001, 24, 1121-1159
P. Friedhoff, M. von Bergen, E.-M. Mandelkow, P. Davies, E. Mandelkow, Proc. Natl. Acad. Sci. USA 1998, 95, 15712-15717
S. Wegmann, I. D. Medalsy, E. Mandelkow, D. J. Muller, Proc. Natl. Acad. Sci. USA 2013, 110, E313-E321.
W. J. Goux, L. Kopplin, A. D. Nguyen, K. Leak, M. Rutkofsky, V. D. Shanmuganandam, D. Sharma, H. Inouye, D. A. Kirschner, J. Biol. Chem. 2004, 279, 26868-26875
V. Meyer, P. D. Dinkel, Y. Luo, X. Yu, G. Wei, J. Zheng, G. R. Eaton, B. Ma, R. Nussinov, S. S. Eaton, M. Margittai, Angew. Chem. Int. Ed. 2014, 53, 1590-1593
J. D. Harper, P. T. Lansbury, Jr., Annu. Rev. Biochem. 1997, 66, 385-407.
M. von Bergen, P. Friedhoff, J. Biernat, J. Heberle, E. M. Mandelkow, E. Mandelkow, Proc. Natl. Acad. Sci. USA 2000, 97, 5129-5134
P. Ganguly, T. D. Do, L. Larini, N. E. LaPointe, A. J. Sercel, M. F. Shade, S. C. Feinstein, M. T. Bowers, J. E. Shea, J. Phys. Chem. B 2015, 119, 4582-4593.
A. Sidhu, I. Segers-Nolten, V. Subramaniam, ACS Chem. Neurosci. 2016, 7, 719.
A. Siddiqua, Y. Luo, V. Meyer, M. A. Swanson, X. Yu, G. Wei, J. Zheng, G. R. Eaton, B. Ma, R. Nussinov, S. S. Eaton, M. Margittai, J. Am. Chem. Soc. 2012, 134, 10271-10278.
K. Tomoo, T.-M. Yao, K. Minoura, S. Hiraoka, M. Sumida, T. Taniguchi, T. Ishida, J. Biochem. 2005, 138, 413-423.
L. I. Binder, A. L. Guillozet-Bongaarts, F. Garcia-Sierra, R. W. Berry, Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1739, 216-223
Angew. Chem. 2016, 128, 628-632.
M. D. Mukrasch, P. Markwick, J. Biernat, M. von Bergen, P. Bernado, C. Griesinger, E. Mandelkow, M. Zweckstetter, M. Blackledge, J. Am. Chem. Soc. 2007, 129, 5235-5243.
J. Adamcik, A. Sanchez-Ferrer, N. Ait-Bouziad, N. P. Reynolds, H. A. Lashuel, R. Mezzenga, Angew. Chem. Int. Ed. 2016, 55, 618-622
M. Goedert, C. M. Wischik, R. A. Crowther, J. E. Walker, A. Klug, Proc. Natl. Acad. Sci. USA 1988, 85, 4051-4055
J. T. Jarrett, P. T. Lansbury, Jr., Biochemistry 1992, 31, 12345-12352
O. C. Andronesi, M. von Bergen, J. Biernat, K. Seidel, C. Griesinger, E. Mandelkow, M. Baldus, J. Am. Chem. Soc. 2008, 130, 5922-5928
V. Daebel, S. Chinnathambi, J. Biernat, M. Schwalbe, B. Habenstein, A. Loquet, E. Akoury, K. Tepper, H. Muller, M. Baldus, C. Griesinger, M. Zweckstetter, E. Mandelkow, V. Vijayan, A. Lange, J. Am. Chem. Soc. 2012, 134, 13982-13989.
D. Q. McDonald, W. C. Still, J. Org. Chem. 1996, 61, 1385-1391.
P. Brundin, R. Melki, R. Kopito, Nat. Rev. Mol. Cell Biol. 2010, 11, 301-307
S. R. Meng, Y. Z. Zhu, T. Guo, X. L. Liu, J. Chen, Y. Liang, PLoS One 2012, 7, e38903.
M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers, M. I. Apostol, M. J. Thompson, M. Balbirnie, J. J. W. Wiltzius, H. T. McFarlane, A. O. Madsen, C. Riekel, D. Eisenberg, Nature 2007, 447, 453-457.
