Seasonal, Interannual and Long‐Term Variability of Sea Surface Temperature in the NW Iberian Upwelling, 1982–2020
Here the seasonal, inter‐annual and long‐term variability of satellite‐derived sea surface temperature (SST) was analyzed in the NW Iberian margin from 1982 to 2020 to explore spatial differences at high (5‐km) resolution. In‐situ temperature measurements from five coastal buoys were used to validat...
Saved in:
Published in: | Journal of geophysical research. Oceans Vol. 129; no. 9 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
01-09-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Here the seasonal, inter‐annual and long‐term variability of satellite‐derived sea surface temperature (SST) was analyzed in the NW Iberian margin from 1982 to 2020 to explore spatial differences at high (5‐km) resolution. In‐situ temperature measurements from five coastal buoys were used to validate the satellite‐derived SST data, discarding pixels from areas close to the shoreline. Regional SST increased significantly from 0.07 to 0.25°C per decade, with the lowest rates in shelf waters directly affected by seasonal coastal upwelling. Upwelling filaments also contributed to dampen the temperature increase in the adjacent slope and ocean waters. The spatial variability observed in the amplitude and timing of the seasonal cycle of SST is directly related to hydrography and circulation patterns of the region such as upwelling events during summer and the development of the river's buoyant plume and the warm Iberian Poleward Current during winter.
Plain Language Summary
Monitoring primary climate variables such as sea surface temperature (SST) is crucial to assess the sensitivity of the highly productive coastal upwelling systems to global warming and their associated socioeconomic consequences. Here we explore 39‐year of daily satellite SST data in the NW Iberian upwelling system. We aim at gaining knowledge on the high resolution (5 km) spatial differences in the seasonal, interannual and long‐term variability of this ocean climate variable. Our analysis reveals a significant overall long‐term sea surface warming, showcasing marked spatial differences, mainly associated with the interaction of coastal upwelling and topography. Coastal upwelling buffers the temperature rise due to global warming by replacing the warm coastal surface water with cold deep water from the adjacent ocean. Hence, coastal upwelling regions provide a mechanism to counteract global warming. Forecasted increase of upwelling intensity at high latitudes in coastal upwelling systems, as the NW Iberian margin, would guarantee the functioning of this buffering mechanism in the forthcoming decades.
Key Points
Long‐term sea surface temperature (SST) rise ranged from 0.07 to 0.25°C per decade in the NW Iberian margin
Seasonal coastal upwelling substantially buffers the long‐term SST increase in shelf and slope waters
Large uncertainty in nearshore satellite‐derived SST data indicates the need for in situ data |
---|---|
AbstractList | Here the seasonal, inter‐annual and long‐term variability of satellite‐derived sea surface temperature (SST) was analyzed in the NW Iberian margin from 1982 to 2020 to explore spatial differences at high (5‐km) resolution. In‐situ temperature measurements from five coastal buoys were used to validate the satellite‐derived SST data, discarding pixels from areas close to the shoreline. Regional SST increased significantly from 0.07 to 0.25°C per decade, with the lowest rates in shelf waters directly affected by seasonal coastal upwelling. Upwelling filaments also contributed to dampen the temperature increase in the adjacent slope and ocean waters. The spatial variability observed in the amplitude and timing of the seasonal cycle of SST is directly related to hydrography and circulation patterns of the region such as upwelling events during summer and the development of the river's buoyant plume and the warm Iberian Poleward Current during winter. Here the seasonal, inter‐annual and long‐term variability of satellite‐derived sea surface temperature (SST) was analyzed in the NW Iberian margin from 1982 to 2020 to explore spatial differences at high (5‐km) resolution. In‐situ temperature measurements from five coastal buoys were used to validate the