Liver lesion segmentation informed by joint liver segmentation

We propose a model for the joint segmentation of the liver and liver lesions in computed tomography (CT) volumes. We build the model from two fully convolutional networks, connected in tandem and trained together end-to-end. We evaluate our approach on the 2017 MICCAI Liver Tumour Segmentation Chall...

Full description

Saved in:
Bibliographic Details
Published in:2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) pp. 1332 - 1335
Main Authors: Vorontsov, Eugene, Tang, An, Pal, Chris, Kadoury, Samuel
Format: Conference Proceeding
Language:English
Published: IEEE 01-04-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a model for the joint segmentation of the liver and liver lesions in computed tomography (CT) volumes. We build the model from two fully convolutional networks, connected in tandem and trained together end-to-end. We evaluate our approach on the 2017 MICCAI Liver Tumour Segmentation Challenge, attaining competitive liver and liver lesion detection and segmentation scores across a wide range of metrics. Unlike other top performing methods, our model output post-processing is trivial, we do not use data external to the challenge, and we propose a simple single-stage model that is trained end-to-end. However, our method nearly matches the top lesion segmentation performance and achieves the second highest precision for lesion detection while maintaining high recall.
ISSN:1945-8452
DOI:10.1109/ISBI.2018.8363817