P. N. Lewis, F. A. Momany, H. A. Scheraga, Biochim. Biophys. Acta Protein Struct. 1973, 303, 211-229.
S. Jeganathan, M. von Bergen, E. M. Mandelkow, E. Mandelkow, Biochemistry 2008, 47, 10526-10539.
S. I. Cohen, S. Linse, L. M. Luheshi, E. Hellstrand, D. A. White, L. Rajah, D. E. Otzen, M. Vendruscolo, C. M. Dobson, T. P. Knowles, Proc. Natl. Acad. Sci. USA 2013, 110, 9758-9763.
D. W. Sanders, S. K. Kaufman, S. L. DeVos, A. M. Sharma, H. Mirbaha, A. Li, S. J. Barker, A. C. Foley, J. R. Thorpe, L. C. Serpell, T. M. Miller, L. T. Grinberg, W. W. Seeley, M. I. Diamond, Neuron 2014, 82, 1271-1288
Angew. Chem. 2001, 113, 949-951
B. Trinczek, J. Biernat, K. Baumann, E. M. Mandelkow, E. Mandelkow, Mol. Biol. Cell 1995, 6, 222.
M. von Bergen, S. Barghorn, L. Li, A. Marx, J. Biernat, E. M. Mandelkow, E. Mandelkow, J. Biol. Chem. 2001, 276, 48165-48174.
V. M. Y. Lee, B. J. Balin, L. Otvos, J. Q. Trojanowski, Science 1991, 251, 675-678.
K. Blennow, J. Hardy, H. Zetterberg, Neuron 2012, 76, 886-899.
K. Iqbal, A. D. C. Alonso, S. Chen, M. O. Chohan, E. El-Akkad, C. X. Gong, S. Khatoon, B. Li, F. Liu, A. Rahman, H. Tanimukai, I. Grundke-Iqbal, Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1739, 198-210.
E. G. Hutchinson, J. M. Thornton, Protein Sci. 1994, 3, 2207-2216
K. Guruprasad, S. Rajkumar, J. Biosci. 2000, 25, 143-156
T. Eichner, A. P. Kalverda, G. S. Thompson, S. W. Homans, S. E. Radford, Mol. Cell 2011, 41, 161-172
L. Li, M. von Bergen, E.-M. Mandelkow, E. Mandelkow, J. Biol. Chem. 2002, 277, 41390-41400
F. Chiti, C. M. Dobson, Nat. Chem. Biol. 2009, 5, 15-22.
2014 2014; 53 126
2010; 11
1991; 251
2005; 1739
2007; 129
1973; 303
2007; 447
2000; 25
1997; 66
2005; 138
2002; 277
1996; 383
2008; 94
1992; 31
2001; 24
2014; 82
2012; 76
1995; 6
2001; 276
2016; 7
2016 2016; 55 128
2004; 73
2004; 279
2012; 134
2006; 45
2000; 97
1996; 61
2008; 47
2011; 41
2015; 119
1977; 116
1988; 85
2009; 5
2013; 110
1998; 95
2012; 7
1994; 3
2001 2001; 40 113
2008; 130
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_51_2
e_1_2_2_30_1
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_55_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_42_3
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_54_2
e_1_2_2_35_2
References_xml – volume: 85
  start-page: 4051
  year: 1988
  end-page: 4055
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 20051
  year: 2013
  end-page: 20056
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 222
  year: 1995
  publication-title: Mol. Biol. Cell
– volume: 276
  start-page: 48165
  year: 2001
  end-page: 48174
  publication-title: J. Biol. Chem.
– volume: 134
  start-page: 10271
  year: 2012
  end-page: 10278
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 413
  year: 2005
  end-page: 423
  publication-title: J. Biochem.
– volume: 82
  start-page: 1271
  year: 2014
  end-page: 1288
  publication-title: Neuron
– volume: 53 126
  start-page: 1590 1616
  year: 2014 2014
  end-page: 1593 1619
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 4582
  year: 2015
  end-page: 4593
  publication-title: J. Phys. Chem. B
– volume: 110
  start-page: 313
  year: 2013
  end-page: 321
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 130
  start-page: 5922
  year: 2008
  end-page: 5928
  publication-title: J. Am. Chem. Soc.
– volume: 66
  start-page: 385
  year: 1997
  end-page: 407
  publication-title: Annu. Rev. Biochem.
– volume: 95
  start-page: 15712
  year: 1998
  end-page: 15717
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 719
  year: 2016
  publication-title: ACS Chem. Neurosci.
– volume: 24
  start-page: 1121
  year: 2001
  end-page: 1159
  publication-title: Annu. Rev. Neurosci.
– volume: 45
  start-page: 6446
  year: 2006
  end-page: 6457
  publication-title: Biochemistry
– volume: 116
  start-page: 227
  year: 1977
  end-page: 247
  publication-title: J. Mol. Biol.
– volume: 25
  start-page: 143
  year: 2000
  end-page: 156
  publication-title: J. Biosci.
– volume: 47
  start-page: 10526
  year: 2008
  end-page: 10539
  publication-title: Biochemistry
– volume: 61
  start-page: 1385
  year: 1996
  end-page: 1391
  publication-title: J. Org. Chem.
– volume: 1739
  start-page: 216
  year: 2005
  end-page: 223
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
– volume: 447
  start-page: 453
  year: 2007
  end-page: 457
  publication-title: Nature
– volume: 3
  start-page: 2207
  year: 1994
  end-page: 2216
  publication-title: Protein Sci.
– volume: 5
  start-page: 15
  year: 2009
  end-page: 22
  publication-title: Nat. Chem. Biol.
– volume: 129
  start-page: 5235
  year: 2007
  end-page: 5243
  publication-title: J. Am. Chem. Soc.
– volume: 73
  start-page: 617
  year: 2004
  end-page: 656
  publication-title: Annu. Rev. Biochem.
– volume: 303
  start-page: 211
  year: 1973
  end-page: 229
  publication-title: Biochim. Biophys. Acta Protein Struct.
– volume: 7
  start-page: 38903
  year: 2012
  publication-title: PLoS One
– volume: 94
  start-page: 4867
  year: 2008
  end-page: 4879
  publication-title: Biophys. J.
– volume: 251
  start-page: 675
  year: 1991
  end-page: 678
  publication-title: Science
– volume: 55 128
  start-page: 618 628
  year: 2016 2016
  end-page: 622 632
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 301
  year: 2010
  end-page: 307
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 1739
  start-page: 198
  year: 2005
  end-page: 210
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
– volume: 277
  start-page: 41390
  year: 2002
  end-page: 41400
  publication-title: J. Biol. Chem.
– volume: 40 113
  start-page: 923 949
  year: 2001 2001
  end-page: 925 951
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 97
  start-page: 5129
  year: 2000
  end-page: 5134
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 161
  year: 2011
  end-page: 172
  publication-title: Mol. Cell
– volume: 134
  start-page: 13982
  year: 2012
  end-page: 13989
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 9758
  year: 2013
  end-page: 9763
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 12345
  year: 1992
  end-page: 12352
  publication-title: Biochemistry
– volume: 383
  start-page: 550
  year: 1996
  end-page: 553
  publication-title: Nature
– volume: 279
  start-page: 26868
  year: 2004
  end-page: 26875
  publication-title: J. Biol. Chem.
– volume: 76
  start-page: 886
  year: 2012
  end-page: 899
  publication-title: Neuron
– ident: e_1_2_2_39_1
  doi: 10.1021/bi800783d
– ident: e_1_2_2_46_1
– ident: e_1_2_2_5_2
  doi: 10.1016/j.bbadis.2004.08.014
– ident: e_1_2_2_30_2
  doi: 10.1002/ange.201508968