satellite‐derived SST data, discarding pixels from areas close to the shoreline. Regional SST increased significantly from 0.07 to 0.25°C per decade, with the lowest rates in shelf waters directly affected by seasonal coastal upwelling. Upwelling filaments also contributed to dampen the temperature increase in the adjacent slope and ocean waters. The spatial variability observed in the amplitude and timing of the seasonal cycle of SST is directly related to hydrography and circulation patterns of the region such as upwelling events during summer and the development of the river's buoyant plume and the warm Iberian Poleward Current during winter. Monitoring primary climate variables such as sea surface temperature (SST) is crucial to assess the sensitivity of the highly productive coastal upwelling systems to global warming and their associated socioeconomic consequences. Here we explore 39‐year of daily satellite SST data in the NW Iberian upwelling system. We aim at gaining knowledge on the high resolution (5 km) spatial differences in the seasonal, interannual and long‐term variability of this ocean climate variable. Our analysis reveals a significant overall long‐term sea surface warming, showcasing marked spatial differences, mainly associated with the interaction of coastal upwelling and topography. Coastal upwelling buffers the temperature rise due to global warming by replacing the warm coastal surface water with cold deep water from the adjacent ocean. Hence, coastal upwelling regions provide a mechanism to counteract global warming. Forecasted increase of upwelling intensity at high latitudes in coastal upwelling systems, as the NW Iberian margin, would guarantee the functioning of this buffering mechanism in the forthcoming decades. Long‐term sea surface temperature (SST) rise ranged from 0.07 to 0.25°C per decade in the NW Iberian margin Seasonal coastal upwelling substantially buffers the long‐term SST increase in shelf and slope waters Large uncertainty in nearshore satellite‐derived SST data indicates the need for in situ data Here the seasonal, inter‐annual and long‐term variability of satellite‐derived sea surface temperature (SST) was analyzed in the NW Iberian margin from 1982 to 2020 to explore spatial differences at high (5‐km) resolution. In‐situ temperature measurements from five coastal buoys were used to validate the satellite‐derived SST data, discarding pixels from areas close to the shoreline. Regional SST increased significantly from 0.07 to 0.25°C per decade, with the lowest rates in shelf waters directly affected by seasonal coastal upwelling. Upwelling filaments also contributed to dampen the temperature increase in the adjacent slope and ocean waters. The spatial variability observed in the amplitude and timing of the seasonal cycle of SST is directly related to hydrography and circulation patterns of the region such as upwelling events during summer and the development of the river's buoyant plume and the warm Iberian Poleward Current during winter. Plain Language Summary Monitoring primary climate variables such as sea surface temperature (SST) is crucial to assess the sensitivity of the highly productive coastal upwelling systems to global warming and their associated socioeconomic consequences. Here we explore 39‐year of daily satellite SST data in the NW Iberian upwelling system. We aim at gaining knowledge on the high resolution (5 km) spatial differences in the seasonal, interannual and long‐term variability of this ocean climate variable. Our analysis reveals a significant overall long‐term sea surface warming, showcasing marked spatial differences, mainly associated with the interaction of coastal upwelling and topography. Coastal upwelling buffers the temperature rise due to global warming by replacing the warm coastal surface water with cold deep water from the adjacent ocean. Hence, coastal upwelling regions provide a mechanism to counteract global warming. Forecasted increase of upwelling intensity at high latitudes in coastal upwelling systems, as the NW Iberian margin, would guarantee the functioning of this buffering mechanism in the forthcoming decades. Key Points Long‐term sea surface temperature (SST) rise ranged from 0.07 to 0.25°C per decade in the NW Iberian margin Seasonal coastal upwelling substantially buffers the long‐term SST increase in shelf and slope waters Large uncertainty in nearshore satellite‐derived SST data indicates the need for in situ data |
