Lidocaine HCl-Loaded Polyelectrolyte Complex -Poloxamer Thermoresponsive Hydrogel: In Vitro- In Vivo Anesthetic Evaluations for Tooth Socket Wound Delivery
Local anesthesia is essential in dental practices, particularly for managing pain in tooth socket wounds, yet improving drug delivery systems remains a significant challenge. This study explored the physicochemical characteristics of lidocaine hydrochloride (LH) incorporated into a polyelectrolyte c...
Saved in:
Published in: | AAPS PharmSciTech Vol. 25; no. 6; p. 182 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
13-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Local anesthesia is essential in dental practices, particularly for managing pain in tooth socket wounds, yet improving drug delivery systems remains a significant challenge. This study explored the physicochemical characteristics of lidocaine hydrochloride (LH) incorporated into a polyelectrolyte complex and poloxamer thermosensitivity hydrogel, assessing its local anesthetic efficacy in mouse models and its onset and duration of action as topical anesthetics in clinical trials. The thermoresponsive hydrogel exhibited a rapid phase transition within 1–3 minutes and demonstrated pseudo-plastic flow behavior. Its release kinetics followed Korsmeyer-Peppas, with 50% of biodegradation occurring over 48 h. In mouse models, certain thermogels showed superior anesthetic effects, with rapid onset and prolonged action, as evidenced by heat tolerance in tail-flick and hot plate models. In clinical trials, the LH-loaded thermoresponsive hydrogel provided rapid numbness onset, with anesthesia (T
on
) beginning at an average of 46.5 ± 22.5 seconds and lasting effectively (T
eff
) for 202.5 ± 41.0 seconds, ranging from 120 to 240 seconds, indicating sustained release. These results highlight the promising properties of these formulations: rapid onset, prolonged duration, mucoadhesion, biodegradability, and high anesthesia effectiveness. This study demonstrates the potential for advancing local anesthesia across various medical fields, emphasizing the synergy between material science and clinical applications to improve patient care and safety.
Graphical Abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1530-9932 1530-9932 |
DOI: | 10.1208/s12249-024-02894-8 |