– ident: e_1_2_2_8_2
  doi: 10.1038/383550a0
– ident: e_1_2_2_13_2
  doi: 10.1091/mbc.6.12.1887
– ident: e_1_2_2_10_2
  doi: 10.1016/0022-2836(77)90214-5
– ident: e_1_2_2_34_2
  doi: 10.1002/pro.5560031206
– ident: e_1_2_2_43_2
  doi: 10.1073/pnas.1310414110
– ident: e_1_2_2_16_2
  doi: 10.1021/bi052530j
– ident: e_1_2_2_47_2
  doi: 10.1021/bi00164a008
– ident: e_1_2_2_11_1
– ident: e_1_2_2_30_1
  doi: 10.1002/anie.201508968
– ident: e_1_2_2_3_1
– ident: e_1_2_2_33_1
– ident: e_1_2_2_42_2
  doi: 10.1002/1521-3773(20010302)40:5<923::AID-ANIE923>3.0.CO;2-#
– ident: e_1_2_2_9_2
  doi: 10.1073/pnas.95.26.15712
– ident: e_1_2_2_14_1
– ident: e_1_2_2_12_2
  doi: 10.1073/pnas.85.11.4051
– ident: e_1_2_2_44_1
  doi: 10.1016/0005-2795(73)90350-4
– ident: e_1_2_2_18_1
  doi: 10.1074/jbc.M105196200
– ident: e_1_2_2_41_1
– ident: e_1_2_2_35_2
  doi: 10.1007/BF03404909
– ident: e_1_2_2_52_1
– ident: e_1_2_2_50_2
  doi: 10.1146/annurev.biochem.72.121801.161837
– ident: e_1_2_2_4_2
  doi: 10.1146/annurev.neuro.24.1.1121
– ident: e_1_2_2_49_1
– ident: e_1_2_2_7_1
– ident: e_1_2_2_31_1
  doi: 10.1073/pnas.1212100110
– ident: e_1_2_2_45_2
  doi: 10.1002/ange.201308473
– ident: e_1_2_2_38_1
  doi: 10.1021/acs.jpcb.5b00175
– ident: e_1_2_2_22_2
  doi: 10.1371/journal.pone.0038903
– ident: e_1_2_2_32_1
  doi: 10.1021/ja0690159
– ident: e_1_2_2_27_1
– ident: e_1_2_2_20_2
  doi: 10.1074/jbc.M402379200
– ident: e_1_2_2_55_2
  doi: 10.1021/ja303498q
– ident: e_1_2_2_2_1
  doi: 10.1016/j.neuron.2012.11.021
– ident: e_1_2_2_17_2
  doi: 10.1093/jb/mvi142
– ident: e_1_2_2_23_1
  doi: 10.1038/nature05695
– ident: e_1_2_2_51_2
  doi: 10.1021/acschemneuro.5b00322
– ident: e_1_2_2_26_2
  doi: 10.1021/ja305470p
– ident: e_1_2_2_37_1
  doi: 10.1529/biophysj.107.125211
– ident: e_1_2_2_25_2
  doi: 10.1021/ja7100517
– ident: e_1_2_2_21_2
  doi: 10.1073/pnas.97.10.5129
– ident: e_1_2_2_42_3
  doi: 10.1002/1521-3757(20010302)113:5<949::AID-ANGE949>3.0.CO;2-L
– ident: e_1_2_2_45_1
  doi: 10.1002/anie.201308473
– ident: e_1_2_2_28_2
  doi: 10.1016/j.molcel.2010.11.028
– ident: e_1_2_2_40_1
  doi: 10.1073/pnas.1218402110
– ident: e_1_2_2_48_2
  doi: 10.1146/annurev.biochem.66.1.385
– ident: e_1_2_2_36_2
  doi: 10.1021/jo951788k
– ident: e_1_2_2_29_2
  doi: 10.1038/nchembio.131
– ident: e_1_2_2_19_1
– ident: e_1_2_2_53_2
  doi: 10.1038/nrm2873
– ident: e_1_2_2_54_2
  doi: 10.1016/j.neuron.2014.04.047
– ident: e_1_2_2_24_1
– ident: e_1_2_2_6_2
  doi: 10.1016/j.bbadis.2004.09.008
– ident: e_1_2_2_1_1
  doi: 10.1126/science.1899488
– ident: e_1_2_2_15_2
  doi: 10.1074/jbc.M206334200
SSID ssj0006279
Score 2.014252
Snippet In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 11734
SubjectTerms Agglomeration
Alzheimer's disease
Alzheimer-Krankheit
Chemistry
cis-trans-Isomerie
Conformation
Fibrillenbildung
Fibrils
Intervention
Neurodegenerative diseases
Neurological diseases
NMR
NMR-Spektroskopie
Nuclear magnetic resonance
Peptide
Peptides
Proteins
Residues
Tau protein
Time dependence
Upstream
Title Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides
URI https://api.istex.fr/ark:/67375/WNG-VGV2MPVD-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.201606544
https://www.proquest.com/docview/1907484915
https://search.proquest.com/docview/1835660439
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOcCF8hQpBRkJwcmqYzuv47bdbi8sKygLEgdr_EiFKmVR05U48hP4jf0l9SSbwJ6Q4BYrtjUa2-OZ8cw3AK_RZuhc5XlW6YJrV1pupSq4q5QTNVLyJPk7Tj8W8y_l8ZRgcsYs_h4fYnS40cno5DUdcLTtwW_QUIq9p9CsnNIjCRA0mgpdDodajKI4lz3YntCal9HQGFAbhTzYHr51K90hBv_YUjn_VFy7m-dk9_9pfgD3N1onm_Tb5CHcCs0juHs0FHt7DF970cfe29FLy1Y1m5xHc_y8a17__EVlPlzw7BDdhV01gVG64JD8GKfvMxVa9q1hZ7hmCwqY8aF9Ap9OpmdHp3xTd4E7qZTmdZbWFus0874SiJqeeXOy4zymAmt0UtsQUuUtIlapr0rUuS2FE9qpApV6CjtNpOIZMF1gSOOsKK3QIa8sFjavrY1GVhQmwibwduC7-d7Da5geSFkaItmMzErgTbcsYze8vKCgtCIzn-czs5wt5bvF8th8SGB_WDezOY-tSckHUOoqzRJ4Nf6OPKbnEWzCah37RGU0zylVOAHZreJfSDKT-Ww6tvb-ZdBzuEffvKtJsQ87V5fr8AJut379stvJNxhG88E
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7R9lAu_KMGWjASgpNVJ3Gc5Lhtt7uIdlnBsiBxsMY_qVClLOqyEkcegWfkSfAkm7R7QkIcndjWaGyPZ8bzzQC8RJOhtaXjWSlzLm1huEnSnNsytaJCAk-Sv2P8IZ98Lk6GlCZn0GFh2vwQvcONTkYjr-mAk0P68DprKAXfU2yWInyk3IIdqcJuJBRHOu2FsUradHtCSl4EU6PL2yiSw83xG_fSDrH4x4bSeVN1be6e07v_gep7cGeteLJBu1Puwy1fP4Dd467e20P40ko_9s70jlq2qNjgIljkF03z989fVOnDeseO0F6aRe0ZIQY7_GOYvgUrLNnXms1wxaYUM-P88hF8PB3Ojsd8XXqB2yRNJa-yuDJYxZlzpUCU9NKryJRzGAus0CbSeB-nziBiGbuyQKlMIayQNs0xTR_Ddh2o2AMmc_RxmBUTI6RXpcHcqMqYYGcFeSJMBK87xutvbYYN3eZSTjSRrHtmRfCqWZe-G15dUlxanulPk5Gej-bJ-XR-ot9HsN8tnF4fyaWOyQ1QyDLOInjR_w48phcSrP1iFfoEfVQpQgtHkDTL-BeS9GAyGvatJ_8y6DnsjmfnZ_rszeTtU7hN33lTomIftr9frfwBbC3d6lmzrf8AhiL36Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVoJeeKOmFDASglNUx3Zex6X7KAKWFZQFiYM1fqSqKmWrLitx5CfwG_tL6kk2gT0hwS1O7Gg0tscz45lvAF6gSdHa0sVpqfJY2cLERsg8tqW0vEJKniR_x_GnfPq1GI4IJqfP4m_xIXqHG-2MRl7TBr9w1eFv0FCKvafQrIzSI9UW7KjwROj5Us56WZyJFm2PKxUXwdLoYBu5ONwcv3Es7RCHf2zonH9qrs3RM77z_0TfhdtrtZMN2nVyD274-j7cOuqqvT2Ab63sYx9M76Zli4oNToM9fto0r37-ojof1jv2Gu25WdSeUb5gl_0Yft-mKizZWc1OcMVmFDHj_PIhfB6PTo6O43XhhdgKKVVcpUllsEpS50qOqOieNyNDzmHCsUIrlPE-kc4gYpm4skCVmYJbrqzMUcpHsF0HKvaAqRx9Ev6KwnDls9JgbrLKmGBlBWnCTQSvOr7rixZfQ7dIykITybpnVgQvm2npu-HlOUWl5an-Mp3o-WQu3s_mQ_0xgoNu3vR6Qy51Qk6AQpVJGsHz_nPgMd2PYO0Xq9AnaKNZRrnCEYhmFv9Ckh5MJ6O-tf8vg57BzdlwrN-9mb59DLv0Om7qUxzA9vfLlX8CW0u3etos6muDvvaP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Observation+of+Aggregation%E2%80%90Induced+Backbone+Conformational+Changes+in+Tau+Peptides&rft.jtitle=Angewandte+Chemie&rft.au=Jiji%2C+A.+C.&rft.au=Shine%2C+A.&rft.au=Vijayan%2C+Vinesh&rft.date=2016-09-12&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=128&rft.issue=38&rft.spage=11734&rft.epage=11738&rft_id=info:doi/10.1002%2Fange.201606544&rft.externalDBID=10.1002%252Fange.201606544&rft.externalDocID=ANGE201606544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon