Vibration-based water leakage detection system for public open data platforms
Water Distribution Networks are known to lose a consistent percentage of drinkable water due to the presence of leakages. In this paper it is proposed a solution to detect water leaks consisting of: i) a new sensing equipment able to acoustically monitor the external surface of a newly laid undergro...
Saved in:
Published in: | International archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLVIII-4/W10-2024; pp. 71 - 76 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article Conference Proceeding |
Language: | English |
Published: |
Gottingen
Copernicus GmbH
31-05-2024
Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Water Distribution Networks are known to lose a consistent percentage of drinkable water due to the presence of leakages. In this paper it is proposed a solution to detect water leaks consisting of: i) a new sensing equipment able to acoustically monitor the external surface of a newly laid underground pipe; ii) a training of several machine learning models able to analyse the data collected by the new sensing equipment; iii) a user dashboard to give the final user the possibility to monitor the pipe’s condition. The research process included the generation of artificial leakages capable to produce a suitable dataset necessary to properly train machine learning models onto. |
---|---|
AbstractList | Water Distribution Networks are known to lose a consistent percentage of drinkable water due to the presence of leakages. In this paper it is proposed a solution to detect water leaks consisting of: i) a new sensing equipment able to acoustically monitor the external surface of a newly laid underground pipe; ii) a training of several machine learning models able to analyse the data collected by the new sensing equipment; iii) a user dashboard to give the final user the possibility to monitor the pipe’s condition. The research process included the generation of artificial leakages capable to produce a suitable dataset necessary to properly train machine learning models onto. |
Author | Lo Valvo, Fulvio Di Puma, Francesco Popunkiov, Boian Alexieva, Daniela Raykov, Dian Falla, Josè Papadakis, Thanasis Ladjery, Karim Soldatos, John Christou, Ioannis T. Giaconia, Giuseppe Costantino |
Author_xml | – sequence: 1 givenname: Giuseppe Costantino surname: Giaconia fullname: Giaconia, Giuseppe Costantino – sequence: 2 givenname: Fulvio surname: Lo Valvo fullname: Lo Valvo, Fulvio – sequence: 3 givenname: Karim surname: Ladjery fullname: Ladjery, Karim – sequence: 4 givenname: Francesco surname: Di Puma fullname: Di Puma, Francesco – sequence: 5 givenname: Josè surname: Falla fullname: Falla, Josè – sequence: 6 givenname: Ioannis T. surname: Christou fullname: Christou, Ioannis T. – sequence: 7 givenname: John surname: Soldatos fullname: Soldatos, John – sequence: 8 givenname: Thanasis surname: Papadakis fullname: Papadakis, Thanasis – sequence: 9 givenname: Boian surname: Popunkiov fullname: Popunkiov, Boian – sequence: 10 givenname: Daniela surname: Alexieva fullname: Alexieva, Daniela – sequence: 11 givenname: Dian surname: Raykov fullname: Raykov, Dian |
BookMark | eNpNkVtLxDAQhYMoeP0PAZ-jSZo25lHES2HFF29vYZpMtGu3qUlX8d_b3VXxYTjDzOHMwLdPtvvYIyFc8JNSGHXa5iFlBsm9th-Y2fPssa5rptiT4ExyqZgWa90ie3LyM8MLtf2v3yVHOc8550JVVcnLPXL72DYJxjb2rIGMnn7CiIl2CG_wgtTjiG61pfkrj7igISY6LJuudTQO2FMPI9Chg3FaLPIh2QnQZTz60QPycHV5f3HDZnfX9cX5jDkpy-kV9Fg54QAclEKUBh2vSiUF102lfBVCo5rg9VReGyiMNFo7d6adEbIUUByQepPrI8ztkNoFpC8bobXrQUwvFtLYug5tMMFJEwL3xitTCRM0YnBaeomAZ82UdbzJGlJ8X2Ie7TwuUz-9bwteSV1wVajJdbNxuRRzThj-rgpuV2zsmo39ZWM3bKyyExu7YmK1WGvxDe6NjVA |
