Sentiment Analysis of Public Opinion Towards Tourism in Bangkalan Regency Using Naïve Bayes Method

Sentiment analysis is natural language processing (NLP) that uses text analysis to recognize and extract opinions in text. Analysis is used to convert unstructured information into more structured information, also to determine whether an object has a positive, negative, or neutral tendency, and is...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences Vol. 499; p. 1016
Main Authors: Fatah, Doni Abdul, Rochman, Eka Mala Sari, Setiawan, Wahyudi, Aulia, Ayussy Rahma, Kamil, Fajrul Ihsan, Su’ud, Ahmad
Format: Journal Article
Language:English
Published: EDP Sciences 01-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sentiment analysis is natural language processing (NLP) that uses text analysis to recognize and extract opinions in text. Analysis is used to convert unstructured information into more structured information, also to determine whether an object has a positive, negative, or neutral tendency, and is an effort to facilitate decision making for tourism managers as a recommendation in developing tourist attractions. In this study, opinions were conducted on tourism reviews in Bangkalan using the Naïve Bayes method. This method is a machine learning algorithm to classify text into concepts that are easy to understand and provide accurate results with high efficiency. This method is proven to provide excellent results with a high level of accuracy, especially for large data, but has some drawbacks, sensitive to feature selection. Thus, a feature selection process is needed to improve classification efficiency by reducing the amount of data analyzed, with the Information Gain feature selection method. The word weighting method uses TF-IDF, while the data used comes from google maps reviews taken through web scraping, where tourist visitors provide reviews and ratings of places that have been visited. However, the large number of reviews can make it difficult for tourist attractions managers to manage them, so the process of labeling the sentiment class of the review data obtained 3649 reviews, with 2583 positive, 275 negative, and 457 neutral. Based on the test results that have been carried out using the Information Gain threshold of 0.0001, 0.0003, and 0.0007 can improve the accuracy of the Naïve Bayes model, for the best test at threshold 0.0007, with an accuracy value of 78.68%, precision 80.44%, recall 82.59%, and f1-score 82.53%, from the test results it shows that the use of information gain feature selection and SMOTE technique has a fairly good performance in classifying public opinion sentiment data on tourism in Bangkalan Regency, meaning that tourism management is good seen from the results of visitor satisfaction sentiment.
AbstractList Sentiment analysis is natural language processing (NLP) that uses text analysis to recognize and extract opinions in text. Analysis is used to convert unstructured information into more structured information, also to determine whether an object has a positive, negative, or neutral tendency, and is an effort to facilitate decision making for tourism managers as a recommendation in developing tourist attractions. In this study, opinions were conducted on tourism reviews in Bangkalan using the Naïve Bayes method. This method is a machine learning algorithm to classify text into concepts that are easy to understand and provide accurate results with high efficiency. This method is proven to provide excellent results with a high level of accuracy, especially for large data, but has some drawbacks, sensitive to feature selection. Thus, a feature selection process is needed to improve classification efficiency by reducing the amount of data analyzed, with the Information Gain feature selection method. The word weighting method uses TF-IDF, while the data used comes from google maps reviews taken through web scraping, where tourist visitors provide reviews and ratings of places that have been visited. However, the large number of reviews can make it difficult for tourist attractions managers to manage them, so the process of labeling the sentiment class of the review data obtained 3649 reviews, with 2583 positive, 275 negative, and 457 neutral. Based on the test results that have been carried out using the Information Gain threshold of 0.0001, 0.0003, and 0.0007 can improve the accuracy of the Naïve Bayes model, for the best test at threshold 0.0007, with an accuracy value of 78.68%, precision 80.44%, recall 82.59%, and f1-score 82.53%, from the test results it shows that the use of information gain feature selection and SMOTE technique has a fairly good performance in classifying public opinion sentiment data on tourism in Bangkalan Regency, meaning that tourism management is good seen from the results of visitor satisfaction sentiment.
Author Kamil, Fajrul Ihsan
Aulia, Ayussy Rahma
Setiawan, Wahyudi
Su’ud, Ahmad
Fatah, Doni Abdul
Rochman, Eka Mala Sari
Author_xml – sequence: 1
  givenname: Doni Abdul
  surname: Fatah
  fullname: Fatah, Doni Abdul
– sequence: 2
  givenname: Eka Mala Sari
  surname: Rochman
  fullname: Rochman, Eka Mala Sari
– sequence: 3
  givenname: Wahyudi
  surname: Setiawan
  fullname: Setiawan, Wahyudi
– sequence: 4
  givenname: Ayussy Rahma
  surname: Aulia
  fullname: Aulia, Ayussy Rahma
– sequence: 5
  givenname: Fajrul Ihsan
  surname: Kamil
  fullname: Kamil, Fajrul Ihsan
– sequence: 6
  givenname: Ahmad
  surname: Su’ud
  fullname: Su’ud, Ahmad
BookMark eNpNkF1OAjEUhRuDiYjswIduAL2902lnHpH4Q4JiFJ4nnf5gcWjNFDSsykW4MUGJ8eWck3uT7-E7JZ0QgyXknMEFg5xd2izpGNwlAnJelsCAiSPSRRRywJBj598-If2UlgDAMC848C7Rzzas_WoXdBhUs00-0ejo46ZuvKbTNx98DHQWP1Rr0q43rU8r6gO9UmHxqhoV6JNd2KC3dJ58WNAH9fX5bnfvrU303q5fojkjx041yfYP3SPzm-vZ6G4wmd6OR8PJQCNKMbCiLkApA6UFUExLiXVeahSFk5aVKuegjSu1Qa1tngHTKEueGydQZM64rEfGv1wT1bJ6a_1KtdsqKl_9HGK7qFS79rqxlYOi5hZqlExymeuy0JKjyoQpMMvFnsV_WbqNKbXW_fEYVHvv1cF79d979g2rFHnX
Cites_doi 10.1007/s10489-015-0719-1
10.1007/s11042-022-13428-4
10.32664/smatika.v10i02.455
10.1007/s10994-022-06211-x
10.1007/s10994-022-06296-4
10.1109/ACCESS.2019.2905048
10.1007/s00521-021-05989-6
10.1186/s13673-017-0116-3
10.1007/s10489-012-0377-5
10.1007/s11831-021-09703-6
10.1007/s11222-023-10224-4
10.1007/s00521-018-3477-2
10.1007/s10462-011-9230-1
10.1007/s10994-013-5430-z
10.1007/s43681-022-00248-3
10.1007/s11063-018-9940-3
10.1007/s00521-022-07828-8
10.1186/s13673-019-0192-7
10.1007/s10489-021-03041-7
10.1007/s00521-016-2205-z
10.1007/s10994-006-6136-2
10.1007/s10462-020-09919-1
10.1007/s10055-022-00744-1
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1051/e3sconf/202449901016
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2267-1242
Editor Ma’arif, A.
Editor_xml – sequence: 1
  givenname: A.
  surname: Ma’arif
  fullname: Ma’arif, A.
ExternalDocumentID oai_doaj_org_article_f08b4e0b2717475c98c742a36d82356f
10_1051_e3sconf_202449901016
GroupedDBID 5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
L6V
LK5
M7R
M7S
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PTHSS
PYCSY
RED
RIG
ID FETCH-LOGICAL-c2276-e6b80aad09e00a1c772b59c268f7e19a540cdf9cd2cce5301c27945df6263fdf3
IEDL.DBID DOA
ISSN 2267-1242
IngestDate Tue Oct 22 14:52:42 EDT 2024
Thu Nov 21 22:30:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2276-e6b80aad09e00a1c772b59c268f7e19a540cdf9cd2cce5301c27945df6263fdf3
OpenAccessLink https://doaj.org/article/f08b4e0b2717475c98c742a36d82356f
ParticipantIDs doaj_primary_oai_doaj_org_article_f08b4e0b2717475c98c742a36d82356f
crossref_primary_10_1051_e3sconf_202449901016
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle E3S web of conferences
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Asbee (R32) 2023; 27
Hong (R24) 2013; 38
Zhou (R4) 2019; 7
Fatah (R16) 2023; 16
Chen (R29) 2019; 31
Kim (R23) 2019; 9
Xiang (R31) 2016; 44
Putri (R20) 2022; 5
Ardiyansyah (R17) 2018; VI
Nurhayati (R1) 2013; 53
Park (R33) 2014; 96
Dhar (R25) 2021; 54
Barro (R14) 2013; 1
R28
Redivo (R10) 2023; 33
R2
Guo (R27) 2019; 50
R3
R5
Chan (R21) 2023; 3
Khurana (R6) 2023; 82
Ruan (R9) 2022; 34
Langseth (R13) 2006; 63
Aggarwal (R8) 2022; 29
Vural (R30) 2017; 28
Li (R22) 2023; 112
De Diego (R18) 2022; 52
R15
Kotsiantis (R7) 2014; 42
Singh (R11) 2017; 7
Itoo (R12) 2021; 13
Fikri (R19) 2020; 10
Dai (R26) 2023; 35
References_xml – volume: 44
  start-page: 611
  issue: 3
  year: 2016
  ident: R31
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-015-0719-1
  contributor:
    fullname: Xiang
– volume: 82
  start-page: 3713
  issue: 3
  year: 2023
  ident: R6
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13428-4
  contributor:
    fullname: Khurana
– volume: 5
  start-page: 759
  year: 2022
  ident: R20
  publication-title: Prism. Pros. Semin. Nas. Mat.
  contributor:
    fullname: Putri
– volume: 10
  start-page: 71
  issue: 2
  year: 2020
  ident: R19
  publication-title: Smatika J.
  doi: 10.32664/smatika.v10i02.455
  contributor:
    fullname: Fikri
– volume: 112
  start-page: 1053
  issue: 3
  year: 2023
  ident: R22
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-022-06211-x
  contributor:
    fullname: Li
– volume: 13
  start-page: 1503
  issue: 4
  year: 2021
  ident: R12
  publication-title: Int. J. Inf. Technol.
  contributor:
    fullname: Itoo
– volume: 1
  start-page: 1
  issue: 1
  year: 2013
  ident: R14
  publication-title: J. Stat.
  contributor:
    fullname: Barro
– ident: R28
  doi: 10.1007/s10994-022-06296-4
– volume: 7
  start-page: 38856
  year: 2019
  ident: R4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905048
  contributor:
    fullname: Zhou
– ident: R3
– ident: R5
– volume: 34
  start-page: 2729
  issue: 4
  year: 2022
  ident: R9
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05989-6
  contributor:
    fullname: Ruan
– volume: 7
  start-page: 32
  issue: 1
  year: 2017
  ident: R11
  publication-title: Human-centric Comput. Inf. Sci.
  doi: 10.1186/s13673-017-0116-3
  contributor:
    fullname: Singh
– volume: 38
  start-page: 502
  issue: 4
  year: 2013
  ident: R24
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-012-0377-5
  contributor:
    fullname: Hong
– volume: 29
  start-page: 3531
  issue: 5
  year: 2022
  ident: R8
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09703-6
  contributor:
    fullname: Aggarwal
– volume: VI
  start-page: 20
  issue: 1
  year: 2018
  ident: R17
  publication-title: J. Khatulistiwa Inform.
  contributor:
    fullname: Ardiyansyah
– volume: 33
  start-page: 55
  issue: 2
  year: 2023
  ident: R10
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-023-10224-4
  contributor:
    fullname: Redivo
– volume: 31
  start-page: 6625
  issue: 10
  year: 2019
  ident: R29
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3477-2
  contributor:
    fullname: Chen
– volume: 42
  start-page: 157
  issue: 1
  year: 2014
  ident: R7
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9230-1
  contributor:
    fullname: Kotsiantis
– volume: 96
  start-page: 295
  issue: 3
  year: 2014
  ident: R33
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5430-z
  contributor:
    fullname: Park
– volume: 3
  start-page: 1381
  issue: 4
  year: 2023
  ident: R21
  publication-title: AI Ethics
  doi: 10.1007/s43681-022-00248-3
  contributor:
    fullname: Chan
– volume: 50
  start-page: 1503
  issue: 2
  year: 2019
  ident: R27
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-018-9940-3
  contributor:
    fullname: Guo
– volume: 35
  start-page: 1323
  issue: 2
  year: 2023
  ident: R26
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07828-8
  contributor:
    fullname: Dai
– volume: 9
  start-page: 30
  issue: 1
  year: 2019
  ident: R23
  publication-title: Human-centric Comput. Inf. Sci.
  doi: 10.1186/s13673-019-0192-7
  contributor:
    fullname: Kim
– volume: 52
  start-page: 12049
  issue: 10
  year: 2022
  ident: R18
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03041-7
  contributor:
    fullname: De Diego
– volume: 28
  start-page: 2581
  issue: 9
  year: 2017
  ident: R30
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2205-z
  contributor:
    fullname: Vural
– volume: 16
  start-page: 243
  year: 2023
  ident: R16
  publication-title: Tech. Rom. J. Appl. Sci. Technol.
  contributor:
    fullname: Fatah
– volume: 53
  start-page: 1689
  issue: 9
  year: 2013
  ident: R1
  publication-title: J. Chem. Inf. Model.
  contributor:
    fullname: Nurhayati
– ident: R2
– volume: 63
  start-page: 135
  issue: 2
  year: 2006
  ident: R13
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6136-2
  contributor:
    fullname: Langseth
– ident: R15
– volume: 54
  start-page: 3007
  issue: 4
  year: 2021
  ident: R25
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09919-1
  contributor:
    fullname: Dhar
– volume: 27
  start-page: 1391
  issue: 2
  year: 2023
  ident: R32
  publication-title: Virtual Real.
  doi: 10.1007/s10055-022-00744-1
  contributor:
    fullname: Asbee
SSID ssj0001258404
Score 2.2945364
Snippet Sentiment analysis is natural language processing (NLP) that uses text analysis to recognize and extract opinions in text. Analysis is used to convert...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 1016
SubjectTerms information gain
naïve bayes
sentiment analysis
tourism
Title Sentiment Analysis of Public Opinion Towards Tourism in Bangkalan Regency Using Naïve Bayes Method
URI https://doaj.org/article/f08b4e0b2717475c98c742a36d82356f
Volume 499
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwviVVFe8sAa1XFsxxkptOpCkWiR2CI_UYWUVoQi8av4Efwxzk5aurGw2lFkfZfL3fnuvkPomqWpz5w0ic-5S5gHWYAfpxOVFcbqVBFmQkZ3PM0nz_JuGGhyNqO-Qk1YQw_cANf3RGrmiKYQd7Ccm0IaiOZUJqykGRc-_n2J2AqmmtsVMKyErXvleNp3WQ0Bpg_BPmMhGUTCiPMtW7RF2R9ty-gA7bdOIb5pDnOIdlx1hLrD3x402GyVsD5GZhoqfMIyXlOK4IXHzQUcfljOK8Aaz2I9bI1bmkA8r_BAVS-voZQRP7rYcoljwQCeqO-vDwfbn67G93Gk9Al6Gg1nt-OknZWQGEpzkTihJVHKksIRolIDTrPmhaFC-tylhQLHzFgP-FNjHAetNhQ0kVsf2Gi89VkXdapF5U4RplLo3AgtMhbyxVxZ7rlLc2UBaCdoDyVr1MplQ4lRxlQ2T8sW5XIb5R4aBGg3zwZC67gAYi5bMZd_ifnsP15yjvbCwZoblAvUeX9buUu0W9vVVfx8fgC0SclS
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sentiment+Analysis+of+Public+Opinion+Towards+Tourism+in+Bangkalan+Regency+Using+Na%C3%AFve+Bayes+Method&rft.jtitle=E3S+web+of+conferences&rft.au=Fatah+Doni+Abdul&rft.au=Rochman+Eka+Mala+Sari&rft.au=Setiawan+Wahyudi&rft.au=Aulia+Ayussy+Rahma&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.eissn=2267-1242&rft.volume=499&rft.spage=01016&rft_id=info:doi/10.1051%2Fe3sconf%2F202449901016&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f08b4e0b2717475c98c742a36d82356f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon