Sentiment Analysis of Public Opinion Towards Tourism in Bangkalan Regency Using Naïve Bayes Method
Sentiment analysis is natural language processing (NLP) that uses text analysis to recognize and extract opinions in text. Analysis is used to convert unstructured information into more structured information, also to determine whether an object has a positive, negative, or neutral tendency, and is...
Saved in:
Published in: | E3S web of conferences Vol. 499; p. 1016 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
EDP Sciences
01-01-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Sentiment analysis is natural language processing (NLP) that uses text analysis to recognize and extract opinions in text. Analysis is used to convert unstructured information into more structured information, also to determine whether an object has a positive, negative, or neutral tendency, and is an effort to facilitate decision making for tourism managers as a recommendation in developing tourist attractions. In this study, opinions were conducted on tourism reviews in Bangkalan using the Naïve Bayes method. This method is a machine learning algorithm to classify text into concepts that are easy to understand and provide accurate results with high efficiency. This method is proven to provide excellent results with a high level of accuracy, especially for large data, but has some drawbacks, sensitive to feature selection. Thus, a feature selection process is needed to improve classification efficiency by reducing the amount of data analyzed, with the Information Gain feature selection method. The word weighting method uses TF-IDF, while the data used comes from google maps reviews taken through web scraping, where tourist visitors provide reviews and ratings of places that have been visited. However, the large number of reviews can make it difficult for tourist attractions managers to manage them, so the process of labeling the sentiment class of the review data obtained 3649 reviews, with 2583 positive, 275 negative, and 457 neutral. Based on the test results that have been carried out using the Information Gain threshold of 0.0001, 0.0003, and 0.0007 can improve the accuracy of the Naïve Bayes model, for the best test at threshold 0.0007, with an accuracy value of 78.68%, precision 80.44%, recall 82.59%, and f1-score 82.53%, from the test results it shows that the use of information gain feature selection and SMOTE technique has a fairly good performance in classifying public opinion sentiment data on tourism in Bangkalan Regency, meaning that tourism management is good seen from the results of visitor satisfaction sentiment. |
---|---|
AbstractList | Sentiment analysis is natural language processing (NLP) that uses text analysis to recognize and extract opinions in text. Analysis is used to convert unstructured information into more structured information, also to determine whether an object has a positive, negative, or neutral tendency, and is an effort to facilitate decision making for tourism managers as a recommendation in developing tourist attractions. In this study, opinions were conducted on tourism reviews in Bangkalan using the Naïve Bayes method. This method is a machine learning algorithm to classify text into concepts that are easy to understand and provide accurate results with high efficiency. This method is proven to provide excellent results with a high level of accuracy, especially for large data, but has some drawbacks, sensitive to feature selection. Thus, a feature selection process is needed to improve classification efficiency by reducing the amount of data analyzed, with the Information Gain feature selection method. The word weighting method uses TF-IDF, while the data used comes from google maps reviews taken through web scraping, where tourist visitors provide reviews and ratings of places that have been visited. However, the large number of reviews can make it difficult for tourist attractions managers to manage them, so the process of labeling the sentiment class of the review data obtained 3649 reviews, with 2583 positive, 275 negative, and 457 neutral. Based on the test results that have been carried out using the Information Gain threshold of 0.0001, 0.0003, and 0.0007 can improve the accuracy of the Naïve Bayes model, for the best test at threshold 0.0007, with an accuracy value of 78.68%, precision 80.44%, recall 82.59%, and f1-score 82.53%, from the test results it shows that the use of information gain feature selection and SMOTE technique has a fairly good performance in classifying public opinion sentiment data on tourism in Bangkalan Regency, meaning that tourism management is good seen from the results of visitor satisfaction sentiment. |
Author | Kamil, Fajrul Ihsan Aulia, Ayussy Rahma Setiawan, Wahyudi Su’ud, Ahmad Fatah, Doni Abdul Rochman, Eka Mala Sari |
Author_xml | – sequence: 1 givenname: Doni Abdul surname: Fatah fullname: Fatah, Doni Abdul – sequence: 2 givenname: Eka Mala Sari surname: Rochman fullname: Rochman, Eka Mala Sari – sequence: 3 givenname: Wahyudi surname: Setiawan fullname: Setiawan, Wahyudi – sequence: 4 givenname: Ayussy Rahma surname: Aulia fullname: Aulia, Ayussy Rahma – sequence: 5 givenname: Fajrul Ihsan surname: Kamil fullname: Kamil, Fajrul Ihsan – sequence: 6 givenname: Ahmad surname: Su’ud fullname: Su’ud, Ahmad |
BookMark | eNpNkF1OAjEUhRuDiYjswIduAL2902lnHpH4Q4JiFJ4nnf5gcWjNFDSsykW4MUGJ8eWck3uT7-E7JZ0QgyXknMEFg5xd2izpGNwlAnJelsCAiSPSRRRywJBj598-If2UlgDAMC848C7Rzzas_WoXdBhUs00-0ejo46ZuvKbTNx98DHQWP1Rr0q43rU8r6gO9UmHxqhoV6JNd2KC3dJ58WNAH9fX5bnfvrU303q5fojkjx041yfYP3SPzm-vZ6G4wmd6OR8PJQCNKMbCiLkApA6UFUExLiXVeahSFk5aVKuegjSu1Qa1tngHTKEueGydQZM64rEfGv1wT1bJ6a_1KtdsqKl_9HGK7qFS79rqxlYOi5hZqlExymeuy0JKjyoQpMMvFnsV_WbqNKbXW_fEYVHvv1cF79d979g2rFHnX |
Cites_doi | 10.1007/s10489-015-0719-1 10.1007/s11042-022-13428-4 10.32664/smatika.v10i02.455 10.1007/s10994-022-06211-x 10.1007/s10994-022-06296-4 10.1109/ACCESS.2019.2905048 10.1007/s00521-021-05989-6 10.1186/s13673-017-0116-3 10.1007/s10489-012-0377-5 10.1007/s11831-021-09703-6 10.1007/s11222-023-10224-4 10.1007/s00521-018-3477-2 10.1007/s10462-011-9230-1 10.1007/s10994-013-5430-z 10.1007/s43681-022-00248-3 10.1007/s11063-018-9940-3 10.1007/s00521-022-07828-8 10.1186/s13673-019-0192-7 10.1007/s10489-021-03041-7 10.1007/s00521-016-2205-z 10.1007/s10994-006-6136-2 10.1007/s10462-020-09919-1 10.1007/s10055-022-00744-1 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1051/e3sconf/202449901016 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2267-1242 |
Editor | Ma’arif, A. |
Editor_xml | – sequence: 1 givenname: A. surname: Ma’arif fullname: Ma’arif, A. |
ExternalDocumentID | oai_doaj_org_article_f08b4e0b2717475c98c742a36d82356f 10_1051_e3sconf_202449901016 |
GroupedDBID | 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S M~E OK1 PATMY PCBAR PIMPY PROAC PTHSS PYCSY RED RIG |
ID | FETCH-LOGICAL-c2276-e6b80aad09e00a1c772b59c268f7e19a540cdf9cd2cce5301c27945df6263fdf3 |
IEDL.DBID | DOA |
ISSN | 2267-1242 |
IngestDate | Tue Oct 22 14:52:42 EDT 2024 Thu Nov 21 22:30:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2276-e6b80aad09e00a1c772b59c268f7e19a540cdf9cd2cce5301c27945df6263fdf3 |
OpenAccessLink | https://doaj.org/article/f08b4e0b2717475c98c742a36d82356f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f08b4e0b2717475c98c742a36d82356f crossref_primary_10_1051_e3sconf_202449901016 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | E3S web of conferences |
PublicationYear | 2024 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Asbee (R32) 2023; 27 Hong (R24) 2013; 38 Zhou (R4) 2019; 7 Fatah (R16) 2023; 16 Chen (R29) 2019; 31 Kim (R23) 2019; 9 Xiang (R31) 2016; 44 Putri (R20) 2022; 5 Ardiyansyah (R17) 2018; VI Nurhayati (R1) 2013; 53 Park (R33) 2014; 96 Dhar (R25) 2021; 54 Barro (R14) 2013; 1 R28 Redivo (R10) 2023; 33 R2 Guo (R27) 2019; 50 R3 R5 Chan (R21) 2023; 3 Khurana (R6) 2023; 82 Ruan (R9) 2022; 34 Langseth (R13) 2006; 63 Aggarwal (R8) 2022; 29 Vural (R30) 2017; 28 Li (R22) 2023; 112 De Diego (R18) 2022; 52 R15 Kotsiantis (R7) 2014; 42 Singh (R11) 2017; 7 Itoo (R12) 2021; 13 Fikri (R19) 2020; 10 Dai (R26) 2023; 35 |
References_xml | – volume: 44 start-page: 611 issue: 3 year: 2016 ident: R31 publication-title: Appl. Intell. doi: 10.1007/s10489-015-0719-1 contributor: fullname: Xiang – volume: 82 start-page: 3713 issue: 3 year: 2023 ident: R6 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13428-4 contributor: fullname: Khurana – volume: 5 start-page: 759 year: 2022 ident: R20 publication-title: Prism. Pros. Semin. Nas. Mat. contributor: fullname: Putri – volume: 10 start-page: 71 issue: 2 year: 2020 ident: R19 publication-title: Smatika J. doi: 10.32664/smatika.v10i02.455 contributor: fullname: Fikri – volume: 112 start-page: 1053 issue: 3 year: 2023 ident: R22 publication-title: Mach. Learn. doi: 10.1007/s10994-022-06211-x contributor: fullname: Li – volume: 13 start-page: 1503 issue: 4 year: 2021 ident: R12 publication-title: Int. J. Inf. Technol. contributor: fullname: Itoo – volume: 1 start-page: 1 issue: 1 year: 2013 ident: R14 publication-title: J. Stat. contributor: fullname: Barro – ident: R28 doi: 10.1007/s10994-022-06296-4 – volume: 7 start-page: 38856 year: 2019 ident: R4 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905048 contributor: fullname: Zhou – ident: R3 – ident: R5 – volume: 34 start-page: 2729 issue: 4 year: 2022 ident: R9 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05989-6 contributor: fullname: Ruan – volume: 7 start-page: 32 issue: 1 year: 2017 ident: R11 publication-title: Human-centric Comput. Inf. Sci. doi: 10.1186/s13673-017-0116-3 contributor: fullname: Singh – volume: 38 start-page: 502 issue: 4 year: 2013 ident: R24 publication-title: Appl. Intell. doi: 10.1007/s10489-012-0377-5 contributor: fullname: Hong – volume: 29 start-page: 3531 issue: 5 year: 2022 ident: R8 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09703-6 contributor: fullname: Aggarwal – volume: VI start-page: 20 issue: 1 year: 2018 ident: R17 publication-title: J. Khatulistiwa Inform. contributor: fullname: Ardiyansyah – volume: 33 start-page: 55 issue: 2 year: 2023 ident: R10 publication-title: Stat. Comput. doi: 10.1007/s11222-023-10224-4 contributor: fullname: Redivo – volume: 31 start-page: 6625 issue: 10 year: 2019 ident: R29 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3477-2 contributor: fullname: Chen – volume: 42 start-page: 157 issue: 1 year: 2014 ident: R7 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9230-1 contributor: fullname: Kotsiantis – volume: 96 start-page: 295 issue: 3 year: 2014 ident: R33 publication-title: Mach. Learn. doi: 10.1007/s10994-013-5430-z contributor: fullname: Park – volume: 3 start-page: 1381 issue: 4 year: 2023 ident: R21 publication-title: AI Ethics doi: 10.1007/s43681-022-00248-3 contributor: fullname: Chan – volume: 50 start-page: 1503 issue: 2 year: 2019 ident: R27 publication-title: Neural Process. Lett. doi: 10.1007/s11063-018-9940-3 contributor: fullname: Guo – volume: 35 start-page: 1323 issue: 2 year: 2023 ident: R26 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07828-8 contributor: fullname: Dai – volume: 9 start-page: 30 issue: 1 year: 2019 ident: R23 publication-title: Human-centric Comput. Inf. Sci. doi: 10.1186/s13673-019-0192-7 contributor: fullname: Kim – volume: 52 start-page: 12049 issue: 10 year: 2022 ident: R18 publication-title: Appl. Intell. doi: 10.1007/s10489-021-03041-7 contributor: fullname: De Diego – volume: 28 start-page: 2581 issue: 9 year: 2017 ident: R30 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2205-z contributor: fullname: Vural – volume: 16 start-page: 243 year: 2023 ident: R16 publication-title: Tech. Rom. J. Appl. Sci. Technol. contributor: fullname: Fatah – volume: 53 start-page: 1689 issue: 9 year: 2013 ident: R1 publication-title: J. Chem. Inf. Model. contributor: fullname: Nurhayati – ident: R2 – volume: 63 start-page: 135 issue: 2 year: 2006 ident: R13 publication-title: Mach. Learn. doi: 10.1007/s10994-006-6136-2 contributor: fullname: Langseth – ident: R15 – volume: 54 start-page: 3007 issue: 4 year: 2021 ident: R25 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09919-1 contributor: fullname: Dhar – volume: 27 start-page: 1391 issue: 2 year: 2023 ident: R32 publication-title: Virtual Real. doi: 10.1007/s10055-022-00744-1 contributor: fullname: Asbee |
SSID | ssj0001258404 |
Score | 2.2945364 |
Snippet | Sentiment analysis is natural language processing (NLP) that uses text analysis to recognize and extract opinions in text. Analysis is used to convert... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1016 |
SubjectTerms | information gain naïve bayes sentiment analysis tourism |
Title | Sentiment Analysis of Public Opinion Towards Tourism in Bangkalan Regency Using Naïve Bayes Method |
URI | https://doaj.org/article/f08b4e0b2717475c98c742a36d82356f |
Volume | 499 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwviVVFe8sAa1XFsxxkptOpCkWiR2CI_UYWUVoQi8av4Efwxzk5aurGw2lFkfZfL3fnuvkPomqWpz5w0ic-5S5gHWYAfpxOVFcbqVBFmQkZ3PM0nz_JuGGhyNqO-Qk1YQw_cANf3RGrmiKYQd7Ccm0IaiOZUJqykGRc-_n2J2AqmmtsVMKyErXvleNp3WQ0Bpg_BPmMhGUTCiPMtW7RF2R9ty-gA7bdOIb5pDnOIdlx1hLrD3x402GyVsD5GZhoqfMIyXlOK4IXHzQUcfljOK8Aaz2I9bI1bmkA8r_BAVS-voZQRP7rYcoljwQCeqO-vDwfbn67G93Gk9Al6Gg1nt-OknZWQGEpzkTihJVHKksIRolIDTrPmhaFC-tylhQLHzFgP-FNjHAetNhQ0kVsf2Gi89VkXdapF5U4RplLo3AgtMhbyxVxZ7rlLc2UBaCdoDyVr1MplQ4lRxlQ2T8sW5XIb5R4aBGg3zwZC67gAYi5bMZd_ifnsP15yjvbCwZoblAvUeX9buUu0W9vVVfx8fgC0SclS |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sentiment+Analysis+of+Public+Opinion+Towards+Tourism+in+Bangkalan+Regency+Using+Na%C3%AFve+Bayes+Method&rft.jtitle=E3S+web+of+conferences&rft.au=Fatah+Doni+Abdul&rft.au=Rochman+Eka+Mala+Sari&rft.au=Setiawan+Wahyudi&rft.au=Aulia+Ayussy+Rahma&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.eissn=2267-1242&rft.volume=499&rft.spage=01016&rft_id=info:doi/10.1051%2Fe3sconf%2F202449901016&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f08b4e0b2717475c98c742a36d82356f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon |