Employing Feature Selection Algorithms to Determine the Immune State of a Mouse Model of Rheumatoid Arthritis
The immune response is a dynamic process by which the body determines whether an antigen is self or nonself. The state of this dynamic process is defined by the relative balance and population of inflammatory and regulatory actors which comprise this decision making process. The goal of immunotherap...
Saved in:
Published in: | IEEE journal of biomedical and health informatics Vol. 28; no. 4; pp. 1906 - 1916 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01-04-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The immune response is a dynamic process by which the body determines whether an antigen is self or nonself. The state of this dynamic process is defined by the relative balance and population of inflammatory and regulatory actors which comprise this decision making process. The goal of immunotherapy as applied to, e.g. Rheumatoid Arthritis (RA), then, is to bias the immune state in favor of the regulatory actors - thereby shutting down autoimmune pathways in the response. While there are several known approaches to immunotherapy, the effectiveness of the therapy will depend on how this intervention alters the evolution of this state. Unfortunately, this process is determined not only by the dynamics of the process, but the state of the system at the time of intervention - a state which is difficult if not impossible to determine prior to application of the therapy. To identify such states we consider a mouse model of RA (Collagen-Induced Arthritis (CIA)) immunotherapy; collect high dimensional data on T cell markers and populations of mice after treatment with a recently developed immunotherapy for CIA; and use feature selection algorithms in order to select a lower dimensional subset of this data which can be used to predict both the full set of T cell markers and populations, along with the efficacy of immunotherapy treatment. |
---|---|
AbstractList | The immune response is a dynamic process by which the body determines whether an antigen is self or nonself. The state of this dynamic process is defined by the relative balance and population of inflammatory and regulatory actors which comprise this decision making process. The goal of immunotherapy as applied to, e.g. Rheumatoid Arthritis (RA), then, is to bias the immune state in favor of the regulatory actors - thereby shutting down autoimmune pathways in the response. While there are several known approaches to immunotherapy, the effectiveness of the therapy will depend on how this intervention alters the evolution of this state. Unfortunately, this process is determined not only by the dynamics of the process, but the state of the system at the time of intervention - a state which is difficult if not impossible to determine prior to application of the therapy. To identify such states we consider a mouse model of RA (Collagen-Induced Arthritis (CIA)) immunotherapy; collect high dimensional data on T cell markers and populations of mice after treatment with a recently developed immunotherapy for CIA; and use feature selection algorithms in order to select a lower dimensional subset of this data which can be used to predict both the full set of T cell markers and populations, along with the efficacy of immunotherapy treatment. |
Author | Mangal, Joslyn L. Peet, Matthew M. Colbert, Brendon K. Talitckii, Aleksandr Acharya, Abhinav P. |
Author_xml | – sequence: 1 givenname: Aleksandr orcidid: 0000-0002-4214-338X surname: Talitckii fullname: Talitckii, Aleksandr organization: School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA – sequence: 2 givenname: Joslyn L. orcidid: 0000-0003-0774-1066 surname: Mangal fullname: Mangal, Joslyn L. organization: School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA – sequence: 3 givenname: Brendon K. orcidid: 0000-0003-1580-555X surname: Colbert fullname: Colbert, Brendon K. organization: School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA – sequence: 4 givenname: Abhinav P. orcidid: 0000-0002-9361-2764 surname: Acharya fullname: Acharya, Abhinav P. organization: School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA – sequence: 5 givenname: Matthew M. orcidid: 0000-0001-9360-6738 surname: Peet fullname: Peet, Matthew M. organization: School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA |
BookMark | eNo1kF9PwjAUxRuDiYh8AN-a-DzsH1baR0QQDMZE9Hkp3R0bWVdsuwe-vVvA-3DvycnJucnvHg0a1wBCj5RMKCXq-f1lvZkwwviEczZjnNygIaNCJowROfjXVE3v0DiEI-lGdpYSQ2SX9lS7c9Uc8Ap0bD3gHdRgYuUaPK8PzlextAFHh18hgrdVAziWgDfWtp3cRR0BuwJr_OHaAN3Ooe6NrxJaq6Orcjz3sex6qvCAbgtdBxhf7wj9rJbfi3Wy_XzbLObbxDCWxiTXFHJp5H4vlRRaEE2myogpgJEMDJ8xsyfEpEXBQTMlQEguUqVYYWRujOIj9HTpPXn320KI2dG1vuleZpxwLqhKU9al6CVlvAvBQ5GdfGW1P2eUZD3YrAeb9WCzK1j-Bz6wbgU |
Cites_doi | 10.1038/s41598-017-17869-y 10.1016/j.immuni.2008.12.003 10.1186/1471-2105-7-197 10.3233/ida-1997-1302 10.1109/CIBCB.2004.1393930 10.1126/sciadv.aax8429 10.1109/72.298224 10.1038/ni0511-369 10.1038/nri.2016.125 10.1016/j.compeleceng.2013.11.024 10.1002/pmic.200400857 10.1016/j.biomaterials.2021.121079 10.1023/A:1012487302797 10.1016/j.biomaterials.2022.121973 10.1109/ICSEM.2010.14 10.1002/jbm.a.37539 10.1002/widm.1157 10.1039/D2BM00415A 10.1016/j.procs.2015.06.035 10.1016/j.biomaterials.2023.122204 10.2307/2530946 10.20900/immunometab20210032 10.1039/D0TB00790K 10.1007/s13346-023-01333-8 10.1016/j.jconrel.2017.05.007 10.1002/adfm.201604366 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 |
DOI | 10.1109/JBHI.2023.3327230 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 1916 |
ExternalDocumentID | 10_1109_JBHI_2023_3327230 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 6IL 97E AAJGR AASAJ AAYXX ABQJQ ACIWK ACPRK ADZIZ AENEX AFRAH AKJIK ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CITATION EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RIG RNS 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 |
ID | FETCH-LOGICAL-c225t-da1ed8c8bb8986a60a049c64eec82ec372cb00c5ff3ea296e68365992fc8dcc93 |
ISSN | 2168-2194 |
IngestDate | Thu Oct 10 16:04:14 EDT 2024 Fri Aug 23 02:45:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c225t-da1ed8c8bb8986a60a049c64eec82ec372cb00c5ff3ea296e68365992fc8dcc93 |
ORCID | 0000-0002-4214-338X 0000-0003-0774-1066 0000-0003-1580-555X 0000-0001-9360-6738 0000-0002-9361-2764 |
PQID | 3033619552 |
PQPubID | 85417 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3033619552 crossref_primary_10_1109_JBHI_2023_3327230 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 Talitckii (ref29) 2022 ref1 ref19 ref18 ref24 ref26 ref25 ref20 ref22 ref21 Colbert (ref16) 2020; 21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 Guyon (ref23) 2004; 46 ref6 ref5 Aleksandr (ref17) 2023 |
References_xml | – volume: 21 start-page: 1691 issue: 45 year: 2020 ident: ref16 article-title: A convex parametrization of a new class of universal kernel functions publication-title: J. Mach. Learn. Res. contributor: fullname: Colbert – ident: ref3 doi: 10.1038/s41598-017-17869-y – ident: ref8 doi: 10.1016/j.immuni.2008.12.003 – ident: ref24 doi: 10.1186/1471-2105-7-197 – ident: ref19 doi: 10.3233/ida-1997-1302 – ident: ref25 doi: 10.1109/CIBCB.2004.1393930 – ident: ref1 doi: 10.1126/sciadv.aax8429 – ident: ref20 doi: 10.1109/72.298224 – ident: ref9 doi: 10.1038/ni0511-369 – year: 2023 ident: ref17 article-title: Efficient convex algorithms for universal kernel learning contributor: fullname: Aleksandr – ident: ref7 doi: 10.1038/nri.2016.125 – ident: ref18 doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref26 doi: 10.1002/pmic.200400857 – year: 2022 ident: ref29 article-title: Minimal immune and disease states contributor: fullname: Talitckii – ident: ref15 doi: 10.1016/j.biomaterials.2021.121079 – volume: 46 start-page: 389 year: 2004 ident: ref23 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 contributor: fullname: Guyon – ident: ref12 doi: 10.1016/j.biomaterials.2022.121973 – ident: ref22 doi: 10.1109/ICSEM.2010.14 – ident: ref11 doi: 10.1002/jbm.a.37539 – ident: ref28 doi: 10.1002/widm.1157 – ident: ref13 doi: 10.1039/D2BM00415A – ident: ref21 doi: 10.1016/j.procs.2015.06.035 – ident: ref5 doi: 10.1016/j.biomaterials.2023.122204 – ident: ref27 doi: 10.2307/2530946 – ident: ref6 doi: 10.20900/immunometab20210032 – ident: ref10 doi: 10.1039/D0TB00790K – ident: ref14 doi: 10.1007/s13346-023-01333-8 – ident: ref2 doi: 10.1016/j.jconrel.2017.05.007 – ident: ref4 doi: 10.1002/adfm.201604366 |
SSID | ssj0000816896 |
Score | 2.4554062 |
Snippet | The immune response is a dynamic process by which the body determines whether an antigen is self or nonself. The state of this dynamic process is defined by... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 1906 |
SubjectTerms | Algorithms Antigens Arthritis Autoantigens Decision making Defence mechanisms Feature selection Immune response Immune system Immunity Immunotherapy Inflammation Lymphocytes Lymphocytes T Populations Rheumatoid arthritis |
Title | Employing Feature Selection Algorithms to Determine the Immune State of a Mouse Model of Rheumatoid Arthritis |
URI | https://www.proquest.com/docview/3033619552 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpB2MvY5-sWzf0sKcVZ7YcK_Jj17pko-lgdaFvRpblJjS1R-0U-t_39GFFYWNsD3sxQTGxo_vpdHe6ux9CHxkYDVREEtY3LYOJlGXAa0GCUAhSpapUUhfSzs6nZ5fsOJtko9HA87kZ-6-ShjGQtaqc_Qdpux-FAfgMMocrSB2ufyV3Q-GrAgDKulPHA-ea6kaJ-XB11d4u-8WNbutwbDNhpMmgVIUi0hifpmhy3q47qcnStL36YyHXYN62y0pF9Be6GZJv2iq30W9EYQr7XTMCU3B5YBu19l6Sfa5cAXG9XNqCm-sO7nc5w3PeXPGVPaxY3TcHLlp91Kr-XL1BqFSsJF76gaomuzcx41JRhN_ZQjYb4CB-XsxQIreVOJFpfiD3-pmjC-pcD0enYLWZDn9_CKtoxUoiCpiJDLnyWHpjJGT-zkCYtwImnpoHK4r-fv_R7Vu_fZl9HSte-nEckymxB09bvb7PvhcnF6enRZ5d5jvoEQE1aasPXYRQU6Jogjn3wvZYHp7y-ZdnbBtW23aFNpbyZ-ip9XLwoYHnczSSzQv0eG7zOF6iG4dSbFGKHUrxBqW4b7FDKQaUYoNSrFGK2xpzrFGKNUrVwAal2KH0Fbo4yfKjWWCJPwIB20sfVDySFROsLFnKKKchBz9WUNAkghEp4ikRsFuIpK5jyUlKJWUxTdKU1IJVQqTxa7TbtI18g3DCo1DwuKo4-DkT8LXBHK0lq6eJZBLu3UOfhlkrfpr-LoX2i8O0UFNcqCku7BTvof1hXgu7nroCbMCYgkpLyNs_f_0OPdnAex_t9rdr-R7tdNX6gxb8A0W5pLU |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+Feature+Selection+Algorithms+to+Determine+the+Immune+State+of+a+Mouse+Model+of+Rheumatoid+Arthritis&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Talitckii%2C+Aleksandr&rft.au=Mangal%2C+Joslyn+L&rft.au=Colbert%2C+Brendon+K&rft.au=Acharya%2C+Abhinav+P&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=28&rft.issue=4&rft.spage=1906&rft_id=info:doi/10.1109%2FJBHI.2023.3327230&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |