Deep Feature-Based Classifiers for Fruit Fly Identification (Diptera: Tephritidae)

Fruit flies has a big biological and economic importance for the farming of different tropical and subtropical countries in the World. Specifically in Brazil, third largest fruit producer in the world, the direct and indirect losses caused by fruit flies can exceed USD 120 million/year. These losses...

Full description

Saved in:
Bibliographic Details
Published in:2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) pp. 41 - 47
Main Authors: Leonardo, Matheus Macedo, Carvalho, Tiago J., Rezende, Edmar, Zucchi, Roberto, Faria, Fabio Augusto
Format: Conference Proceeding
Language:English
Published: IEEE 01-10-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fruit flies has a big biological and economic importance for the farming of different tropical and subtropical countries in the World. Specifically in Brazil, third largest fruit producer in the world, the direct and indirect losses caused by fruit flies can exceed USD 120 million/year. These losses are related to production, the cost of pest control and export markets. One of the most economically important fruit flies in the America belong to the genus Anastrepha, which has approximately 300 known species, of which 120 are recorded in Brazil. However, less than 10 species are economically important and are considered pests of quarantine significance by regulatory agencies. The extreme similarity among the species of the genus Anastrepha makes its manual taxonomic classification a nontrivial task, causing onerous and very subjective results. In this work, we propose an approach based on deep learning to assist the scarce specialists, reducing the time of analysis, subjectivity of the classifications and consequently, the economic losses related to these agricultural pests. In our experiments, five deep features and nine machine learning techniques have been studied for the target task. Furthermore, the proposed approach have achieved similar effectiveness results to state-of-art approaches.
ISSN:2377-5416
DOI:10.1109/SIBGRAPI.2018.00012