Mutagenesis on a complex mouse genetic background by site-specific nucleases
Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant was...
Saved in:
Published in: | Transgenic research |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
01-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage. |
---|---|
AbstractList | Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage. Abstract Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage. Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage. |
Author | Davies, Benjamin Drydale, Edward Martin, Rachel Channon, Keith M Bai, Boyan Golebka, Jedrzej Bhattacharya, Shoumo Trelfa, Lucy Biggs, Daniel Stephen Rashbrook, Victoria S Douglas, Gillian |
Author_xml | – sequence: 1 givenname: Benjamin surname: Davies fullname: Davies, Benjamin organization: Francis Crick Institute, 1 Midland Road, London, UK – sequence: 2 givenname: Lucy surname: Trelfa fullname: Trelfa, Lucy organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK – sequence: 3 givenname: Victoria S surname: Rashbrook fullname: Rashbrook, Victoria S organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK – sequence: 4 givenname: Edward surname: Drydale fullname: Drydale, Edward organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK – sequence: 5 givenname: Rachel surname: Martin fullname: Martin, Rachel organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK – sequence: 6 givenname: Boyan surname: Bai fullname: Bai, Boyan organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK – sequence: 7 givenname: Jedrzej surname: Golebka fullname: Golebka, Jedrzej organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK – sequence: 8 givenname: Daniel Stephen surname: Biggs fullname: Biggs, Daniel Stephen organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK – sequence: 9 givenname: Keith M surname: Channon fullname: Channon, Keith M organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK – sequence: 10 givenname: Shoumo surname: Bhattacharya fullname: Bhattacharya, Shoumo organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK – sequence: 11 givenname: Gillian surname: Douglas fullname: Douglas, Gillian email: gillian.douglas@cardiov.ox.ac.uk, gillian.douglas@cardiov.ox.ac.uk organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK. gillian.douglas@cardiov.ox.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39088185$$D View this record in MEDLINE/PubMed |
BookMark | eNo9ULlOxDAQtRCIPeAHKJBLGoPPxC7RiktaRAO15TiTVSBxQpxI7N_jPaAaad4xb94CnYYuAEJXjN4ySvO7yBiXmlAuCaXCGKJO0JypXBAjMn2K5tRknGjNzAwtYvykNMm0OEczYWhaazVH69dpdBsIEOuIu4Ad9l3bN_CD226KgHfQWHtcOP-1GboplLjY4liPQGIPvq4SFibfgIsQL9BZ5ZoIl8e5RB-PD--rZ7J-e3pZ3a-J51yPxORMe6Ez6RiTQjGRF7mh3BkhhZYZ0Cq9VJSwz5tRVeaFAuFLXXmt8oKLJbo5-PZD9z1BHG1bRw9N4wKk1FZQnRmVaSkTlR-ofuhiHKCy_VC3bthaRu2uRXto0aaTdt-iVUl0ffSfihbKf8lfbeIXA2Ft8Q |
Cites_doi | 10.1371/journal.pone.0060216 10.1371/journal.pone.0028534 10.1161/CIRCRESAHA.119.316461 10.1073/pnas.1016086108 10.1016/j.atherosclerosis.2011.11.024 10.1074/jbc.M505368200 10.1002/iub.2421 10.1016/j.atherosclerosis.2011.05.043 10.1002/emmm.201201374 10.1172/JCI83136 10.1007/978-1-4939-8831-0_8 10.1101/393421 10.1056/NEJMoa1001689 10.1161/ATVBAHA.111.234872 10.1038/ncomms7354 10.1161/CIRCULATIONAHA.110.984146 10.1161/ATVBAHA.110.213215 10.1371/journal.pgen.1004828 10.1016/j.ahj.2007.11.018 10.1073/pnas.0403506101 10.1161/CIRCULATIONAHA.108.793869 10.4049/jimmunol.202.Supp.187.22 10.2337/db10-0778 10.1172/JCI32057 10.1161/ATVBAHA.111.243519 10.1161/01.CIR.0000054781.50889.0C 10.4049/jimmunol.180.6.4273 10.1161/ATVBAHA.110.205617 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). |
Copyright_xml | – notice: 2024. The Author(s). |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1007/s11248-024-00399-5 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1573-9368 |
ExternalDocumentID | 10_1007_s11248_024_00399_5 39088185 |
Genre | Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/15/34/31300 – fundername: BHF Centre of Research Excellence, Oxford grantid: RE/13/1/30181 – fundername: Wellcome Trust grantid: 090532/Z/09/Z – fundername: British Heart Foundation grantid: CH/09/003/26631 |
GroupedDBID | --- -4W -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67N 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BENPR BGNMA BHPHI CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDH EIOEI EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LLZTM M4Y M7P MA- NB0 NPM NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RIG ROL RPX RRX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WJK WK8 YLTOR Z45 Z7S Z7U Z7V Z7W Z7Y Z82 Z87 Z8N Z8O Z8P Z8Q Z8S Z8V Z91 ZMTXR ZOVNA ~A9 ~KM AAYXX ACIPQ CITATION 7X8 |
ID | FETCH-LOGICAL-c228t-9718c3864a11435137b7902a9343846e0f024bde00100605d7b5e3cd8fc857b23 |
ISSN | 0962-8819 1573-9368 |
IngestDate | Sat Oct 26 04:31:07 EDT 2024 Thu Sep 26 20:57:43 EDT 2024 Sat Nov 02 12:08:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regression 3Rs Abcg1 Atherosclerosis Site directed mutagenesis |
Language | English |
License | 2024. The Author(s). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-9718c3864a11435137b7902a9343846e0f024bde00100605d7b5e3cd8fc857b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s11248-024-00399-5 |
PMID | 39088185 |
PQID | 3086956844 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3086956844 crossref_primary_10_1007_s11248_024_00399_5 pubmed_primary_39088185 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug-01 2024-08-01 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Transgenic research |
PublicationTitleAlternate | Transgenic Res |
PublicationYear | 2024 |
References | 399_CR13 M Sharma (399_CR21) 2020; 127 X Wang (399_CR27) 2007; 117 D Sag (399_CR19) 2019; 202 AJ Wojcik (399_CR28) 2008; 180 L Cardilo-Reis (399_CR1) 2012; 4 B Davies (399_CR3) 2013; 8 J Schou (399_CR20) 2012; 32 S Parathath (399_CR15) 2011; 60 JE Feig (399_CR6) 2011; 123 HD Lieu (399_CR10) 2003; 107 I Meurs (399_CR11) 2012; 221 JE Feig (399_CR8) 2011; 6 D Sag (399_CR18) 2015; 6 Y Xu (399_CR29) 2011; 219 M Olivier (399_CR14) 2012; 32 N Wang (399_CR26) 2004; 101 AV Khera (399_CR9) 2011; 364 L Yvan-Charvet (399_CR30) 2008; 118 Y Du (399_CR5) 2019; 1874 A Rafiei (399_CR16) 2021; 73 N Terasaka (399_CR23) 2010; 30 HR Underhill (399_CR24) 2008; 155 EJ Tarling (399_CR22) 2010; 30 AM Vaughan (399_CR25) 2005; 280 JE Feig (399_CR7) 2011; 108 HY Cheng (399_CR2) 2016; 126 L Davison (399_CR4) 2018 SA Ramsey (399_CR17) 2014; 10 |
References_xml | – volume: 8 start-page: e60216 year: 2013 ident: 399_CR3 publication-title: PLoS ONE doi: 10.1371/journal.pone.0060216 contributor: fullname: B Davies – volume: 6 start-page: e28534 year: 2011 ident: 399_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0028534 contributor: fullname: JE Feig – volume: 127 start-page: 335 year: 2020 ident: 399_CR21 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.119.316461 contributor: fullname: M Sharma – volume: 108 start-page: 7166 year: 2011 ident: 399_CR7 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1016086108 contributor: fullname: JE Feig – volume: 221 start-page: 41 year: 2012 ident: 399_CR11 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2011.11.024 contributor: fullname: I Meurs – volume: 280 start-page: 30150 issue: 34 year: 2005 ident: 399_CR25 publication-title: J Biol Chem doi: 10.1074/jbc.M505368200 contributor: fullname: AM Vaughan – volume: 73 start-page: 223 year: 2021 ident: 399_CR16 publication-title: IUBMB Life doi: 10.1002/iub.2421 contributor: fullname: A Rafiei – volume: 219 start-page: 648 year: 2011 ident: 399_CR29 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2011.05.043 contributor: fullname: Y Xu – volume: 4 start-page: 1072 year: 2012 ident: 399_CR1 publication-title: EMBO Mol Med doi: 10.1002/emmm.201201374 contributor: fullname: L Cardilo-Reis – volume: 126 start-page: 3236 year: 2016 ident: 399_CR2 publication-title: J Clin Invest doi: 10.1172/JCI83136 contributor: fullname: HY Cheng – volume: 1874 start-page: 139 year: 2019 ident: 399_CR5 publication-title: Methods Mol Biol (clifton NJ) doi: 10.1007/978-1-4939-8831-0_8 contributor: fullname: Y Du – year: 2018 ident: 399_CR4 