Variable selection in Poisson regression model based on chaotic meta-heuristic search algorithm

By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved through the process of variable selection. Regression modeling has drawn a lot of interest from several scientific domains. One of the most e...

Full description

Saved in:
Bibliographic Details
Published in:BIO web of conferences Vol. 97; p. 161
Main Authors: Alangood, Heyaa Nadhim Ahmed, Algamal, Zakariya Yahya, Khaleel, Mundher Abdullah
Format: Journal Article
Language:English
Published: EDP Sciences 01-01-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved through the process of variable selection. Regression modeling has drawn a lot of interest from several scientific domains. One of the most effective nature-inspired algorithms that has been suggested recently and can be used effectively for variable selection is the Firefly algorithm. The chaotic firefly algorithm is presented in this work to carry out the Poisson regression model's variable selection. A simulation study is carried out to assess how well the suggested strategy performs in terms of variable selection criteria and prediction accuracy. Its effectiveness is also contrasted with alternative approaches. The outcomes demonstrated the effectiveness of our suggested strategies, which beat other widely used approaches.
AbstractList By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved through the process of variable selection. Regression modeling has drawn a lot of interest from several scientific domains. One of the most effective nature-inspired algorithms that has been suggested recently and can be used effectively for variable selection is the Firefly algorithm. The chaotic firefly algorithm is presented in this work to carry out the Poisson regression model's variable selection. A simulation study is carried out to assess how well the suggested strategy performs in terms of variable selection criteria and prediction accuracy. Its effectiveness is also contrasted with alternative approaches. The outcomes demonstrated the effectiveness of our suggested strategies, which beat other widely used approaches.
Author Alangood, Heyaa Nadhim Ahmed
Khaleel, Mundher Abdullah
Algamal, Zakariya Yahya
Author_xml – sequence: 1
  givenname: Heyaa Nadhim Ahmed
  surname: Alangood
  fullname: Alangood, Heyaa Nadhim Ahmed
– sequence: 2
  givenname: Zakariya Yahya
  surname: Algamal
  fullname: Algamal, Zakariya Yahya
– sequence: 3
  givenname: Mundher Abdullah
  surname: Khaleel
  fullname: Khaleel, Mundher Abdullah
BookMark eNpNUE1PwzAMjRBIjLFfwKV_oCxfTZsjmviYNAkOwDVyUnfN1DUoKQf-PRmb0OzDs5-sZ_vdkMsxjEjIHaP3jFZsaX1wYeyWnHKpa0qZYhdkxhmrSymr5vKsviaLlHY0h2aC1tWMmE-IHuyARcIB3eTDWPixeAs-pVxG3EZM6cDuQ4tDYSFhW-TW9RAm74o9TlD2-B19OrQJIbq-gGEbop_6_S256mBIuDjhnHw8Pb6vXsrN6_N69bApHecVK6tagVZSKa06rHTHBaddfkVndIIjAyWpqnNy1-rW6k40rHZg86xqGyXmZH3UbQPszFf0e4g_JoA3f0SIWwMxHzigAcU5k0glV1pq1lrhrKZNYxVrWF6atcRRy8WQUsTuX49Rc7DcnCw3Z5aLX1V0du4
Cites_doi 10.1080/02664763.2016.1254730
10.1080/03610926.2017.1390129
10.1016/j.csda.2014.03.001
10.1080/03610918.2017.1288245
10.1007/s00521-017-2988-6
10.1017/CBO9780511755408
10.1007/s00366-012-0254-1
10.1016/j.ejor.2008.10.007
10.1007/s00357-018-9261-2
10.1080/03610919908813553
10.1016/j.amc.2013.05.016
10.1016/j.ejor.2010.02.032
10.1007/s00607-015-0456-7
10.1007/s00521-017-2837-7
10.5539/mas.v9n4p170
10.1017/CBO9781139013567
10.1016/S0003-2670(97)00065-2
10.1186/s12859-016-1201-8
10.1016/j.eswa.2015.08.016
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1051/bioconf/20249700161
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2117-4458
Editor Aldahan, N.
Ramadhan, A.J.
Editor_xml – sequence: 1
  givenname: N.
  surname: Aldahan
  fullname: Aldahan, N.
– sequence: 2
  givenname: A.J.
  surname: Ramadhan
  fullname: Ramadhan, A.J.
ExternalDocumentID oai_doaj_org_article_a62214e04269491db3cb9088b6181f00
10_1051_bioconf_20249700161
GroupedDBID 4.4
5VS
8AO
8FE
8FH
AAFWJ
AAHBH
AAYXX
ABZDU
ACACO
ACPRK
ADBBV
AFKRA
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
GX1
HCIFZ
IPNFZ
KQ8
LK8
M7P
M~E
OK1
PIMPY
PROAC
RED
RIG
RNS
ID FETCH-LOGICAL-c2251-576a9646696fe59f2320f0019320c32e1a640676762cd9db9f3817cab59f6d863
IEDL.DBID DOA
ISSN 2117-4458
IngestDate Tue Oct 22 15:07:27 EDT 2024
Fri Aug 23 01:06:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2251-576a9646696fe59f2320f0019320c32e1a640676762cd9db9f3817cab59f6d863
OpenAccessLink https://doaj.org/article/a62214e04269491db3cb9088b6181f00
ParticipantIDs doaj_primary_oai_doaj_org_article_a62214e04269491db3cb9088b6181f00
crossref_primary_10_1051_bioconf_20249700161
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle BIO web of conferences
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References R2
R3
R5
Pacheco (R12) 2009; 199
Sayed (R22) 2018; 35
Dunder (R16) 2016; 45
Algamal (R1) 2012; 5
Unler (R13) 2010; 206
Sindhu (R6) 2017; 28
Drezner (R8) 1999; 28
Yang (R19) 2013; 29
Dünder (R11) 2017; 47
R14
Örkcü (R9) 2013; 219
R15
R18
Broadhurst (R7) 1997; 348
Algamal (R17) 2015; 9
Algamal (R4) 2015; 42
Yu (R20) 2015; 97
Zhang (R21) 2016; 17
Brusco (R10) 2014; 77
References_xml – volume: 45
  start-page: 8
  issue: 1
  year: 2016
  ident: R16
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2016.1254730
  contributor:
    fullname: Dunder
– ident: R14
  doi: 10.1080/03610926.2017.1390129
– volume: 77
  start-page: 38
  year: 2014
  ident: R10
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2014.03.001
  contributor:
    fullname: Brusco
– volume: 47
  start-page: 605
  issue: 2
  year: 2017
  ident: R11
  publication-title: Communications in Statistics - Simulation and Computation
  doi: 10.1080/03610918.2017.1288245
  contributor:
    fullname: Dünder
– ident: R5
  doi: 10.1007/s00521-017-2988-6
– ident: R3
  doi: 10.1017/CBO9780511755408
– volume: 29
  start-page: 175
  issue: 2
  year: 2013
  ident: R19
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-012-0254-1
  contributor:
    fullname: Yang
– volume: 199
  start-page: 506
  issue: 2
  year: 2009
  ident: R12
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.10.007
  contributor:
    fullname: Pacheco
– volume: 35
  start-page: 300
  issue: 2
  year: 2018
  ident: R22
  publication-title: Journal of Classification
  doi: 10.1007/s00357-018-9261-2
  contributor:
    fullname: Sayed
– volume: 28
  start-page: 349
  issue: 2
  year: 1999
  ident: R8
  publication-title: Communications in Statistics - Simulation and Computation
  doi: 10.1080/03610919908813553
  contributor:
    fullname: Drezner
– volume: 219
  start-page: 11018
  issue: 23
  year: 2013
  ident: R9
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2013.05.016
  contributor:
    fullname: Örkcü
– volume: 206
  start-page: 528
  issue: 3
  year: 2010
  ident: R13
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.02.032
  contributor:
    fullname: Unler
– volume: 5
  start-page: 178
  issue: 2
  year: 2012
  ident: R1
  publication-title: Electronic Journal of Applied Statistical Analysis
  contributor:
    fullname: Algamal
– volume: 97
  start-page: 741
  issue: 7
  year: 2015
  ident: R20
  publication-title: Computing
  doi: 10.1007/s00607-015-0456-7
  contributor:
    fullname: Yu
– volume: 28
  start-page: 2947
  issue: 10
  year: 2017
  ident: R6
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-2837-7
  contributor:
    fullname: Sindhu
– volume: 9
  start-page: 170
  issue: 4
  year: 2015
  ident: R17
  publication-title: Modern Applied Science
  doi: 10.5539/mas.v9n4p170
  contributor:
    fullname: Algamal
– ident: R2
  doi: 10.1017/CBO9781139013567
– volume: 348
  start-page: 71
  issue: 1-3
  year: 1997
  ident: R7
  publication-title: Analytica Chimica Acta
  doi: 10.1016/S0003-2670(97)00065-2
  contributor:
    fullname: Broadhurst
– volume: 17
  start-page: 323
  issue: 1
  year: 2016
  ident: R21
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1201-8
  contributor:
    fullname: Zhang
– volume: 42
  start-page: 9326
  issue: 23
  year: 2015
  ident: R4
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.08.016
  contributor:
    fullname: Algamal
– ident: R15
– ident: R18
SSID ssj0000913075
Score 2.2944949
Snippet By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 161
Title Variable selection in Poisson regression model based on chaotic meta-heuristic search algorithm
URI https://doaj.org/article/a62214e04269491db3cb9088b6181f00
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05a8MwGBVtoNCl9KTphYaOFfElyRp7JGQqhR50MzqTQGOHHEP_fT9JTkinLsWDD4QQT7K-92zpfQjdisQp4S1nDS8cKaxTRFDniFTaAl2guXZeKA5f-fNn-dT3NjmbVF9-TVi0B47A9STLsrSwSdhyKVKjcq382hzFIDa5JKr1RGyJqTAHC5ibOV3bDNG0pyYNCEznxX4heGA6v0LRlmN_CC2DQ3TQckJ8H9tyhHZsfYz2YpbI7xNUfYCe9Tuc8CIkrQEk8aTGLw1gBpdzO4prWWsc0tpgH5gMhls9lg1Uiad2KcnYrqIpM46DG8uvUTOfLMfTU_Q-6L89DkmbF4FoePtSAhJBClYwJpizVDggRYnzXA3OOs9sKhmEaQ5Hpo0wSjhvw6elgrLMlCw_Q526qe05wiUvqZaZcrZwoLSAjWQcOERpQAgpankX3a0hqmbR_qIKv61pWrWIVluIdtGDh3FT1HtXhwfQo1Xbo9VfPXrxH5Vcon3frvix5Ap1lvOVvUa7C7O6CSPlB4vPwFA
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+selection+in+Poisson+regression+model+based+on+chaotic+meta-heuristic+search+algorithm&rft.jtitle=BIO+web+of+conferences&rft.au=Alangood+Heyaa+Nadhim+Ahmed&rft.au=Algamal+Zakariya+Yahya&rft.au=Khaleel+Mundher+Abdullah&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.eissn=2117-4458&rft.volume=97&rft.spage=00161&rft_id=info:doi/10.1051%2Fbioconf%2F20249700161&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a62214e04269491db3cb9088b6181f00
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2117-4458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2117-4458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2117-4458&client=summon