Variable selection in Poisson regression model based on chaotic meta-heuristic search algorithm
By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved through the process of variable selection. Regression modeling has drawn a lot of interest from several scientific domains. One of the most e...
Saved in:
Published in: | BIO web of conferences Vol. 97; p. 161 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
EDP Sciences
01-01-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved through the process of variable selection. Regression modeling has drawn a lot of interest from several scientific domains. One of the most effective nature-inspired algorithms that has been suggested recently and can be used effectively for variable selection is the Firefly algorithm. The chaotic firefly algorithm is presented in this work to carry out the Poisson regression model's variable selection. A simulation study is carried out to assess how well the suggested strategy performs in terms of variable selection criteria and prediction accuracy. Its effectiveness is also contrasted with alternative approaches. The outcomes demonstrated the effectiveness of our suggested strategies, which beat other widely used approaches. |
---|---|
AbstractList | By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved through the process of variable selection. Regression modeling has drawn a lot of interest from several scientific domains. One of the most effective nature-inspired algorithms that has been suggested recently and can be used effectively for variable selection is the Firefly algorithm. The chaotic firefly algorithm is presented in this work to carry out the Poisson regression model's variable selection. A simulation study is carried out to assess how well the suggested strategy performs in terms of variable selection criteria and prediction accuracy. Its effectiveness is also contrasted with alternative approaches. The outcomes demonstrated the effectiveness of our suggested strategies, which beat other widely used approaches. |
Author | Alangood, Heyaa Nadhim Ahmed Khaleel, Mundher Abdullah Algamal, Zakariya Yahya |
Author_xml | – sequence: 1 givenname: Heyaa Nadhim Ahmed surname: Alangood fullname: Alangood, Heyaa Nadhim Ahmed – sequence: 2 givenname: Zakariya Yahya surname: Algamal fullname: Algamal, Zakariya Yahya – sequence: 3 givenname: Mundher Abdullah surname: Khaleel fullname: Khaleel, Mundher Abdullah |
BookMark | eNpNUE1PwzAMjRBIjLFfwKV_oCxfTZsjmviYNAkOwDVyUnfN1DUoKQf-PRmb0OzDs5-sZ_vdkMsxjEjIHaP3jFZsaX1wYeyWnHKpa0qZYhdkxhmrSymr5vKsviaLlHY0h2aC1tWMmE-IHuyARcIB3eTDWPixeAs-pVxG3EZM6cDuQ4tDYSFhW-TW9RAm74o9TlD2-B19OrQJIbq-gGEbop_6_S256mBIuDjhnHw8Pb6vXsrN6_N69bApHecVK6tagVZSKa06rHTHBaddfkVndIIjAyWpqnNy1-rW6k40rHZg86xqGyXmZH3UbQPszFf0e4g_JoA3f0SIWwMxHzigAcU5k0glV1pq1lrhrKZNYxVrWF6atcRRy8WQUsTuX49Rc7DcnCw3Z5aLX1V0du4 |
Cites_doi | 10.1080/02664763.2016.1254730 10.1080/03610926.2017.1390129 10.1016/j.csda.2014.03.001 10.1080/03610918.2017.1288245 10.1007/s00521-017-2988-6 10.1017/CBO9780511755408 10.1007/s00366-012-0254-1 10.1016/j.ejor.2008.10.007 10.1007/s00357-018-9261-2 10.1080/03610919908813553 10.1016/j.amc.2013.05.016 10.1016/j.ejor.2010.02.032 10.1007/s00607-015-0456-7 10.1007/s00521-017-2837-7 10.5539/mas.v9n4p170 10.1017/CBO9781139013567 10.1016/S0003-2670(97)00065-2 10.1186/s12859-016-1201-8 10.1016/j.eswa.2015.08.016 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1051/bioconf/20249700161 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2117-4458 |
Editor | Aldahan, N. Ramadhan, A.J. |
Editor_xml | – sequence: 1 givenname: N. surname: Aldahan fullname: Aldahan, N. – sequence: 2 givenname: A.J. surname: Ramadhan fullname: Ramadhan, A.J. |
ExternalDocumentID | oai_doaj_org_article_a62214e04269491db3cb9088b6181f00 10_1051_bioconf_20249700161 |
GroupedDBID | 4.4 5VS 8AO 8FE 8FH AAFWJ AAHBH AAYXX ABZDU ACACO ACPRK ADBBV AFKRA AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ GX1 HCIFZ IPNFZ KQ8 LK8 M7P M~E OK1 PIMPY PROAC RED RIG RNS |
ID | FETCH-LOGICAL-c2251-576a9646696fe59f2320f0019320c32e1a640676762cd9db9f3817cab59f6d863 |
IEDL.DBID | DOA |
ISSN | 2117-4458 |
IngestDate | Tue Oct 22 15:07:27 EDT 2024 Fri Aug 23 01:06:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2251-576a9646696fe59f2320f0019320c32e1a640676762cd9db9f3817cab59f6d863 |
OpenAccessLink | https://doaj.org/article/a62214e04269491db3cb9088b6181f00 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a62214e04269491db3cb9088b6181f00 crossref_primary_10_1051_bioconf_20249700161 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | BIO web of conferences |
PublicationYear | 2024 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | R2 R3 R5 Pacheco (R12) 2009; 199 Sayed (R22) 2018; 35 Dunder (R16) 2016; 45 Algamal (R1) 2012; 5 Unler (R13) 2010; 206 Sindhu (R6) 2017; 28 Drezner (R8) 1999; 28 Yang (R19) 2013; 29 Dünder (R11) 2017; 47 R14 Örkcü (R9) 2013; 219 R15 R18 Broadhurst (R7) 1997; 348 Algamal (R17) 2015; 9 Algamal (R4) 2015; 42 Yu (R20) 2015; 97 Zhang (R21) 2016; 17 Brusco (R10) 2014; 77 |
References_xml | – volume: 45 start-page: 8 issue: 1 year: 2016 ident: R16 publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2016.1254730 contributor: fullname: Dunder – ident: R14 doi: 10.1080/03610926.2017.1390129 – volume: 77 start-page: 38 year: 2014 ident: R10 publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2014.03.001 contributor: fullname: Brusco – volume: 47 start-page: 605 issue: 2 year: 2017 ident: R11 publication-title: Communications in Statistics - Simulation and Computation doi: 10.1080/03610918.2017.1288245 contributor: fullname: Dünder – ident: R5 doi: 10.1007/s00521-017-2988-6 – ident: R3 doi: 10.1017/CBO9780511755408 – volume: 29 start-page: 175 issue: 2 year: 2013 ident: R19 publication-title: Engineering with Computers doi: 10.1007/s00366-012-0254-1 contributor: fullname: Yang – volume: 199 start-page: 506 issue: 2 year: 2009 ident: R12 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2008.10.007 contributor: fullname: Pacheco – volume: 35 start-page: 300 issue: 2 year: 2018 ident: R22 publication-title: Journal of Classification doi: 10.1007/s00357-018-9261-2 contributor: fullname: Sayed – volume: 28 start-page: 349 issue: 2 year: 1999 ident: R8 publication-title: Communications in Statistics - Simulation and Computation doi: 10.1080/03610919908813553 contributor: fullname: Drezner – volume: 219 start-page: 11018 issue: 23 year: 2013 ident: R9 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2013.05.016 contributor: fullname: Örkcü – volume: 206 start-page: 528 issue: 3 year: 2010 ident: R13 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2010.02.032 contributor: fullname: Unler – volume: 5 start-page: 178 issue: 2 year: 2012 ident: R1 publication-title: Electronic Journal of Applied Statistical Analysis contributor: fullname: Algamal – volume: 97 start-page: 741 issue: 7 year: 2015 ident: R20 publication-title: Computing doi: 10.1007/s00607-015-0456-7 contributor: fullname: Yu – volume: 28 start-page: 2947 issue: 10 year: 2017 ident: R6 publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-2837-7 contributor: fullname: Sindhu – volume: 9 start-page: 170 issue: 4 year: 2015 ident: R17 publication-title: Modern Applied Science doi: 10.5539/mas.v9n4p170 contributor: fullname: Algamal – ident: R2 doi: 10.1017/CBO9781139013567 – volume: 348 start-page: 71 issue: 1-3 year: 1997 ident: R7 publication-title: Analytica Chimica Acta doi: 10.1016/S0003-2670(97)00065-2 contributor: fullname: Broadhurst – volume: 17 start-page: 323 issue: 1 year: 2016 ident: R21 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1201-8 contributor: fullname: Zhang – volume: 42 start-page: 9326 issue: 23 year: 2015 ident: R4 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.08.016 contributor: fullname: Algamal – ident: R15 – ident: R18 |
SSID | ssj0000913075 |
Score | 2.2944949 |
Snippet | By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 161 |
Title | Variable selection in Poisson regression model based on chaotic meta-heuristic search algorithm |
URI | https://doaj.org/article/a62214e04269491db3cb9088b6181f00 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05a8MwGBVtoNCl9KTphYaOFfElyRp7JGQqhR50MzqTQGOHHEP_fT9JTkinLsWDD4QQT7K-92zpfQjdisQp4S1nDS8cKaxTRFDniFTaAl2guXZeKA5f-fNn-dT3NjmbVF9-TVi0B47A9STLsrSwSdhyKVKjcq382hzFIDa5JKr1RGyJqTAHC5ibOV3bDNG0pyYNCEznxX4heGA6v0LRlmN_CC2DQ3TQckJ8H9tyhHZsfYz2YpbI7xNUfYCe9Tuc8CIkrQEk8aTGLw1gBpdzO4prWWsc0tpgH5gMhls9lg1Uiad2KcnYrqIpM46DG8uvUTOfLMfTU_Q-6L89DkmbF4FoePtSAhJBClYwJpizVDggRYnzXA3OOs9sKhmEaQ5Hpo0wSjhvw6elgrLMlCw_Q526qe05wiUvqZaZcrZwoLSAjWQcOERpQAgpankX3a0hqmbR_qIKv61pWrWIVluIdtGDh3FT1HtXhwfQo1Xbo9VfPXrxH5Vcon3frvix5Ap1lvOVvUa7C7O6CSPlB4vPwFA |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+selection+in+Poisson+regression+model+based+on+chaotic+meta-heuristic+search+algorithm&rft.jtitle=BIO+web+of+conferences&rft.au=Alangood+Heyaa+Nadhim+Ahmed&rft.au=Algamal+Zakariya+Yahya&rft.au=Khaleel+Mundher+Abdullah&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.eissn=2117-4458&rft.volume=97&rft.spage=00161&rft_id=info:doi/10.1051%2Fbioconf%2F20249700161&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a62214e04269491db3cb9088b6181f00 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2117-4458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2117-4458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2117-4458&client=summon |