Synthesis and Solution Properties of Hydrophobically Modified Polysaccharides
Hydrophobically modified polymers are amphiphilic macromolecules mainly constituted of a hydrophilic backbone and hydrophobic side groups. In aqueous solutions these polymers undergo inter- or intra-molecular hydrophobic association, which results in unusual properties useful for a number of practic...
Saved in:
Published in: | Eurasian chemico-technological journal Vol. 7; no. 2; pp. 99 - 113 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
al-Farabi Kazakh National University
13-07-2017
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrophobically modified polymers are amphiphilic macromolecules mainly constituted of a hydrophilic backbone and hydrophobic side groups. In aqueous solutions these polymers undergo inter- or intra-molecular hydrophobic association, which results in unusual properties useful for a number of practical applications. The areas of application of these polymers include associative thickeners for enhanced oil recovery, pharmaceuticals, personal care formulations, coatings, adhesives, surfactants, emulsifiers, etc. This review presents the analysis of a literature data on preparation of hydrophobically modified polysaccharides (HMP) and their properties in aqueous solutions. Some of the synthetic methods used for hydrophobic modification of non-ionic (cellulose ethers, starch, dextran, pullulan, etc.), anionic (carboxymethylcellulose, hyaluronic acid, pectic acid, alginic acid, heparin) and cationicВ olysaccharides (chitosan) are presented. The methodology used for the investigation of solution properties of hydrophobically modified polysaccharides is discussed. Special attention is paid to aggregate and micelle formation in solutions of hydrophobically modified polysaccharides, solubilization of hydrophobic compounds, their rheological properties and surface activity. The effects of polymer architecture (level of hydrophobic substitution, nature of hydrophobic groups, molecular weight of a hydrophilic backbone, etc.), concentration, temperature, presence of inorganic salts and organic solvents on solution properties of hydrophobically modified polysaccharides are discussed. Some applications of hydrophobically modified polysaccharides are briefly highlighted. |
---|---|
ISSN: | 1562-3920 2522-4867 |
DOI: | 10.18321/ectj621 |