ContentType | Journal Article Conference Proceeding |
Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TN 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/isprs-archives-XLVIII-4-W10-2024-71-2024 |
DatabaseName | CrossRef Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 2194-9034 |
EndPage | 76 |
ExternalDocumentID | oai_doaj_org_article_f9fc29ff0d9d49619f7eefc72d2eae8b 10_5194_isprs_archives_XLVIII_4_W10_2024_71_2024 |
GroupedDBID | 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ L6V LK5 M7R M7S OK1 PCBAR PIMPY PROAC PTHSS RKB TUS 7TN ABUWG AZQEC DWQXO F1W H96 L.G PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2254-9ede6c1caaca51159ec06542107b64d6ffb4bfd7bfdd79a392977cc87c91251a3 |
IEDL.DBID | DOA |
ISSN | 2194-9034 1682-1750 |
IngestDate | Tue Oct 22 15:16:19 EDT 2024 Tue Nov 19 06:37:32 EST 2024 Fri Nov 22 00:57:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2254-9ede6c1caaca51159ec06542107b64d6ffb4bfd7bfdd79a392977cc87c91251a3 |
OpenAccessLink | https://doaj.org/article/f9fc29ff0d9d49619f7eefc72d2eae8b |
PQID | 3062730434 |
PQPubID | 2037674 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f9fc29ff0d9d49619f7eefc72d2eae8b proquest_journals_3062730434 crossref_primary_10_5194_isprs_archives_XLVIII_4_W10_2024_71_2024 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-31 |
PublicationDateYYYYMMDD | 2024-05-31 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | International archives of the photogrammetry, remote sensing and spatial information sciences. |
PublicationYear | 2024 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
SSID | ssj0001466505 |
Score | 2.3599644 |
Snippet | Water Distribution Networks are known to lose a consistent percentage of drinkable water due to the presence of leakages. In this paper it is proposed a... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 71 |
SubjectTerms | Accelerometers Archives & records Drinking water Leak detection Machine learning Microelectromechanical systems Open data Pipes Sensors Smart cities Vibration Water distribution Water engineering Water pipes Water supply |
Title | Vibration-based water leakage detection system for public open data platforms |
URI | https://www.proquest.com/docview/3062730434 https://doaj.org/article/f9fc29ff0d9d49619f7eefc72d2eae8b |
Volume | XLVIII-4/W10-2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3ag-hB_MRqlRy8hm53Y9Ic60exoF7U2lvIJxRLLd0W_74z2W1RPHjxsAQCYcPbSebN8nhDyCXU08ZCXcJk7jLGhXfM5jZn3jsVIw8iZqmJ7bN8GnVv79AmZ93qCzVhlT1wBVw7quhyWJZ55bkCuh9lCNHJ3OfBhK5Nt28mvhVT6e8KF0A9UL_YEUAhIUdmWwRlXEBYeHtczuYlM7W1Kxs9DAeDAePsDe4k2DwKFNP4I1clS_9fN3ZKQ_09slvzR9qr9r1PNsL0gOwMx-Wymi0PyeMQS2AEnGGO8vQT-OScToJ5h8uD-rBI8qsprVycKdBWWrldU-ylRVE0SmcTs0A-Wx6R1_7dy809q7smMAdnkzMVfBCu44xxBtjUlQoudaWCOs8K7kWMltvoJTxeKoP8SErnutIpJDumOCaN6cc0nBCK7CgWPGQdC4k-F6priwCEMFplA5SGTdJb4aNnlTmGhqICMdYJY73CWFcYa64BY43YatlJY5NcI7Dr9Wh3nSYgCHQdBPqvIGiS1uqz6PoMlrpAB-Yi4wU__Y93nJHtFBtJOdAijcV8Gc7JZumXFyn2vgDNTt8n |
link.rule.ids | 310,311,315,782,786,791,792,866,2106,23939,23940,25149,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=Vibration-based+water+leakage+detection+system+for+public+open+data+platforms&rft.au=Giuseppe+Costantino+Giaconia&rft.au=Fulvio+Lo+Valvo&rft.au=Ladjery%2C+Karim&rft.au=Francesco+Di+Puma&rft.date=2024-05-31&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVIII-4%2FW10-2024&rft.spage=71&rft.epage=76&rft_id=info:doi/10.5194%2Fisprs-archives-XLVIII-4-W10-2024-71-2024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon |