Mutagenesis on a complex mouse genetic background by site-specific nucleases

Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant was...

Full description

Saved in:
Bibliographic Details
Published in:Transgenic research
Main Authors: Davies, Benjamin, Trelfa, Lucy, Rashbrook, Victoria S, Drydale, Edward, Martin, Rachel, Bai, Boyan, Golebka, Jedrzej, Biggs, Daniel Stephen, Channon, Keith M, Bhattacharya, Shoumo, Douglas, Gillian
Format: Journal Article
Language:English
Published: Netherlands 01-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.
AbstractList Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.
Abstract Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.
Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.
Author Davies, Benjamin
Drydale, Edward
Martin, Rachel
Channon, Keith M
Bai, Boyan
Golebka, Jedrzej
Bhattacharya, Shoumo
Trelfa, Lucy
Biggs, Daniel Stephen
Rashbrook, Victoria S
Douglas, Gillian
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Davies
  fullname: Davies, Benjamin
  organization: Francis Crick Institute, 1 Midland Road, London, UK
– sequence: 2
  givenname: Lucy
  surname: Trelfa
  fullname: Trelfa, Lucy
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
– sequence: 3
  givenname: Victoria S
  surname: Rashbrook
  fullname: Rashbrook, Victoria S
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
– sequence: 4
  givenname: Edward
  surname: Drydale
  fullname: Drydale, Edward
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
– sequence: 5
  givenname: Rachel
  surname: Martin
  fullname: Martin, Rachel
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
– sequence: 6
  givenname: Boyan
  surname: Bai
  fullname: Bai, Boyan
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
– sequence: 7
  givenname: Jedrzej
  surname: Golebka
  fullname: Golebka, Jedrzej
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
– sequence: 8
  givenname: Daniel Stephen
  surname: Biggs
  fullname: Biggs, Daniel Stephen
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
– sequence: 9
  givenname: Keith M
  surname: Channon
  fullname: Channon, Keith M
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
– sequence: 10
  givenname: Shoumo
  surname: Bhattacharya
  fullname: Bhattacharya, Shoumo
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
– sequence: 11
  givenname: Gillian
  surname: Douglas
  fullname: Douglas, Gillian
  email: gillian.douglas@cardiov.ox.ac.uk, gillian.douglas@cardiov.ox.ac.uk
  organization: Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK. gillian.douglas@cardiov.ox.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39088185$$D View this record in MEDLINE/PubMed
BookMark eNo9ULlOxDAQtRCIPeAHKJBLGoPPxC7RiktaRAO15TiTVSBxQpxI7N_jPaAaad4xb94CnYYuAEJXjN4ySvO7yBiXmlAuCaXCGKJO0JypXBAjMn2K5tRknGjNzAwtYvykNMm0OEczYWhaazVH69dpdBsIEOuIu4Ad9l3bN_CD226KgHfQWHtcOP-1GboplLjY4liPQGIPvq4SFibfgIsQL9BZ5ZoIl8e5RB-PD--rZ7J-e3pZ3a-J51yPxORMe6Ez6RiTQjGRF7mh3BkhhZYZ0Cq9VJSwz5tRVeaFAuFLXXmt8oKLJbo5-PZD9z1BHG1bRw9N4wKk1FZQnRmVaSkTlR-ofuhiHKCy_VC3bthaRu2uRXto0aaTdt-iVUl0ffSfihbKf8lfbeIXA2Ft8Q
Cites_doi 10.1371/journal.pone.0060216
10.1371/journal.pone.0028534
10.1161/CIRCRESAHA.119.316461
10.1073/pnas.1016086108
10.1016/j.atherosclerosis.2011.11.024
10.1074/jbc.M505368200
10.1002/iub.2421
10.1016/j.atherosclerosis.2011.05.043
10.1002/emmm.201201374
10.1172/JCI83136
10.1007/978-1-4939-8831-0_8
10.1101/393421
10.1056/NEJMoa1001689
10.1161/ATVBAHA.111.234872
10.1038/ncomms7354
10.1161/CIRCULATIONAHA.110.984146
10.1161/ATVBAHA.110.213215
10.1371/journal.pgen.1004828
10.1016/j.ahj.2007.11.018
10.1073/pnas.0403506101
10.1161/CIRCULATIONAHA.108.793869
10.4049/jimmunol.202.Supp.187.22
10.2337/db10-0778
10.1172/JCI32057
10.1161/ATVBAHA.111.243519
10.1161/01.CIR.0000054781.50889.0C
10.4049/jimmunol.180.6.4273
10.1161/ATVBAHA.110.205617
ContentType Journal Article
Copyright 2024. The Author(s).
Copyright_xml – notice: 2024. The Author(s).
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1007/s11248-024-00399-5
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1573-9368
ExternalDocumentID 10_1007_s11248_024_00399_5
39088185
Genre Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/15/34/31300
– fundername: BHF Centre of Research Excellence, Oxford
  grantid: RE/13/1/30181
– fundername: Wellcome Trust
  grantid: 090532/Z/09/Z
– fundername: British Heart Foundation
  grantid: CH/09/003/26631
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67N
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BENPR
BGNMA
BHPHI
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDH
EIOEI
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
M4Y
M7P
MA-
NB0
NPM
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RIG
ROL
RPX
RRX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
YLTOR
Z45
Z7S
Z7U
Z7V
Z7W
Z7Y
Z82
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8V
Z91
ZMTXR
ZOVNA
~A9
~KM
AAYXX
ACIPQ
CITATION
7X8
ID FETCH-LOGICAL-c228t-9718c3864a11435137b7902a9343846e0f024bde00100605d7b5e3cd8fc857b23
ISSN 0962-8819
1573-9368
IngestDate Sat Oct 26 04:31:07 EDT 2024
Thu Sep 26 20:57:43 EDT 2024
Sat Nov 02 12:08:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Regression
3Rs
Abcg1
Atherosclerosis
Site directed mutagenesis
Language English
License 2024. The Author(s).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-9718c3864a11435137b7902a9343846e0f024bde00100605d7b5e3cd8fc857b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1007/s11248-024-00399-5
PMID 39088185
PQID 3086956844
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3086956844
crossref_primary_10_1007_s11248_024_00399_5
pubmed_primary_39088185
PublicationCentury 2000
PublicationDate 2024-Aug-01
2024-08-01
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Transgenic research
PublicationTitleAlternate Transgenic Res
PublicationYear 2024
References 399_CR13
M Sharma (399_CR21) 2020; 127
X Wang (399_CR27) 2007; 117
D Sag (399_CR19) 2019; 202
AJ Wojcik (399_CR28) 2008; 180
L Cardilo-Reis (399_CR1) 2012; 4
B Davies (399_CR3) 2013; 8
J Schou (399_CR20) 2012; 32
S Parathath (399_CR15) 2011; 60
JE Feig (399_CR6) 2011; 123
HD Lieu (399_CR10) 2003; 107
I Meurs (399_CR11) 2012; 221
JE Feig (399_CR8) 2011; 6
D Sag (399_CR18) 2015; 6
Y Xu (399_CR29) 2011; 219
M Olivier (399_CR14) 2012; 32
N Wang (399_CR26) 2004; 101
AV Khera (399_CR9) 2011; 364
L Yvan-Charvet (399_CR30) 2008; 118
Y Du (399_CR5) 2019; 1874
A Rafiei (399_CR16) 2021; 73
N Terasaka (399_CR23) 2010; 30
HR Underhill (399_CR24) 2008; 155
EJ Tarling (399_CR22) 2010; 30
AM Vaughan (399_CR25) 2005; 280
JE Feig (399_CR7) 2011; 108
HY Cheng (399_CR2) 2016; 126
L Davison (399_CR4) 2018
SA Ramsey (399_CR17) 2014; 10
References_xml – volume: 8
  start-page: e60216
  year: 2013
  ident: 399_CR3
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0060216
  contributor:
    fullname: B Davies
– volume: 6
  start-page: e28534
  year: 2011
  ident: 399_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028534
  contributor:
    fullname: JE Feig
– volume: 127
  start-page: 335
  year: 2020
  ident: 399_CR21
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.119.316461
  contributor:
    fullname: M Sharma
– volume: 108
  start-page: 7166
  year: 2011
  ident: 399_CR7
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1016086108
  contributor:
    fullname: JE Feig
– volume: 221
  start-page: 41
  year: 2012
  ident: 399_CR11
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2011.11.024
  contributor:
    fullname: I Meurs
– volume: 280
  start-page: 30150
  issue: 34
  year: 2005
  ident: 399_CR25
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M505368200
  contributor:
    fullname: AM Vaughan
– volume: 73
  start-page: 223
  year: 2021
  ident: 399_CR16
  publication-title: IUBMB Life
  doi: 10.1002/iub.2421
  contributor:
    fullname: A Rafiei
– volume: 219
  start-page: 648
  year: 2011
  ident: 399_CR29
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2011.05.043
  contributor:
    fullname: Y Xu
– volume: 4
  start-page: 1072
  year: 2012
  ident: 399_CR1
  publication-title: EMBO Mol Med
  doi: 10.1002/emmm.201201374
  contributor:
    fullname: L Cardilo-Reis
– volume: 126
  start-page: 3236
  year: 2016
  ident: 399_CR2
  publication-title: J Clin Invest
  doi: 10.1172/JCI83136
  contributor:
    fullname: HY Cheng
– volume: 1874
  start-page: 139
  year: 2019
  ident: 399_CR5
  publication-title: Methods Mol Biol (clifton NJ)
  doi: 10.1007/978-1-4939-8831-0_8
  contributor:
    fullname: Y Du
– year: 2018
  ident: 399_CR4
  publication-title: BioRxiv
  doi: 10.1101/393421
  contributor:
    fullname: L Davison
– volume: 364
  start-page: 127
  year: 2011
  ident: 399_CR9
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1001689
  contributor:
    fullname: AV Khera
– volume: 32
  start-page: 506
  year: 2012
  ident: 399_CR20
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.111.234872
  contributor:
    fullname: J Schou
– volume: 6
  start-page: 6354
  year: 2015
  ident: 399_CR18
  publication-title: Nat Commun
  doi: 10.1038/ncomms7354
  contributor:
    fullname: D Sag
– volume: 123
  start-page: 989
  year: 2011
  ident: 399_CR6
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.984146
  contributor:
    fullname: JE Feig
– volume: 30
  start-page: 2219
  year: 2010
  ident: 399_CR23
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.110.213215
  contributor:
    fullname: N Terasaka
– volume: 10
  start-page: e1004828
  year: 2014
  ident: 399_CR17
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004828
  contributor:
    fullname: SA Ramsey
– ident: 399_CR13
– volume: 155
  start-page: 584
  year: 2008
  ident: 399_CR24
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2007.11.018
  contributor:
    fullname: HR Underhill
– volume: 101
  start-page: 9774
  year: 2004
  ident: 399_CR26
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0403506101
  contributor:
    fullname: N Wang
– volume: 118
  start-page: 1837
  year: 2008
  ident: 399_CR30
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.793869
  contributor:
    fullname: L Yvan-Charvet
– volume: 202
  start-page: 187.22
  year: 2019
  ident: 399_CR19
  publication-title: J Immunol
  doi: 10.4049/jimmunol.202.Supp.187.22
  contributor:
    fullname: D Sag
– volume: 60
  start-page: 1759
  year: 2011
  ident: 399_CR15
  publication-title: Diabetes
  doi: 10.2337/db10-0778
  contributor:
    fullname: S Parathath
– volume: 117
  start-page: 2216
  year: 2007
  ident: 399_CR27
  publication-title: J Clin Investig
  doi: 10.1172/JCI32057
  contributor:
    fullname: X Wang
– volume: 32
  start-page: 2223
  year: 2012
  ident: 399_CR14
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.111.243519
  contributor:
    fullname: M Olivier
– volume: 107
  start-page: 1315
  year: 2003
  ident: 399_CR10
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000054781.50889.0C
  contributor:
    fullname: HD Lieu
– volume: 180
  start-page: 4273
  year: 2008
  ident: 399_CR28
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.6.4273
  contributor:
    fullname: AJ Wojcik
– volume: 30
  start-page: 1174
  year: 2010
  ident: 399_CR22
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.110.205617
  contributor:
    fullname: EJ Tarling
SSID ssj0010083
Score 2.4421346
Snippet Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and...
Abstract Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
Title Mutagenesis on a complex mouse genetic background by site-specific nucleases
URI https://www.ncbi.nlm.nih.gov/pubmed/39088185
https://www.proquest.com/docview/3086956844
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9UwFA_uDkEfRKfO6xcRfLtE2iZZ08fNdVykTtA72VtJ0hSv007uB3j_-52T5radQ5gPvpQSaELPrz35nZwvQt7WPLZxljlWgQHEhEkrhjyZCWkVbFhKc475ztMv6em5Os5F3rdV7Mf-K9IwBlhj5uw_oN1NCgNwD5jDFVCH661w_7hegYoABTb3jgDdBo273xO08R12TMa0xYnR9gIzOhpPQNGFzDDpEgOHJg3WOIbdbTlkrn5Tg6d9yefBEVioVNBqmyPXfNc_531w78L9qD09Lda2O7z_rJffDDB2r4i_ztFtMNf9GezxYrONcm5bSg9PJhLRxcV1yjTlLONt25x37ubYDfUdhXRmIB0wFc4YAYFist-stg7600_lyVlRlLP8fLZDdhNQM3JEdg_zD9Oi8yIhv_T1csOaIWmqTZ38c43rxOQv1oZnHbOH5EEwF-hhi_Mjcsc1e-Ru20B0s0fuD8pJPibFAHt62VBNA_bUY08D9rTHnpoNvYY97bB_Qs5O8tn7KQvdMphNErViGbAMy9WB0DFy4JinJs2iRGccfjlx4KIaXtZUzssFjNgqNdJxW6naKpmahD8lo-aycc8IVbWslUsjJzMpwKBXwsSZVYJXkaucVWMy2Yqq_NUWRSn78tco2BLWKr1gSzkmb7bSLEF3oUNKNw7eu-RgT2O6qhBjst-KuZuPYwAekMnnt3j6BbnXf38vyWi1WLtXZGdZrV-HT-IKVdBnaw
link.rule.ids 315,782,786,27935,27936
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutagenesis+on+a+complex+mouse+genetic+background+by+site-specific+nucleases&rft.jtitle=Transgenic+research&rft.au=Davies%2C+Benjamin&rft.au=Trelfa%2C+Lucy&rft.au=Rashbrook%2C+Victoria+S&rft.au=Drydale%2C+Edward&rft.date=2024-08-01&rft.issn=1573-9368&rft.eissn=1573-9368&rft_id=info:doi/10.1007%2Fs11248-024-00399-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8819&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8819&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8819&client=summon