publication-title: BioRxiv doi: 10.1101/393421 contributor: fullname: L Davison – volume: 364 start-page: 127 year: 2011 ident: 399_CR9 publication-title: N Engl J Med doi: 10.1056/NEJMoa1001689 contributor: fullname: AV Khera – volume: 32 start-page: 506 year: 2012 ident: 399_CR20 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.111.234872 contributor: fullname: J Schou – volume: 6 start-page: 6354 year: 2015 ident: 399_CR18 publication-title: Nat Commun doi: 10.1038/ncomms7354 contributor: fullname: D Sag – volume: 123 start-page: 989 year: 2011 ident: 399_CR6 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.984146 contributor: fullname: JE Feig – volume: 30 start-page: 2219 year: 2010 ident: 399_CR23 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.110.213215 contributor: fullname: N Terasaka – volume: 10 start-page: e1004828 year: 2014 ident: 399_CR17 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004828 contributor: fullname: SA Ramsey – ident: 399_CR13 – volume: 155 start-page: 584 year: 2008 ident: 399_CR24 publication-title: Am Heart J doi: 10.1016/j.ahj.2007.11.018 contributor: fullname: HR Underhill – volume: 101 start-page: 9774 year: 2004 ident: 399_CR26 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0403506101 contributor: fullname: N Wang – volume: 118 start-page: 1837 year: 2008 ident: 399_CR30 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.793869 contributor: fullname: L Yvan-Charvet – volume: 202 start-page: 187.22 year: 2019 ident: 399_CR19 publication-title: J Immunol doi: 10.4049/jimmunol.202.Supp.187.22 contributor: fullname: D Sag – volume: 60 start-page: 1759 year: 2011 ident: 399_CR15 publication-title: Diabetes doi: 10.2337/db10-0778 contributor: fullname: S Parathath – volume: 117 start-page: 2216 year: 2007 ident: 399_CR27 publication-title: J Clin Investig doi: 10.1172/JCI32057 contributor: fullname: X Wang – volume: 32 start-page: 2223 year: 2012 ident: 399_CR14 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.111.243519 contributor: fullname: M Olivier – volume: 107 start-page: 1315 year: 2003 ident: 399_CR10 publication-title: Circulation doi: 10.1161/01.CIR.0000054781.50889.0C contributor: fullname: HD Lieu – volume: 180 start-page: 4273 year: 2008 ident: 399_CR28 publication-title: J Immunol doi: 10.4049/jimmunol.180.6.4273 contributor: fullname: AJ Wojcik – volume: 30 start-page: 1174 year: 2010 ident: 399_CR22 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.110.205617 contributor: fullname: EJ Tarling |
SSID | ssj0010083 |
Score | 2.4421346 |
Snippet | Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and... Abstract Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
Title | Mutagenesis on a complex mouse genetic background by site-specific nucleases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39088185 https://www.proquest.com/docview/3086956844 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9UwFA_uDkEfRKfO6xcRfLtE2iZZ08fNdVykTtA72VtJ0hSv007uB3j_-52T5radQ5gPvpQSaELPrz35nZwvQt7WPLZxljlWgQHEhEkrhjyZCWkVbFhKc475ztMv6em5Os5F3rdV7Mf-K9IwBlhj5uw_oN1NCgNwD5jDFVCH661w_7hegYoABTb3jgDdBo273xO08R12TMa0xYnR9gIzOhpPQNGFzDDpEgOHJg3WOIbdbTlkrn5Tg6d9yefBEVioVNBqmyPXfNc_531w78L9qD09Lda2O7z_rJffDDB2r4i_ztFtMNf9GezxYrONcm5bSg9PJhLRxcV1yjTlLONt25x37ubYDfUdhXRmIB0wFc4YAYFist-stg7600_lyVlRlLP8fLZDdhNQM3JEdg_zD9Oi8yIhv_T1csOaIWmqTZ38c43rxOQv1oZnHbOH5EEwF-hhi_Mjcsc1e-Ru20B0s0fuD8pJPibFAHt62VBNA_bUY08D9rTHnpoNvYY97bB_Qs5O8tn7KQvdMphNErViGbAMy9WB0DFy4JinJs2iRGccfjlx4KIaXtZUzssFjNgqNdJxW6naKpmahD8lo-aycc8IVbWslUsjJzMpwKBXwsSZVYJXkaucVWMy2Yqq_NUWRSn78tco2BLWKr1gSzkmb7bSLEF3oUNKNw7eu-RgT2O6qhBjst-KuZuPYwAekMnnt3j6BbnXf38vyWi1WLtXZGdZrV-HT-IKVdBnaw |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutagenesis+on+a+complex+mouse+genetic+background+by+site-specific+nucleases&rft.jtitle=Transgenic+research&rft.au=Davies%2C+Benjamin&rft.au=Trelfa%2C+Lucy&rft.au=Rashbrook%2C+Victoria+S&rft.au=Drydale%2C+Edward&rft.date=2024-08-01&rft.issn=1573-9368&rft.eissn=1573-9368&rft_id=info:doi/10.1007%2Fs11248-024-00399-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8819&client=summon |