Author | Piedracoba, S. Álvarez‐Salgado, X. A. Pardo, P. C. Torres, S. |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0002-9023-9968 surname: Piedracoba fullname: Piedracoba, S. email: spiedracoba@cetmar.org organization: Centro Tecnológico del Mar (CETMAR) – sequence: 2 givenname: P. C. orcidid: 0000-0001-6348-2332 surname: Pardo fullname: Pardo, P. C. organization: Instituto de Investigaciones Marinas (IIM‐CSIC) – sequence: 3 givenname: X. A. surname: Álvarez‐Salgado fullname: Álvarez‐Salgado, X. A. organization: Instituto de Investigaciones Marinas (IIM‐CSIC) – sequence: 4 givenname: S. surname: Torres fullname: Torres, S. organization: Centro Tecnológico del Mar (CETMAR) |
BookMark | eNp9kM9OwkAQhzcGExG5-QCbeAXdP93d7tE0ihCiiYAem22ZYknZ1m0bwo1HMPENeRLXYIwn5zJz-H6Tme8cdWxpAaFLSq4pYfqGERZMIsIoUeIEdRmVeqiZpp3fWYkz1K_rNfEV0jAIdBe1MzB1aU0xwGPbgDPWtqbAxi7xtLSrw_5jDm6DX4zLTZIXebPDZYZ9CM9al5kU8Bw2lc81rQOcW9y8AX58xeMEfMLiRbWFosjtaoCpDtlh_-nvJBfoNDNFDf2f3kOL-7t59DCcPo3G0e10mDLO1JDxhBowQmacpiZNeCATRaTiWvIgCJUUKgyI4caEhFIpmVgmSyYAtBJEEMl76Oq4t3Llewt1E6_L1vlv65hTooWiXpCnBkcqdWVdO8jiyuUb43YxJfG32_ivW4_zI77NC9j9y8aT0XPEJFGKfwGXHnqZ |
Cites_doi | 10.1038/s41598‐018‐33057‐y 10.1029/2002JC001361 10.1007/s00382‐012‐1442‐9 10.1016/j.pocean.2022.102902 10.3402/tellusa.v66.22377 10.1038/ncomms1713 10.1016/S0399‐1784(98)80020‐0 10.1002/2015gl064694 10.1007/s00704‐019‐02806‐y 10.1016/j.scitotenv.2017.03.046 10.1002/joc.4927 10.1016/j.seares.2014.01.013 10.1038/374255a0 10.3390/rs12040720 10.3390/rs12223742 10.3389/fmars.2019.00420 10.3354/meps158267 10.1016/j.pocean.2013.07.007 10.1016/j.ecss.2011.12.009 10.1016/j.scitotenv.2018.05.273 10.1002/joc.1009 10.1016/j.rse.2019.111366 10.1029/2003JC002092 10.1016/j.rsma.2024.103369 10.1029/jc095ic07p11425 10.1016/j.pocean.2019.102135 10.3390/w11061285 10.3389/fmars.2015.00109 10.5194/hess‐24‐5891‐2020 10.1016/j.scitotenv.2023.165791 10.3354/cr00989 10.3390/oceans2040040 10.1016/S0924‐7963(02)00076‐3 10.1002/joc.5231 10.1007/s00376‐020‐9283‐7 10.1016/j.ecss.2022.107923 10.1016/j.csr.2008.11.016 10.1029/2004JC002367 10.1016/j.csr.2010.03.004 10.1016/j.hal.2008.04.007 10.3390/rs12101592 10.1016/j.jmarsys.2009.09.004 10.1029/2022GL100989 10.3354/cr00967 10.1029/2007JC004315 10.1111/gcb.13287 10.1029/93jc02016 10.1029/2011JC007472 10.1175/jtech2021.1 10.1111/j.1365‐2486.2009.02125.x 10.1146/annurev‐marine‐010419‐011020 10.1029/CO001p0176 10.1016/j.csr.2011.10.005 10.5194/os‐19‐351‐2023 10.1038/s41597‐019‐0236‐x 10.1016/j.pocean.2014.10.011 10.1007/s10236‐011‐0407‐6 10.1029/92rg02583 10.1175/1520‐0477(1972)053<1083:avoras>2.0.co;2 10.1016/s0079‐6611(01)00068‐4 10.1016/j.pocean.2009.07.031 10.1007/978-1-4020-2944-8_2 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1029/2024JC021075 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Free Archive CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2169-9291 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2024JC021075 JGRC26077 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Xunta de Galicia – fundername: Ministerio de Ciencia, Innovación y Universidades – fundername: ESA funderid: 4000135025/21/I‐NB – fundername: Spanish Ministry of Science an Innovation funderid: PTA2019‐017492‐I |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3V. 50Y 52M 702 7XC 8-1 88I 8CJ 8FE 8FH A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABPVW ABUWG ACAHQ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU D1J D1K DPXWK DRFUL DRSTM DWQXO EBS EJD FEDTE G-S GNUQQ GODZA HCIFZ HGLYW HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W PATMY PCBAR PQQKQ PROAC PYCSY R.K RJQFR RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA AAMNL AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
ID | FETCH-LOGICAL-c2327-23b1aea56f31cacb346b706739634487657840a3aa80116625dbd25ee97505063 |
IEDL.DBID | 33P |
ISSN | 2169-9275 |
IngestDate | Tue Nov 19 03:02:08 EST 2024 Fri Nov 22 02:59:15 EST 2024 Thu Sep 26 12:16:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2327-23b1aea56f31cacb346b706739634487657840a3aa80116625dbd25ee97505063 |
ORCID | 0000-0002-9023-9968 0000-0001-6348-2332 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JC021075 |
PQID | 3109571291 |
PQPubID | 54728 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3109571291 crossref_primary_10_1029_2024JC021075 wiley_primary_10_1029_2024JC021075_JGRC26077 |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 20240901 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of geophysical research. Oceans |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1990; 95 2004; 21 2010; 16 2009; 83 2019; 11 2004; 24 2011; 61 2008; 7 2020; 12 2023; 901 2017; 592 2024 1995; 374 2012; 98 2014; 66 2018; 8 1976; 34 2013; 116 2015; 42 2015; 134 2024; 70 1993; 31 1972; 53 1981 2008; 113 2022; 208 2014; 93 2018; 38 2001; 51 2007; 24 2019; 233 2015; 2 2022; 274 2019; 6 2010; 79 2021; 2 2005; 110 2010 2013; 40 2002; 35 2023; 19 1998 2011; 31 2020; 37 2004; 109 1998; 21 2009; 29 2003; 108 2012; 3 2020; 30 2021 1993; 98 2017; 12 2019; 137 2020; 24 2011; 48 2018; 639 2012; 117 2019; 178 2023; 50 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Reagan J. R. (e_1_2_7_57_1) 2024 IPCC (e_1_2_7_33_1) 2021 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 UNFCC (e_1_2_7_65_1) 2021 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 Barton E. D. (e_1_2_7_9_1) 1998 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 Álvarez‐Salgado X. A. (e_1_2_7_4_1) 2010 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Wooster W. S. (e_1_2_7_69_1) 1976; 34 |
References_xml | – volume: 51 start-page: 221 issue: 2–4 year: 2001 end-page: 248 article-title: Two Lagrangian experiments in the Iberian upwelling system: Tracking an upwelling event and an off‐shore filament publication-title: Progress in Oceanography – volume: 83 start-page: 33 issue: 1–4 year: 2009 end-page: 48 article-title: Subregional ecosystem variability in the Canary current upwelling publication-title: Progress in Oceanography – volume: 37 start-page: 137 issue: 2 year: 2020 end-page: 142 article-title: Record‐setting ocean warmth continued in 2019 publication-title: Advances in Atmospheric Sciences – volume: 137 start-page: 21 issue: 1–2 year: 2019 end-page: 29 article-title: Correction to: Northerly wind trends along the Portuguese marine coast since 1950 publication-title: Theoretical and Applied Climatology – volume: 12 issue: 10 year: 2020 article-title: Inter‐comparisons of daily Sea Surface temperatures and in‐situ temperatures in the coastal regions publication-title: Remote Sensing – volume: 6 year: 2019 article-title: Observational needs of Sea Surface temperature publication-title: Frontiers in Marine Science – year: 2021 – year: 2024 – volume: 16 start-page: 1258 issue: 4 year: 2010 end-page: 1267 article-title: Plankton response to weakening of the Iberian coastal upwelling publication-title: Global Change Biology – volume: 8 issue: 1 year: 2018 article-title: Global patterns of change and variation in sea surface temperature and chlorophyll a publication-title: Scientific Reports – volume: 3 start-page: 1 year: 2012 end-page: 13 article-title: Three decades of high‐resolution coastal sea surface temperatures reveal more than warming publication-title: Nature Communications – volume: 31 start-page: 425 issue: 5 year: 2011 end-page: 432 article-title: Atmospheric modes influence on Iberian poleward current variability publication-title: Continental Shelf Research – volume: 639 start-page: 1501 year: 2018 end-page: 1511 article-title: Coastal warming and wind‐driven upwelling: A global analysis publication-title: Science of the Total Environment – volume: 7 start-page: 849 issue: 6 year: 2008 end-page: 855 article-title: Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe) publication-title: Harmful Algae – volume: 40 start-page: 2813 issue: 11–12 year: 2013 end-page: 2824 article-title: Climate change and upwelling: Response of Iberian upwelling to atmospheric forcing in a regional climate scenario publication-title: Climate Dynamics – volume: 24 start-page: 1131 issue: 6 year: 2007 end-page: 1142 article-title: A comparative assessment of surface wind speed and sea surface temperature over the Indian Ocean by TMI, MSMR, and ERA‐40 publication-title: Journal of Atmospheric and Oceanic Technology – volume: 50 issue: 13 year: 2023 article-title: North Atlantic Ocean circulation and related exchange of heat and salt between water masses publication-title: Geophysical Research Letters – volume: 93 start-page: 23 year: 2014 end-page: 27 article-title: Trends of the Galician upwelling in the context of climate change publication-title: Journal of. Sea Research – volume: 48 start-page: 109 issue: 2 year: 2011 end-page: 144 article-title: The state of climate in NW Iberia publication-title: Climate Research – volume: 21 start-page: 9 year: 2004 end-page: 60 – volume: 2 start-page: 700 issue: 4 year: 2021 end-page: 722 article-title: Larval fish community in the northwestern Iberian upwelling system during the summer period publication-title: Oceans – volume: 12 start-page: 415 issue: 1 year: 2020 end-page: 447 article-title: Upwelling bays: How coastal upwelling controls circulation, habitat, and productivity in bays publication-title: Annual Review of Marine Science – volume: 134 start-page: 1 year: 2015 end-page: 18 article-title: Seasonal regulation of primary production in eastern boundary upwelling systems publication-title: Progress in Oceanography – volume: 35 start-page: 61 issue: 1–2 year: 2002 end-page: 77 article-title: Fronts, jets, and counter‐flows in the Western Iberian upwelling system publication-title: Journal of Marine Systems – volume: 34 start-page: 131 year: 1976 end-page: 141 article-title: The seasonal upwelling cycle along the eastern boundary of the North Atlantic publication-title: Journal of Marine Research – volume: 31 start-page: 2012 issue: 19–20 year: 2011 end-page: 2017 article-title: Coastal and oceanic SST variability along the western Iberian Peninsula publication-title: Continental Shelf Research – volume: 6 start-page: 223 issue: 1 year: 2019 article-title: Satellite‐based time‐series of sea‐surface temperature since 1981 for climate applications publication-title: Scientific Data – volume: 2 year: 2015 article-title: Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems publication-title: Frontiers in Marine Sciences 2 – volume: 79 start-page: 218 issue: 1–2 year: 2010 end-page: 226 article-title: Summer upwelling frequency along the western Cantabrian coast from 1967 to 2007 publication-title: Journal of Marine Systems – volume: 29 start-page: 1053 issue: 8 year: 2009 end-page: 1059 article-title: Present warming within the context of cooling‐warming cycles observed since 1854 in the Bay of Biscay publication-title: Continental Shelf Research – volume: 98 start-page: 138 year: 2012 end-page: 144 article-title: The influence of summer upwelling at the western boundary of the Cantabrian coast publication-title: Estuarine, Coastal and Shelf Science – volume: 24 start-page: 5891 year: 2020 end-page: 5902 article-title: From skill to value: isolating the influence of end user behavior on seasonal forecast assessment publication-title: Hydrology and Earth System Sciences – volume: 95 start-page: 11125 issue: C7 year: 1990 end-page: 11141 article-title: A poleward flow along the Atlantic coast of the Iberian Peninsula, publication-title: Journal of Geophysical Research – volume: 48 start-page: 231 issue: 2 year: 2011 end-page: 246 article-title: Evolution of upwelling systems coupled to the long‐term variability in sea surface temperature and Ekman transport publication-title: Climate Research – volume: 70 year: 2024 article-title: Tropicalization of fish fauna of Galician coastal waters, in the NW Iberian upwelling system publication-title: Regional Studies in Marine Science – volume: 98 start-page: 22681 issue: C12 year: 1993 end-page: 22692 article-title: Development, persistence and variability of upwelling filaments off the Atlantic coast of the Iberian Peninsula publication-title: Journal of Geophysical Research – volume: 61 start-page: 1215 issue: 9 year: 2011 end-page: 1235 article-title: Mixed layer depth (MLD) variability in the southern Bay of Biscay. Deepening of winter MLDs concurrent with generalized upper water warming trends? publication-title: Ocean Dynamics – volume: 66 issue: 1 year: 2014 article-title: Climatology of the Iberia coastal low‐level wind jet: Weather research forecasting model high‐resolution results publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 592 start-page: 243 year: 2017 end-page: 251 article-title: Why coastal upwelling is expected to increase along the western Iberian Peninsula over the next century? publication-title: Science of the Total Environment – volume: 38 start-page: 1145 issue: 3 year: 2018 end-page: 1160 article-title: Sea surface temperature variability along the Portuguese coast since 1950 publication-title: International Journal of Climatology – volume: 110 issue: C5 year: 2005 article-title: Intense warming and salinity modification of intermediate water masses in the southeastern corner of the Bay of Biscay for the period 1992–2003 publication-title: Journal of Geophysical Research – start-page: 103 year: 2010 end-page: 120 – volume: 208 year: 2022 article-title: Observation‐based Sea surface temperature trends in Atlantic large marine ecosystems publication-title: Progress in Oceanography – volume: 21 start-page: 335 issue: 2 year: 1998 end-page: 344 article-title: Temporal trends and spatial structures of the sea surface temperature in the Bay of Biscay publication-title: Oceanologica Acta – volume: 24 start-page: 511 issue: 4 year: 2004 end-page: 524 article-title: The upwelling regime off the west Portuguese coast, 1941‐2000 publication-title: International Journal of Climatology – volume: 42 start-page: 6424 issue: 15 year: 2015 end-page: 6431 article-title: Poleward intensification of coastal upwelling in response to global warming publication-title: Geophysical Research Letters – volume: 12 start-page: 3427 issue: 8 year: 2017 end-page: 3438 article-title: Coastal upwelling trends under future warming scenarios from the CORDEX project along the Galician coast (NW Iberian Peninsula) publication-title: International Journal of Climatology – volume: 233 year: 2019 article-title: Half a century of satellite remote sensing of sea‐surface temperature publication-title: Remote Sensing of Environment – volume: 113 issue: C4 year: 2008 article-title: Coastal sea surface temperature warming trend along the continental part of the Atlantic Arc (1985–2005) publication-title: Journal of Geophysical Research – volume: 53 start-page: 1083 issue: 11 year: 1972 end-page: 1102 article-title: A view of recent air‐sea interaction research, publication-title: Bulletin of the American Meteorological Society – volume: 374 start-page: 255 issue: 6519 year: 1995 end-page: 257 article-title: Primary production required to sustain global fisheries publication-title: Nature – volume: 31 start-page: 29 issue: 1 year: 1993 end-page: 49 article-title: On the North Atlantic circulation publication-title: Reviews of Geophysics – start-page: 176 year: 1981 end-page: 182 – volume: 19 start-page: 351 issue: 2 year: 2023 end-page: 361 article-title: The signature of NAO and EA climate patterns on the vertical structure of the canary current upwelling system publication-title: Ocean Science – volume: 109 issue: C4 year: 2004 article-title: In situ validation of tropical rainfall measuring mission microwave sea surface temperatures publication-title: Journal of Geophysical Research – volume: 12 issue: 4 year: 2020 article-title: The current configuration of the OSTIA system for operational production of foundation Sea Surface temperature and Ice concentration analyses publication-title: Remote Sensing – volume: 30 start-page: 1572 issue: 8 year: 2020 end-page: 1577 article-title: Climate change drives poleward increases and equatorward declines in marine species publication-title: Current Biology – volume: 901 year: 2023 article-title: Temperature and salinity trends in the northern limit of the canary current upwelling system publication-title: Science of the Total Environment – volume: 274 year: 2022 article-title: Characterization of marine heatwaves in the Cantabrian Sea, SW bay of biscay publication-title: Estuarine, Coastal and Shelf Science – volume: 12 issue: 22 year: 2020 article-title: Validation of satellite Sea Surface temperatures and long‐term trends in Korean coastal regions over past decades (1982‐2018) publication-title: Remote Sensing – volume: 116 start-page: 167 year: 2013 end-page: 178 article-title: Canary current upwelling: More or less? publication-title: Progress in Oceanography – volume: 22 start-page: 2633 issue: 8 year: 2016 end-page: 2650 article-title: Biological responses to environmental heterogeneity under future ocean conditions publication-title: Global Change Biology – volume: 178 year: 2019 article-title: Seasonal and inter‐annual variability of net primary production in the NW Iberian margin (1998–2016) in relation to wind stress and sea surface temperature publication-title: Progress in Oceanography – volume: 11 issue: 6 year: 2019 article-title: A 60‐year time series analyses of the upwelling along the Portuguese coast publication-title: Water – volume: 108 issue: C4 year: 2003 article-title: Spatial patterns of wind and sea surface temperature in the Galician upwelling region publication-title: Journal of Geophysical Research – start-page: 633 year: 1998 end-page: 657 – volume: 117 issue: C2 year: 2012 article-title: Evaluation of the relative performance of sea surface temperature measurements from different types of drifting and moored buoys using satellite‐derived reference products publication-title: Journal of Geophysical Research – ident: e_1_2_7_19_1 doi: 10.1038/s41598‐018‐33057‐y – ident: e_1_2_7_64_1 doi: 10.1029/2002JC001361 – ident: e_1_2_7_47_1 doi: 10.1007/s00382‐012‐1442‐9 – ident: e_1_2_7_36_1 doi: 10.1016/j.pocean.2022.102902 – ident: e_1_2_7_61_1 doi: 10.3402/tellusa.v66.22377 – ident: e_1_2_7_43_1 doi: 10.1038/ncomms1713 – ident: e_1_2_7_37_1 doi: 10.1016/S0399‐1784(98)80020‐0 – ident: e_1_2_7_58_1 doi: 10.1002/2015gl064694 – ident: e_1_2_7_41_1 doi: 10.1007/s00704‐019‐02806‐y – ident: e_1_2_7_63_1 doi: 10.1016/j.scitotenv.2017.03.046 – ident: e_1_2_7_3_1 doi: 10.1002/joc.4927 – ident: e_1_2_7_14_1 doi: 10.1016/j.seares.2014.01.013 – ident: e_1_2_7_52_1 doi: 10.1038/374255a0 – ident: e_1_2_7_27_1 doi: 10.3390/rs12040720 – ident: e_1_2_7_39_1 doi: 10.3390/rs12223742 – ident: e_1_2_7_48_1 doi: 10.3389/fmars.2019.00420 – ident: e_1_2_7_29_1 doi: 10.3354/meps158267 – ident: e_1_2_7_10_1 doi: 10.1016/j.pocean.2013.07.007 – ident: e_1_2_7_55_1 doi: 10.1016/j.ecss.2011.12.009 – ident: e_1_2_7_66_1 doi: 10.1016/j.scitotenv.2018.05.273 – ident: e_1_2_7_42_1 doi: 10.1002/joc.1009 – ident: e_1_2_7_46_1 doi: 10.1016/j.rse.2019.111366 – ident: e_1_2_7_22_1 doi: 10.1029/2003JC002092 – ident: e_1_2_7_7_1 doi: 10.1016/j.rsma.2024.103369 – ident: e_1_2_7_30_1 doi: 10.1029/jc095ic07p11425 – ident: e_1_2_7_11_1 doi: 10.1016/j.pocean.2019.102135 – ident: e_1_2_7_40_1 doi: 10.3390/w11061285 – ident: e_1_2_7_21_1 doi: 10.3389/fmars.2015.00109 – ident: e_1_2_7_28_1 doi: 10.5194/hess‐24‐5891‐2020 – ident: e_1_2_7_49_1 doi: 10.1016/j.scitotenv.2023.165791 – ident: e_1_2_7_50_1 doi: 10.3354/cr00989 – ident: e_1_2_7_56_1 doi: 10.3390/oceans2040040 – start-page: 103 volume-title: Carbon and nutrient fluxes in continental margins: A global synthesis year: 2010 ident: e_1_2_7_4_1 contributor: fullname: Álvarez‐Salgado X. A. – ident: e_1_2_7_53_1 doi: 10.1016/S0924‐7963(02)00076‐3 – ident: e_1_2_7_8_1 doi: 10.1002/joc.5231 – ident: e_1_2_7_16_1 doi: 10.1007/s00376‐020‐9283‐7 – ident: e_1_2_7_34_1 doi: 10.1016/j.ecss.2022.107923 – ident: e_1_2_7_18_1 doi: 10.1016/j.csr.2008.11.016 – ident: e_1_2_7_26_1 doi: 10.1029/2004JC002367 – ident: e_1_2_7_17_1 doi: 10.1016/j.csr.2010.03.004 – ident: e_1_2_7_5_1 doi: 10.1016/j.hal.2008.04.007 – ident: e_1_2_7_68_1 doi: 10.3390/rs12101592 – ident: e_1_2_7_2_1 doi: 10.1016/j.jmarsys.2009.09.004 – ident: e_1_2_7_12_1 doi: 10.1029/2022GL100989 – ident: e_1_2_7_25_1 doi: 10.3354/cr00967 – ident: e_1_2_7_24_1 doi: 10.1029/2007JC004315 – start-page: 633 volume-title: The sea, 11 year: 1998 ident: e_1_2_7_9_1 contributor: fullname: Barton E. D. – volume-title: NOAA national centers for environmental information. Dataset year: 2024 ident: e_1_2_7_57_1 contributor: fullname: Reagan J. R. – ident: e_1_2_7_13_1 doi: 10.1111/gcb.13287 – ident: e_1_2_7_31_1 doi: 10.1029/93jc02016 – ident: e_1_2_7_15_1 doi: 10.1029/2011JC007472 – volume: 34 start-page: 131 year: 1976 ident: e_1_2_7_69_1 article-title: The seasonal upwelling cycle along the eastern boundary of the North Atlantic publication-title: Journal of Marine Research contributor: fullname: Wooster W. S. – ident: e_1_2_7_51_1 doi: 10.1175/jtech2021.1 – start-page: 2391 volume-title: Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change year: 2021 ident: e_1_2_7_33_1 contributor: fullname: IPCC – ident: e_1_2_7_54_1 doi: 10.1111/j.1365‐2486.2009.02125.x – ident: e_1_2_7_38_1 doi: 10.1146/annurev‐marine‐010419‐011020 – volume-title: Ocean and climate change dialogue to consider how to strengthen adaptation and mitigation action year: 2021 ident: e_1_2_7_65_1 contributor: fullname: UNFCC – ident: e_1_2_7_20_1 doi: 10.1029/CO001p0176 – ident: e_1_2_7_59_1 doi: 10.1016/j.csr.2011.10.005 – ident: e_1_2_7_23_1 doi: 10.5194/os‐19‐351‐2023 – ident: e_1_2_7_44_1 doi: 10.1038/s41597‐019‐0236‐x – ident: e_1_2_7_45_1 doi: 10.1016/j.pocean.2014.10.011 – ident: e_1_2_7_62_1 doi: 10.1007/s10236‐011‐0407‐6 – ident: e_1_2_7_60_1 doi: 10.1029/92rg02583 – ident: e_1_2_7_32_1 doi: 10.1175/1520‐0477(1972)053<1083:avoras>2.0.co;2 – ident: e_1_2_7_35_1 doi: 10.1016/s0079‐6611(01)00068‐4 – ident: e_1_2_7_6_1 doi: 10.1016/j.pocean.2009.07.031 – ident: e_1_2_7_67_1 doi: 10.1007/978-1-4020-2944-8_2 |
SSID | ssj0000818449 |
Score | 2.3177423 |
Snippet | Here the seasonal, inter‐annual and long‐term variability of satellite‐derived sea surface temperature (SST) was analyzed in the NW Iberian margin from 1982 to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Buffers Buoys Circulation patterns Climate Climate change Climatic analysis Coastal plains Coastal upwelling Coastal waters Coastal zone Deep water Filaments Global warming Hydrography Ocean circulation Ocean-atmosphere system Oceans Regional development Satellites Sea surface temperature Sea surface warming Seasonal variability Seasonal variation Social factors Spatial variability Spatial variations Surface temperature Surface water Temperature measurement Temperature rise Upwelling Variability |
Title | Seasonal, Interannual and Long‐Term Variability of Sea Surface Temperature in the NW Iberian Upwelling, 1982–2020 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JC021075 https://www.proquest.com/docview/3109571291 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTgMhFCXalTHxbaxWw0J3ndh5MAwbE1NbtTHV2PrYTYAB44Y2rbNw108w8Q_7JV6Yaa0bE-N6gJC5HDjnAgeEjiOmpEh0A5CWES-KifQEkZlHYu0LLRgDsNvURY92n5OLlrXJOZvdhSn8IeYJN4sMN19bgHMxLs0GrEcmqPao07SShdo75iAU3A2O8G6eYrFubZEjwIEfM48FlJRH36GF08X6Pxelb6a5yFfdgtNe_29XN9BaSTXxeTE2NtGSMlto9VYqbkqf6m2U9xR3ZLyOXW6wsCjF3GT4ZmBeppOPPkzd-BEUdWHo_Y4HGkMl3MtHmkuF-wqId2HMjF8NBj6Ju0_4WtiRbfDD0CYHYXmsY58lwXTyCb1s7KCHdqvfvPLKlxg8CYyLekEofK44BDD0JZcijGJB7RM3AF_QdzQG3EcNHnKe2I0d0FSZyAKiFANCQoAF7aKKGRi1h7AAziMFtCGYjnzV4JyBZgniQGsm44xW0cksFOmwMNxI3UZ5wNLF_1hFtVmc0hJ249TanBIKFMavorqLyK9tpJ3L-yYIOkr3_1b8AK3YD8VZsxqqvI1ydYiWx1l-5IbgFz862H8 |
link.rule.ids | 315,782,786,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsMwEFzxOICQeCPK0we4NaJJ7Dg-IVQKFEpBtAVuke04iEtatfTAjU9A4g_7JayTFMoFCXF3VlZ2x55ZJ2OAAyqMVmFSQaTFzKEB045iOnZYkLgqUUIg2G3rosWbj-FpzdrkHI__hcn9Ib4abhYZ2XptAW4b0oXbgDXJRNlOL6tWs3A2DbM0oKEta9-__WqyWL82mlFgzw2EIzzOio_fMcTRZICf29I315xkrNmWc7b078kuw2LBNslJXh4rMGXSVVi40UamhVX1GgxbRmZ8vEyy9mDuUkpkGpNGN30avb23cfUm9yiqc0_vV9JNCD5EWsN-IrUhbYPcO_dmJs8pQUpJmg-krmxxp6TTs_1B3CHLxBWhN3r7wFlW1qFzVmtXL5ziMgZHI-nijucrVxqJOfRdLbXyaaC4veUGEYwSjwcIfVqRvpShPdtBWRWr2GPGCOQkDInQBsyk3dRsAlFIe7TCGEok1DUVKQXKFi_wkkToIOYlOBznIurlnhtRdlbuiWjyPZZgZ5yoqEDeILJOp4wji3FLUM5S8muM6PL8roqajvOtvw3fh7mL9nUjatSbV9swbwfln57twMxLf2h2YXoQD_eyevwEEAfcqA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL34ABHBt1ifWeiug51HJpONILXV1lLF1sduSDKJuJmWahfu-gmCf9gv8WZmqnUjiPvMJczNSc65SU4AjgKulYxMBZGWUCcIqXIkVYlDQ-NKIzlHsNvSRYe1H6PzmrXJOZ3chcn9Ib4KbhYZ2XxtAd5PTGE2YD0yUbUHzaqVLIzOwnyATNwe6fP9m68ai7VrCzIG7Lkhd7jHaHH2HUOcTAf4uSp9U81pwpqtOPWV__Z1FZYLrknO8sGxBjM6XYela6VFWhhVb8Cwo0XGxsskKw7mHqVEpAlp9dKn8ei9i3M3uUdJnTt6v5GeIfgR6QwHRihNuhqZd-7MTJ5TgoSStB9IQ9qhnZK7vq0O4vpYJi6PvPHoA3tZ2YS7eq1bvXSKpxgchZSLOZ4vXaEFZtB3lVDSD0LJ7Bs3iF8UeCxE4AcV4QsR2Z0dFFWJTDyqNUdGQpEGbcFc2kv1NhCJeVISY0huAldXhOAoWrzQM4arMGElOJ6kIu7njhtxtlPu8Xj6P5Zgb5KnuMDdS2x9TilDDuOWoJxl5NcYcfPitoqKjrGdvzU_hIWb83rcarSvdmHRtsnPne3B3OtgqPdh9iUZHmSj8RNvaNtO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal%2C+Interannual+and+Long%E2%80%90Term+Variability+of+Sea+Surface+Temperature+in+the+NW+Iberian+Upwelling%2C+1982%E2%80%932020&rft.jtitle=Journal+of+geophysical+research.+Oceans&rft.au=Piedracoba%2C+S.&rft.au=Pardo%2C+P.+C.&rft.au=%C3%81lvarez%E2%80%90Salgado%2C+X.+A.&rft.au=Torres%2C+S.&rft.date=2024-09-01&rft.issn=2169-9275&rft.eissn=2169-9291&rft.volume=129&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JC021075&rft.externalDBID=10.1029%252F2024JC021075&rft.externalDocID=JGRC26077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9275&client=summon |